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1.  Introduction

Over the last decade there has been a rapid growth in research 
studying the problem of thermalization at a quantum level. 
Perhaps the first discussion of these issues started with 
Schrödinger [1] and shortly after that, Von Neumann [2] was 
able to make substantial headway into this deep and com-
plex problem. Since then, there have been many approaches 
to understanding thermalization. However the recent surge 
of interest has been focused on understanding thermalization 
from a microscopic point of view, continuing the relentless 
campaign of physics to try to explain all phenomena from 
the Schroedinger equation. The path of getting from the 
microscopic to the macroscopic is still not completely under-
stood, but can be done when certain plausible assumptions 
are introduced. The main one in this case is the ‘eigenstate 
thermalization hypothesis’ (ETH) [3–5], and is the subject 
of this review. We will discuss the theoretical and numerical 

evidence in support of the ETH, and also point out where it is 
known to fail. This is not meant to be a comprehensive review 
of the field but a relatively short and accessible introduction 
to readers interested in understanding more qualitatively how 
the ETH comes about and how it is being currently studied. 
For a more technical and comprehensive review, the reader is 
invited to peruse [6].

1.1.  Why study the ETH?

But why study the ETH and thermalization in general? The 
fact that a macroscopic body, such as a brick, will ultimately 
come to equilibrium with its environment, seems so obvious 
from ones everyday experience, that it might hardly seem 
of interest to pursue understanding why. But without such 
experience, it is actually quite remarkable that this happens. 
Why should there be a way of defining an equilibrium mac-
roscopic state for a brick that does not depend, in detail, on 
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its initial preparation? Physics tells us that the evolution of a 
state depends completely on its initial conditions, and there-
fore the brick should be described by 1023 numbers (actu-
ally exp(1023) in quantum mechanics), and not just a few. 
And the fact that at a macroscopic level, a system’s behav-
ior becomes simple, means that things like memory devices 
work reliably despite the fact that the quantum state of each 
device is completely different. The lack of dependence on 
the initial state, is what gives consistent behavior on a macro-
scopic scale, and relaxation to an equilibrium thermal state. 
Hence irreversibility and the second law of thermodynamics 
are closely related to thermalization. We will shortly review 
how thermalization in classical systems is closely related 
to idea of chaos and ergodicity. The ETH can be regarded, 
very broadly, as the quantum manifestation of such ergodic 
behavior.

Aside from understanding why things thermalize, the ETH 
sheds light on a system’s behavior, such as fluctuations and 
transport coefficients [6–9]. It also helps to understand where 
systems fail to thermalize such as in ‘many body localiza-
tion’ [10–14], leading to the predictions and understanding of 
exotic new phenomena.

An example of a system very well described by a thermal 
state is a black hole. Hence the quantum mechanical aspects 
of chaos, thermalization and the ETH are very relevant to the 
understanding of the inner workings of these elusive objects 
[15]. Similarly thermalization is apparent in systems that are 
easier to study experimentally, such as cold atoms [16, 17], 
where many of the details of our picture of quantum thermali-
zation can be tested.

1.2.  Example of thermalization

Now let us turn to a simple example of a system that illustrates 
the issues involving thermalization that we discussed above.

Consider a perfectly harmonic crystal that is completely 
isolated. It is described classically by a linear set of equa-
tions  that can be diagonalized to yield different normal 
modes. Those modes can then be quantized to give a com-
plete quantum description of the system. First consider how 
we would reasonably expect the system to be described in 
thermal equilibrium. If we measured a single phonon prop-
erty such as the occupation number n(E) of a mode at any 
energy E, that should be given by the Bose–Einstein distribu-
tion. To easily measure n(E) experimentally, it would be bet-
ter to consider, instead, its average over all modes with similar 
energy, of which there are very many. We then excite a range 
of modes closest to one energy Eo, say by optical means, and 
then remeasure n(E) as a function of energy. This is illustrated 
in figure 1. Because the occupation number for each mode is 
conserved, the probability distribution will have an extra peak 
at Eo that will not change with time. The expected thermal 
distribution will never be attained. In this sense, the system 
will not ‘thermalize’. The same problem occurs in a strictly 
classical treatment of this problem

But such non-thermal behavior is not expected to occur 
in most experimental situations. We would naturally expect, 
that in analogy with the classical case, that there will be an 

exchange of energy with other modes, causing an eventual 
relaxation of the system to thermal equilibrium, with a slightly 
higher temperature. How precisely this happens, even at the 
classical level, is not at all obvious, and so it makes sense to 
first briefly review how classical systems manage to thermal-
ize. For a clear and more detailed exposition of the classical 
and a range of quantum approaches, the reader is invited to 
read [18].

1.3.  Classical thermalization

To understand thermalization, we confine ourselves for the 
moment, to a range of important quantities that are at the heart 
of equilibrium statistical mechanics: equal time averages of 
observables. Consider some observable that varies as a func-
tion of time, O(t), which could be, for example, the z comp
onent of a dipole moment, or the momentum of a single atom 
in a crystal. We would like to find the time average of O, over 
an interval of time T , that we will eventually extend to infin-
ity. In most situations, calculating the value of momentum 
over all time is essentially impossible, and so it would seem 
that its time average would be as well.

However there is a way of understanding this situation that 
makes answering such questions quite manageable. We con-
sider the phase space of a closed classical system, as illus-
trated in figure 2.

A complete description of the system is achieved by includ-
ing all of the canonically conjugate coordinates. Say that there 
are N positional degrees of freedom q1 . . . qN and N momenta 
p1 . . . pN. We can view those variables as a point in a 2N dimen-
sional space, known as phase space, Γ = {q1 . . . qN , p1 . . . pN} 
. As time progresses, these coordinates will change as well, 
meaning that this point will move, as illustrated, tracing out a 
path. Because energy is conserved, we know that this path will 
reside on a surface of constant energy.

In general, this path will be very complicated. If it suc-
ceeds in getting arbitrarily close to every point on this surface, 
then the system is called ‘ergodic’ [19, 20]. Ergodicity says, 
loosely speaking, that Γ(t) will get arbitrarily close to every 
point on the constant energy surface given a long enough time. 
We also know from Liouville’s theorem, that the system will 
spend equal times in equal phase space volumes, so the trajec-
tory will end up covering the ball uniformly. Such a path is 
shown in black in figure 2.

This means that instead of averaging an observable O over 
time, 〈O〉t , we could equally well average it over phase space 
with the constraint that we are confined to this constant energy 
surface. That is a far easier problem to calculate mathemati-
cally. More precisely, regarding the observable as a function 
of phase space O(Γ), we can then say [21]

〈O〉t =

∫
S O(Γ)dΓ∫

S dΓ
� (1)

where we are integrating over a surface S of constant energy. 
And this is precisely how averages are described in the classi-
cal ‘microcanonical ensemble’. It is also important to note that 
there other invariants, for example total system momentum, 
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that might also be conserved. In these cases, the surface must 
also include these other invariants.

In order for this to work, it would seem as if the system 
should be ergodic or at least close to it. There have been a few 
examples where it has been possible to prove ergodicity, most 
notably, a gas of an arbitrary number of hard spheres in some 
volume [22–25], often called ‘Sinai Billiards’ as illustrated 
in figure 3(a). The proofs are quite involved1, but the result 
tells us that time averages are calculable through the microca-
nonical ensemble formula. Another such system that has been 
proved to be ergodic [26] is the ‘Bunimovich Stadium’, which 
describes the motion of a free particle inside a stadium with 
hard walls that are circular on the sides, and straight in the 
middle, see figure 3(b).

But there are also other systems, the are ‘integrable’ where 
there are N other invariants, meaning that these are constants of 
motion. Such a closed trajectory is schematically represented 
by the red curve in figure 2. Referencing our phonon exam-
ple, the fact that the crystal does not thermalize is because of 
these extra invariants. In that case, each of these invariants is 
the energy of a single normal mode. A typical trajectory of 
such a system is therefore described by the combined motion 
of the normal modes, and will in general be quasi-periodic. 
However, integrable systems are unusual, and not expected 

generically. For example, any anharmonic term added, will 
make this problem non-integrable, or ‘generic’.

But in general, we do not expect that a generic classical 
system, for example a gas with Van-der Waals interactions, or 
a model of phonons with anharmonic terms, will be, strictly 
speaking, ergodic. For finite N, there has been a great deal 
of work on what happens in such systems. The Kolmogorov–
Arnold–Moser (KAM) theorem tells us that for a weak anhar-
monic perturbation of order ε, most phase space trajectories 
will continue to be quasi-periodic as in the integrable case. 
However as the strength of the anharmonicity is increased, 
the fraction of such quasiperiodic trajectories is expected to 
decrease. In real situations however we do not necessarily 
have very strong nonlinear terms in the Hamiltonian, so why 
does statistical mechanics work in these cases? 

What is generally believed is that as N → ∞, the range 
of ε’s where a significant fraction of quasiperiodic orbits sur-
vives becomes vanishingly small [27]. Thus for an isolated 
system, for statistical mechanics to work, one needs to have 
large N. In most experimental situations this is usually not a 
problem, because N is normally very large and therefore there 
will be a vanishingly small set of initial condition where the 
trajectories are quasiperiodic, and therefore the system can be 
considered to be ergodic.

Related to ergodicity, is the idea of chaos. The idea is that 
two systems with slightly different initial conditions will 
evolve into systems that are have very different coordinates, 
Γ1(t) and Γ2(t). The rate of divergence can be characterized 
by their Lyapunov exponents. For example, for two Sinai bil-
liards in some closed volume, the trajectories will be very 
sensitive to the initial conditions, and with every subsequent 
collision, Γ1(t) and Γ2(t) will diverge from each other more 
strongly. However ergodicity is not equivalent to chaos, a sim-
ple counter-example being a one dimensional harmonic oscil-
lator, which is ergodic, but close trajectories do not diverge 
from each other. Thus ergodicity ensures that phase space is 
well stirred, but it does not ensure it is scrambled. However, 
for a large number of degrees of freedom, we expect that most 
systems will be ergodic and chaotic.

Figure 1.  (a) A linear system of phonons. Top panel: the average 
occupation of a mode at energy E versus E in thermal equilibrium. 
Middle panel: modes in a narrow band are excited. Lower panel: 
after long time, the distribution remains unaltered. (b) The same 
situation with nonlinearity present. Lower panel: the red curve, 
illustrates that the distribution at intermediate times as it relaxes 
back to the thermal result. The black curve shows the result after a 
long time, having relaxed back to the thermal result. (The curves 
have been slightly displaced for clarity.)

Figure 2.  A two dimensional projection of phase space with 8 
canonically conjugate variables q1 . . . q4, p1 . . . p4. The black line 
corresponds to the path of the system over some time interval. The 
sphere corresponds to the points allowed by energy conservation. 
The red closed path corresponds to a periodic trajectory.

1 To be more precise, ergodicity has only been proven rigorously in some 
special cases that limit the number of spheres, or for systems where all of 
the masses are arbitrary, and then with the caveat that the proof will not hold 
for a zero measure set of mass ratios [23–25].
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But in some contexts, thermalization does imply scram-
bling, and more formally this idea is called ‘mixing’ [28]. This 
can be thought of qualitatively to be related to mixing paints 
but in a high dimensional space. There are many definitions 
for this, but it is essentially understood as follows. Suppose 
we have an ensemble of systems with initial conditions in 
some arbitrarily small region, analogous to a drop of dye in 
water. Then after a sufficiently long time, the separate systems 
(analogous to dye molecules) will be spread uniformly over 
all of accessible phase space. Thus such a system loses all 
correlations with its state at an earlier time. Because of this, 
systems that are mixing will also be ergodic.

In practice, most large N classical systems of physical rele-
vance are strongly chaotic, so that they are very close to being 
strongly mixing and ergodic. Later on we will contrast such 
systems with well known quantum integrable systems.

1.4.  Quantum chaos

Now we turn to trying to understand how chaos manifests 
itself in quantum mechanics. In fact, there is some debate 
over the term ‘Quantum Chaos’ and Michael Berry prefers 
the term ‘Quantum Chaology’ [29] because as we shortly 
discuss, quantum mechanics cannot manifest chaos to the 
same extent that was described above for classical mechan-
ics. But there is definitely a set of phenomena that occur that 
are related to classical chaos in many strongly interacting 
quantum systems.

1.4.1.  Random matrices.  One of the first studied and best 
examples of a strongly interacting quantum system that 
is quite isolated from its environment, is a heavy nucleus. 
Experimental data has been amassed for thousands of energy 
levels but they do not appear to follow any simple mathemati-
cal form, such as the Rydberg formula. Instead it appears that 
the levels are quite random [30] and can be well character-
ized statistically. In 1955, Wigner [31] proposed using random 
matrices to understand the distribution of energy levels found 
experimentally, which turned out to be an extremely deep and 
insightful approach to adopt. His reasoning was quite general, 
and had nothing to do with the precise form of interactions in 
the nucleus, as QCD was unknown at the time. Since then, the 

same random matrix models have been shown to describe the 
statistics of a large number of interacting quantum systems.

The statistics of the eigenvalues of real symmetric random 
matrices map on to the classical statistical mechanics of a one 
dimensional gas with repulsive logarithmic interactions, held 
together by an external quadratic potential. The position of a 
particle corresponds to an eigenvalue, so at finite temperature, 
the set of eigenvalues will look like a snapshot of this thermal 
system. This leads to a number of interesting properties, and 
the most clear signature is to look at a suitably normalized 
difference between adjacent levels. Because of the repul-
sive interactions, this leads to strong energy level repulsion. 
Wigner showed that the distribution of energy level differ-
ences is very close to

P(s) =
π

2
se−πs2/4.� (2)

This fits the data on nuclei quite well [30]. This also implies 
no energy degeneracies.

Because such problems are quite intensive numerically, 
the first direct calculation of quantum energy levels showing 
such a connection occurred in systems with a small number 
of degrees of freedom in the semiclassical regime, such as 
Sinai billiards [32]. The remarkable similarity of the statisti-
cal properties of these energy levels to those of real symmetric 
random matrices led to the Bohigas–Giannoni–Schmit con-
jecture [33]: That in fact, any classical system that is strongly 
chaotic, has corresponding quantum energy levels that have 
the same statistics as such random matrices (in the limit of 
high energy levels).

1.4.2.  Chaos in classical versus quantum mechanics.  We 
have seen that there is a well studied path to understanding 
thermalization in classical systems, and the key concepts there 
are chaos and ergodicity. We have also seen how classically 
chaotic systems appear to behave when quantized. But it is 
still not at all clear how thermalization can occur in quantum 
mechanics. Here are some differences between quantum and 
classical theories:

	 i	�There are many extra invariants of motion in quantum 
mechanics. For example, any function of the Hamiltonian 
f (H) because [ f (H), H] = 0. In particular any projector 
of an individual energy eigenstates |E〉〈E| will be a con-
stant of motion. These constants of motion are there even 
with classically chaotic Hamiltonians. This is related to 
the next point.

	 ii	�Another way understanding this is to write the time 
dependent wave function as a spectral expansion

|ψ(t)〉 =
∑

E

cEe−iEt|E〉,� (3)

		 where cE = 〈E|ψ(0)〉 has a constant of motion associated 
with every energy eigenvector. In this sense it appears 
analogous to integrals of motion in classical mechanics, 
that give rise to a similar (quasiperiodic) formula for 
phase space variables.

	 iii	�In order to discuss ergodicity, the central concept we used 
was that of phase space. But in quantum mechanics posi-

Figure 3.  (a) Example of Sinai billiards: two hard core spheres 
move in free space with periodic boundary conditions. (b) 
Bunimovich Stadium. A point particle moves in free space confined 
to a stadium with hard walls. The stadium has semicircular sides 
and a straight mid-section.
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tion and momentum do not commute. That is, it is not 
possible to simultaneously measure all momentum and 
positional degrees of freedom. Therefore the whole con-
ceptual framework illustrated in figure 2 will not work. 
At a semiclassical level, one can think of wave packets 
of linear dimensions ∆x, and momentum dispersion ∆p 
chosen such that ∆x∆p > �, but this wave packet will 
spread in time and this is only useful in the semiclassical 
limit.

Aside from these differences in the mathematical struc-
ture, at a physical level, classical and quantum thermalization 
appear very different, particularly for a system with a small 
number of degrees of freedom.

Consider two classical Sinai billiards in some volume, 
for example, a box with either hard wall or periodic bound-
ary conditions. If we start off the system with arbitrary initial 
momenta and positions, despite its small size, we can still say 
that the system will ‘thermalize’. Equation (1) will apply in 
this case and the only dependence that answer will have is on 
the system’s total energy. Aside from that, there is no depend
ence on the initial conditions. For example, the momentum 
distribution will be isotropic. This will be the case for any 
choice of the radii of the two billiards. However if you make 
the radii zero, then no interaction between them is possible, 
and the system becomes integrable, in which case average 
values will depend on the initial conditions, because now the 
energy of the individual billiards is conserved. For example, 
now the momentum distribution will no longer be isotropic.

We can contrast the above with the quantized version of 
this problem. If we start off with two billiards of finite radii 
and start them off in an arbitrary initial state, we can, using  
equation (3), calculate the time averaged expectation value of 
observable Ô [19, 20, 34],

〈〈ψ(t)|Ô|ψ(t)〉〉t =
∑

E

|cE|2〈E|Ô|E〉� (4)

where here we assume no degeneracy, as is the case for the 
above example. This shows that observables depend on all of 
the coefficients cE, and therefore depend sensitively on the ini-
tial condition.

Time averages for ergodic classical mechanical systems 
only depend on the total energy, whereas quantum mechanical 
systems depend on the details of the initial conditions. One 
might first believe that the reason for this difference is the lin-
earity of quantum mechanics, and the nonlinearity of classical 
mechanics.

The perspicacious reader may notice that classical mechan-
ics can be described as a linear equation quite analogous to the 
Schroedinger equation  [35–37], which evolves a probability 
amplitude, as opposed to Liouville’s equation, which evolves 
a probability. However for these kinds of equations, the eigen-
values are badly behaved [38] which invalidates the derivation 
of equation (4) in this case.

At this point, we can see that thermalization cannot occur 
in general in a quantum system, as we have shown in the above 
example how it apparently fails to work for the case of two 
Sinai billiards. It went wrong because we have a small number 

of particles which has a low density of states. As we shall now 
see, the situation greatly improves in the large N limit.

2.  Statement of the problem

The central question of this discussion is to understand why 
and how an isolated system thermalizes.

For a large number of degrees of freedom, N, the den-
sity of states n(E) is very large. This is proportional to 
exp(S(E), where S(E) is the entropy. Because usually the 
entropy is extensive, n(E) ∝ (exp(const × N). This means 
that the average level spacing, which is inversely proportional 
to n(E), is incredibly small. This plays an important role in 
understanding the nature of thermalization. Unlike classical 
mechanics, we can see from the discussion in the introduction 
of two billiards, that statistical mechanics is not expected to 
work for low lying energy states, and the results obtained will 
depend on details of the initial state. But we expect that statis-
tical mechanics will emerge in the large N limit.

To be more precise, we can start by posing a related but 
easier question. Suppose we have a pure state |ψ(t)〉 and an 
observable Ô. As we discussed in the introduction, we can 
consider the time average of the observable 〈〈ψ(t)|Ô|ψ(t)〉〉t 
which according to (4) can be related to the expectation values 
of these operators in energy eigenstates, terms like 〈E|Ô|E〉.

We want to know why this time average is in accord with 
the prescription of statistical mechanics. For an isolated sys-
tem we can define the quantum mechanical version of the 
microcanonical ensemble discussed for classical systems in 
the introduction. Because energy levels are quantized, the 
microcanonical ensemble involves averaging over all eigen-
states within an energy window ∆E. For large N, this means 
that we can take ∆E to be very small, still much less than any 
energy scale in the problem, yet it contains an extremely large 
number of eigenstates. The microcanonical average at energy 
E becomes:

〈Ô〉micro,E =
1
N

∑
E′∈[E,E+∆E]

〈E′|Ô|E′〉.� (5)

Here N  are the number of levels being summed over. What 
this formula is telling us, is that to obtain the correct time 
average of an observable, we calculate the expectation value 
of Ô for all energy eigenstates in an energy shell, and then 
average over all those results.

Why should this microcanonical average be the same as 
(4)? That is the central question that we want to discuss and 
is the hardest part of the justification of statistical mechanics. 
If that can be established, it is relatively straightforward to 
understand why the microcanonical average is equivalent to 
the canonical one

〈Ô〉canon =
1
Z

∑
E

exp(−βE)〈E|Ô|E〉� (6)

where the normalization Z is the partition function, and β is 
the inverse temperature. The equivalence of ensembles can be 
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understood by considering a subsystem A much smaller than 
the rest of the system, B, and considering operators Ô that 
are local enough to only depend of degrees of freedom in A. 
Intuitively one can think of B as acting as a heat bath of A 
[39], but more rigorous derivations using steepest descent can 
be given [40]. In fact the exponential function can be substi-
tuted with many other functions that decay quickly enough, 
and these can be shown to be equivalent to the microcanonical 
ensemble as well. The extremely fast rise in the density of 
states, multiplied by exp(−βE), yields a function that is very 
strongly peaked at one energy, which is the essential reason 
why the result looks microcanonical.

Now let us return to the microcanonical ensemble and dis-
cuss how thick an energy shell that we need to consider. It is 
useful to consider the temperature of a system at energy E, 
assuming that it does thermalize. Mathematically this means 
calculating the relationship between average energy and 
temperature T, using the partition function. The temperature 
sets a scale for the energy in equation (6) that tells us quali-
tatively what is the available energy in single particle excita-
tions. The average energy per particle (E(T)− E(T = 0))/N , 
is another scale that will be related to the temperature by a 
function that is independent of N for local Hamiltonians. The 
change in the system’s physical behavior when an addi-
tional energy kBT  is added to it, is negligible. Thus choos-
ing ∆E = kBT  in equation (5), means that the energy of the 
states that are contributing, are physically indistinguishable. 
Because of the large density of states, the average separation 
of levels is

δE ∝ exp(−S(E)) ∝ exp(−const.N),� (7)

and is exceedingly small for macroscopic systems. Within an 
energy shell of thickness kBT , there are an exponentially large 
number of states. Therefore, statistical fluctuations of the eigen-
states will have a negligible effect on the ensemble average.

Viewed this way, we can rephrase our central question: 
why is (4) equivalent to (5)? 

3.  Routes to understanding statistical mechanics

Everyone who has taken a course in statistical mechanics has 
heard some attempt to justify it. There are a number of differ-
ent routes that have been taken and this section discusses the 
most popular ones2.

3.1. Typicality

The idea of typicality is intimately related to empiricism. The 
Sun has risen for thousands of years, so we expect it will come 
up tomorrow. It may not, if say a planet sized object were to 
hit the Earth, but barring extremely unlikely events, we expect 
it to behave as it always has. Similarly, suppose we look at a 
‘typical’ quantum state of given total energy, and can show that 

it almost certainly will obey the laws of statistical mechanics. 
Then we expect that in any experiment that we perform on 
a particular state, it should with very high probability, obey 
statistical mechanics. This idea goes back to Schrödinger [41] 
and has led to insights into many questions. Although its pur-
ported explanation for thermalization is criticized here, it is 
indeed very useful in understanding the ETH [42–47].

In order to make this kind of argument more precise, a 
probability measure needs to be defined on the space of wave 
functions, that is, Hilbert spaces. It is easiest to assume that all 
wave functions with energy within a small range, [E, E + δE] 
are weighted with equal probability. When a wavefunction 
is picked from this distribution, it defines a system in a pure 
state. One can ask how well expectation values of observables 
agree with the results from a microcanonical distribution.

A wavefunction can be written as in equation (3), at t  =  0. 
There are an extremely large number of coefficients cE, and 
typically they will all be nonzero. The condition on the energy 
means that to be typical, the cE are drawn uniformly from the 
surface of a high dimensional hypersphere.

If we consider 〈ψ|Ô|ψ〉 for any |ψ〉 with energy within this 
energy shell, then its value will depend on the choice of |ψ〉. 
We can ask what is 〈ψ|Ô|ψ〉 when averaged over such |ψ〉. We 
can call this 〈Ô〉typical. And we can ask how much 〈ψ|Ô|ψ〉 
varies as we change |ψ〉.

Because we are averaging over a very large number cE’s, 
it is not surprising that the fluctuations in 〈ψ|Ô|ψ〉 are small. 
Also 〈Ô〉typical is almost identical to 〈Ô〉micro , as in both cases, 
an average is being taken over a very large number of inde-
pendent wavefunctions.

Thus if we pick a wavefunction drawn from this uniform 
distribution, we would expect 〈ψ|Ô|ψ〉 to be extremely close 
to the microcanonical average. This has been shown to be rig-
orously the case in quite a few respects. For any small enough 
subsystem that is weakly coupled to the rest of the system, the 
expectation value of operators in it will agree with the canoni-
cal average, equation  (6). In other words, typically, small 
enough subsystems look completely thermal and the expec-
tation value of any quantity will agree with results from the 
standard result from statistical mechanics [42–47].

The main criticism of this approach is that in real exper
imental situations, the wave function is not typical. If your 
wave function was typical, then according to the above, you 
would be in thermal equilibrium. If that were the case, all 
macroscopic currents, such as those in neuronal action poten-
tials, would be missing. You would not be able to process any 
information. Life is incompatible with thermal equilibrium and 
therefore we are decidedly not in a thermal state. We are in a 
state that is far from typical, composed of many macroscopic 
regions with different temperatures, chemical potentials, and 
pressures. The second law of thermodynamics also tells us that 
the Universe is not in equilibrium and therefore not in a typi-
cal state. Assuming that we are overwhelming likely to be in a 
typical state, we would predict a universe at constant temper
ature, and with an entropy that does not change in time. The 
fact that you are reading this now, proves that this assumption 
is incorrect.

2 To be clear, many of the papers referenced here describe these various 
routes, but the authors of them have often worked on a number of ap-
proaches and would not necessarily disagree with the criticisms made of 
these approaches. There are nevertheless strong reasons to consider each of 
these approaches.
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But it has been possible to prove many useful theorems 
about typical states, and these have found many applications. 
So typicality remains an important approach to understanding 
statistical mechanics.

Another important general criticism of this approach will 
be given below for why this is not an adequate explanation of 
the central problem we wish to understand.

3.2.  Ignorance of the system

‘Statistical’ often denotes the use of probabilistic reasoning, 
which normally connotes some uncertainty. This has been con-
flated to mean that statistical mechanics must have a probabi-
listic component due to a lack of information [48–50]. Some 
knowledge is uncertain because we cannot be bothered to find 
out more about it, for example the temperature right now in Tulsa 
Oklahoma. This is an example of knowledge that is subjective, 
because another reader could easily look up the answer. On the 
other hand, in quantum mechanics, most questions do not have 
an answer which is certain and this second class of objective 
uncertainty has been conflated with the first so for the moment, 
let us confine ourselves to classical statistical mechanics where 
there are no intrinsic uncertainties in a system’s evolution.

There has been a school of thought which has used a lack 
of knowledge to make physical predictions about systems at 
finite temperature. It is indeed true that it is extremely difficult 
to obtain the positions and momenta of gas in a room. But 
if someone did, this would not alter any physical outcomes 
(again at a classical level). Their knowledge would not change 
the room’s temperature, or pressure. Lack of knowledge at 
a classical level cannot be used to infer physical quantities. 
However if you follow this approach, you can use ignorance to 
‘derive’ the canonical or microcanonical distributions.

If one does not know any more than the energy of a sys-
tem, then one can ask, what is the probability that it is in a 
particular microscopic configuration (or state). For example, 
when tossing a coin, without any information, you could say 
a priori, that there is equal probability that the outcome is a 
head or a tail. Similarly if you measured the z component of 
spin, you could also assign it equal probabilities. Now sup-
pose you were given 10 weakly interacting spins that were in 
a magnetic field. You can then ask what the probability distri-
bution of configurations would be if you were given the total 
energy. Using ignorance, you can assign equal weights to all 
configurations that have the correct energy. This is mathemati-
cally equivalent to a microcanonical ensemble. Despite the fact 
that the prediction is based on a lack of knowledge, one can 
then perform experiments where you can measure precise spin 
configurations and see whether they do in fact agree with the 
microcanonical prediction. In many cases, of course, they do, 
giving some confirmation to this strangely illogical procedure.

This provides an explanation for the laws of statistical 
mechanics, at least when it works. The system needs to be in 
equilibrium and also not integrable, as we will discuss further 
below. But it is fundamentally flawed for the reasons above, 
and incapable of correctly predicting when the laws of statisti-
cal mechanics actually fail.

There are quite a few mathematical details left out in the 
brief summary given here, such as the maximization of the 
probability distribution, conditioned on energy or particle 
number constraints. And this involves some elegant math-
ematics. But this does not alter the fundamental flaw in this 
approach. Even at a classical level, the correct explanation for 
statistical mechanics involves ergodicity, which is something 
that does not come into this analysis in any way.

The situation is complicated by the addition of quantum 
mechanics, where the wave function represents a probability 
wave, and therefore the system is intrinsically probabilistic. 
However this only serves to make the argument more com-
plicated. Fundamentally you can prepare a quantum state and 
know a lot about it. For example, in principle, it is possible 
to prepare a system so that all of the cE’s in equation (3) are 
known. If this information is added, it will completely alter the 
resultant probability distribution according to this sort of rea-
soning, and will no longer look microcanonical, or canonical.

3.3.  Open systems

With open systems, the system of interest is contact with a 
much larger one, considered to be a ‘heat bath’. The bath has 
properties that make it straightforward to obtain statistical 
mechanics for the system of interest. One justification for this 
is that it is impossible to have a truly isolated system, and 
therefore one must always consider a smaller system that is 
connected to a much larger one [51, 52]. The smaller system 
exchanges energy with the larger system, and it is possible 
through a number of arguments, to derive the canonical distri-
bution for the smaller system.

One intuitive explanation assumes a very weak coupling 
between the two systems as shown in figure 4. For times that 
are short enough, the two parts of the system will appear 
isolated, but for longer times, there will be an exchange of 
energy between them. Thus the energy in the smaller system 
will increase and decrease, sampling states of different ener-
gies. A time average over the smaller system will then yield 
a weighted average over different energy levels, depend-
ing on how much time is spent in the different states. It is 
straightforward to argue that this will be a highly peaked 
function of energy, and thus equivalent to an ensemble aver-
age, for example equation (6). This kind of argument is often 
discussed in introductory textbooks, because of its relative 
simplicity [39]. Not only does this approach sidestep the 
need for understanding the intricacies of a closed system’s 
dynamics, but can be very useful in deriving approximate 
equations for the smaller system’s evolution, and these can 
be very valuable [53, 54].

But what if the complete system has a quadratic 
Hamiltonian? This would not thermalize, so clearly there is 
a problem with the above approach. But we could allow the 
complete system to weakly couple to an even larger system, 
and hope that this would save this approach, unless the larger 
system was also quadratic, which would mean coupling yet 
again. These ‘turtles all the way down’ arguments have an 
intuitive appeal but lack logical clarity.
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3.4.  Litmus test for these explanations

If we refer back to figure 1, and its discussion in the introduc-
tion, we see that not all systems thermalize. If an explanation 
cannot distinguish between integrable and generic non-inte-
grable dynamics, and predicts all such systems thermalize, it 
has to be incorrect. The above explanations all are incapable of 
making this distinction. At a classical level, explanations, such 
as using ignorance, cannot be correct as was already noted.

The fact that most systems do obey statistical mechan-
ics, does not make these explanations correct, but it does not 
make these ideas without merit. Typicality is still a very useful 
mathematical result, that has applications to many areas even 
including numerical simulations. Reasoning using ignorance, 
or open systems, are relatively simple and intuitive. They pro-
vide a lot of intuition and guidance in understanding phys-
ics problems. When a system does thermalize, it is often very 
useful to divide it up into smaller and larger pieces, where 
open system arguments can be used to understand statisti-
cal fluctuations. Another interesting approach uses the large 
number of coefficients in equation  (4) expected in exper
imentally realistic conditions to find a agreement with statisti-
cal mechanics [55]. Also it would be remiss not to mention 
an insightful approach provided by Von Neumann’s ‘quantum 
ergodic theorem’ [2], which was quite recently developed fur-
ther [56, 57]. As shown recently, the assumptions that go into 
this theorem are essentially the same as assuming the ETH 
[58]. Another approach that is worth mentioning uses envari-
ance [59] to argue for microcanonical equilibrium [60, 61]. 
This is conceptually elegant, as it avoids the need to consider 
randomness, or ensembles.

A more predictive and fundamental understanding of 
thermalization, needs to be able to distinguish between the 
different physical behavior of generic systems, which are cha-
otic, and integrable systems. The analog of chaos in quantum 
mechanics has to be better understood in order to make pro-
gress understanding the origin of statistical mechanics.

The route taken here is to try to parallel the discussion of 
classical systems of the introduction. We want to understand if 
there is some analog of ergodicity and chaos that can be used 
to understand quantum statistical mechanics, that is equa-
tion  (5). What special features of generic quantum systems 
allow thermalization, where as integrable systems do not? 

4.  Relation to random matrices

As was discussed in the introduction, there appears to be an 
intimate connection between strongly interacting quantum 
mechanical systems, and random matrices. The micro-struc-
ture of the energy levels appears identical for systems with 
high density of states. Other important physical properties 
also appear to be intimately tied to random matrices as well. 
In particular, how do we expect energy eigenstates of quantum 
mechanical systems to behave, and how is this related to ran-
dom matrices? 

4.1.  Semiclassical limit

Studies of the semi-classical limit of hard sphere systems, such 
as those shown in figure 3 have largely answered how energy 
eigenstates behave in the semiclassical limit. It is simpler con-
ceptually to think of a single particle in 3N dimensional space, 
with a momentum p and so that the Bunimovich stadium and 
Sinai Billiards just correspond to different boundary condi-
tions of a stadium problem in higher dimension.

The energy eigenstates of non-interacting particles in free 
space are plane waves, in other words, can be chosen to be in a 
definite momentum state |p〉. Classically, at a given energy, the 
total momentum is p2/2m. When we carry this over to quantum 
mechanics, the general solution will be the sum (or integral) 
over plane waves on the energy shell, with amplitudes cho-
sen to match the boundary conditions, in other words we are 
integrating over plane waves going at different angles. The 
analogy of classical ergodicity in this case, would be to have 
the amplitudes of the plane waves uniformly distributed in 
angles, rather than focused in particular directions. A number 
of theorems have been proved that show that this is the case3 
in the semiclassical limit [29, 63–68]. There is further numer
ical evidence supporting the idea that the amplitudes of these 
momentum states behave randomly [69].

The scope of the validity of the microcanonical average in 
the limit as � → 0, was further expanded by work that consid-
ered other Hamiltonians in the semiclassical limit and showed 
reasonable agreement with the microcanonical ensemble even 
for systems with a few degrees of freedom [70, 71].

Therefore we have fairly good picture of a typical semi-
classical energy eigenstate of hard sphere systems, that is 
eigenvalues of the Laplacian operator with appropriate bound-
ary conditions. It will look like a random superposition of 
plane waves uniformly distributed over an energy shell. This 
is illustrated in figure 5 for the integrable case of a particle in 

Figure 4.  A small and large system coupled weakly to each other. 
For short times, each system can be thought of as being isolated. 
Initially the energy levels of each of the systems is shown by the red 
dots. After a long time, they transition to new levels, shown as blue 
dots. After a long time, the smaller system explores a large number 
of separate states.

3 Note that for the Bunimovich stadium it can also be proved that there exist 
some subset, that becomes vanishingly small in the high energy limit, that 
are not ergodic [62].
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a rectangular box in two dimensions, and rectangular box that 
has a small circular protrusion.

The randomness in the wavefunction is also mirrored by 
the randomness that appears in the distribution of eigenvalues 
which follow random matrix theory as as well, as mentioned 
in the introduction [33]. The eigenvectors of a real symmetric 
random matrix will form a set of orthogonal random vectors, 
very similar to the orthogonal set of random vectors seen in 
the momentum representation of semiclassical billiards.

On the other hand, an integrable system will have com-
pletely different properties in the semiclassical limit, and 
random matrix models do not apply. Rather, an extra set of 
invariants (such as the phonon example of the introduction) 
are used to construct energy eigenstates.

An important question to ask is whether or not the ran-
dom matrix analogy only works in the semiclassical limit of 
small �, or if it can be extended to systems where � cannot 
be taken as small. Underlying the analysis of energy level 
statistics and the randomness of wavefunctions was the need 
for a high density of energy levels. For small N, this would 
require a semiclassical approach, but for large N, systems at 
low temperatures and their associated energies, have corre
spondingly high density of states. We will ask in general how 
we can understand energy eigenstates for finite �.

4.2.  Perturbing an integrable model

If a system is integrable, it will never thermalize. If now we 
turn on an interaction to break integrability, we can ask what 
will happen. As discussed in the introduction in the context 
of KAM theory, for large N, it is generally believed that only 
a very small interaction is needed to destroy orbits with reg-
ular motion. And with Sinai Billiards, any non zero billiard 
radius will immediately destroy integrability. With the large 
N classical situation in mind, in a quantum treatment, can we 

understand how a system will transition between integrable 
and non-integrable behavior? We will try to follow the same 
path as for the semiclassical limit of hard sphere systems [3].

Suppose we consider the Hamiltonian H0 of the integra-
ble system. We now add in a very weak integrability breaking 
term H1 of order ε,

H = H0 + H1.� (8)

H1 could be a two body interaction between particles in a 
gas, for example. As we have seen for hard core systems, 
semiclassically, in the basis of H0, the eigenstates appear to 
be random superpositions. And the behavior of energy level 
spacings that we discussed, suggest that in this integrable 
basis, 〈E0

i |H1|E0
j 〉 ≡ hij  can be can be taken to be a symmetric 

random matrix, but with the elements hij being small.
Although there is some justification for this choice, it is 

still not clear how the elements hij should be chosen. If we 
couple states of vastly different energies together, it will lead 
to catastrophic effects on the dynamics. The eigenvectors will 
now become completely delocalized in the energy basis of H0, 
yielding nonsensical results.

Therefore from a physical perspective, 〈E0
i |H1|E0

j 〉 can-
not have statistics that are independent of i and j. In fact, if 
one calculates to second order in perturbation theory, the 
size of these elements, phase space arguments [3] show that 
hij ∼ exp(−β|Ej − Ei|) for β|Ej − Ei| � 1. Here β is the 
inverse temperature corresponding to a system with average 
energy Ei (or Ej because the difference between the two is so 
small in this context). With matrix elements decreasing away 
from the diagonal, we can take hij to be a banded symmetric 
random matrix. Numerical confirmation of this bandedness 
had been given in the semiclassical limit quite early [72]. A 
more recent study of Hubbard models [73] showed a general 
banded structure for many quantities of interest. Bandedness 
is a crucial component of this matrix, as without it, the expec-
tation values of operators would be completely unphysical, 
dominated by the highest energy states of the system. Further 
evidence for the banded nature will be given when discussion 
the ETH in the next section.

Thus the model in the integrable energy basis looks 
like a diagonal matrix, with increasing diagonal elements, 
〈E0

i |H0|E0
i 〉, to which a banded symmetric random matrix is 

added [3]. We need to understand some basic properties of 
eigenvectors of this kind of matrix. If the eigenvectors still 
become delocalized this model would behave incorrectly. 
Fortunately, for such a model, or ones quite similar [74], it 
can be shown that the eigenvectors are localized in energy.

This localization of eigenvectors in the integrable energy 
basis is an extension of what is found for billiard systems 
semiclassically. It says that a typical eigenstate of a non-inte-
grable system is the random superposition of integrable states 
in some narrow energy shell

|Ei〉 =
∑

j

cij|E0
j 〉� (9)

and the c’s are the matrix of eigenvectors 〈Ei|E0
j 〉. Because H1 

is random the cij will be also. Averaging over different random 
realizations of H1, 〈c2

ij〉r is strongly localized around i  =  j. This 

Figure 5.  A comparison of a semiclassical integrable and non-
integrable system comprising a particle moving in a stadium. 
The black stadiums in (a) and (b) represent the hard walls, and 
superposed in the middle are probability densities of energy 
eigenstates (red) shown in the momentum representation, 
characterized by the momentum px, py. (a) Here the classical motion 
is integrable and only four momenta have nonzero probabilities. 
Classically corresponding to this, the particle will bounce off the 
walls alternating between these four discrete values of momenta. (b) 
The same situation where a small change to the boundary has been 
made, making the system non-integrable. Classically the momentum 
distribution will spread out isotropically over a circle. In the semi-
classical case, the probabilities will also be spread out but their 
amplitudes will be uniformly distributed but random on this circle.
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equation suggests that we can think about the energy eigen-
states of the non-integrable system as the random superposi-
tion of the integrable eigenstates. Let us compare this again to 
the sudden transition from integrable to non-integrable behav-
ior you see with Sinai Billiards, going from a radius r  =  0 
to r  >  0. For r  =  0, you have an ideal gas which will never 
thermalize. But for r  >  0 but very small, eventually the sys-
tem will thermalize due to particle collisions. In the quantum 
case, with nonzero H1, you will get equation (9). How small 
does H1 have to be for this to be the case? It turns out to be 
very small for large N. The relevant energy scale here is the 
energy level separation which decreases exponentially with N, 
so for an Avogadro’s number size system, this will involve 
energies of size exp(−1023). We will discuss later, the trans
ition for much smaller numbers of particles, as you would get 
in a numerical simulation or a cold atom experiment.

4.3.  Expectation values of nonintegrable eigenstates

The right hand side of equation  (4) involves the expecta-
tion values of an operator Ô in energy eigenstates, 〈E|Ô|E〉. 
Therefore this quantity is central to calculating time averages 
of operators, which in turn should be the same as microcanon-
ical averages if statistical mechanics is to hold. Equation (9) 
suggests that we can calculate such expectation values in 
terms of the energy eigenstates of integrable systems. Because 
the statistical mechanics of H and H0 should be the same to 
O(ε), we will see that expressing averages in terms of eigen-
states of H0 will be quite informative.

We can write

〈Ei|Ô|Ei〉 =
∑

kl

cikcil〈E0
k |Ô|E0

l 〉.� (10)

But this involves the random eigenvectors c. These have mean 
zero and their statistics can be calculated reasonably well. One 
can ask what is the value of 〈Ei|Ô|Ei〉 averaged over some 
small energy window of Ei, and what is the fluctuation in 
〈Ei|Ô|Ei〉. This is equivalent to averaging over the H1 〈. . . 〉r. 
Without going through the technical details, it is not much of 
a surprise to find that the cross terms in equation (10) vanish, 
yielding [3]

〈〈Ei|Ô|Ei〉〉r =
∑

k

〈c2
ik〉r〈E0

k |Ô|E0
k〉� (11)

We can also consider the fluctuations in this expectation 
value

σ2
i ≡ Var(〈Ei|Ô|Ei〉)� (12)

and show [3] it is extremely small proportional to 
exp(−S(E)) ∝ exp(−const × N). Because the cik’s are 
sharply peaked around Ei = Ek , equation  (10) gives the 
microcanonical average of Ô.

The intuitive picture of how non-integrable energy eigen-
functions appear from an integrable model, is not unlike what 
happens in the semiclassical case of hard walls, as illustrated 
in figure  5. An energy eigenstate is formed by the random 
superposition of states with very similar energies. Because 

the amplitudes of all of these states are random, when form-
ing expectation values of an operator, only its diagonal matrix 
elements contribute significantly. This then gives expectation 
values of the operator averaged over an energy shell, which is 
precisely the microcanonical average.

It is also interesting that the above arguments still hold if 
we start at a non-integrable point and perturb it which suggest 
that it may be of considerable generality.

4.4.  Off diagonal elements

It is also possible to calculate the properties of off-diagonal 
matrix elements Oij ≡ 〈Ei|Ô|Ej〉 in this model [75]. Their 
mean is zero and their variance can also be shown to be of 
magnitude to σ2

i ∝ exp(−S(E)) ∝ exp(−const × N). Their 
value will go to zero as |Ei − Ej| become large. These off 
diagonal elements are important in determining the dynami-
cal correlations, rather than expectation values of observables, 
averaged over time.

5. The eigenstate thermalization hypothesis

The last section  shows that for fairly general reasons, we 
expect that 〈E|Ô|E〉 fluctuates very little as E is varied and 
gives results in accord with the microcanonical distribution 
[3]. This leads us to the ‘eigenstate thermalization hypothesis’ 
(ETH).

5.1.  Statement of the hypothesis I

The term ‘eigenstate thermalization’ appears to have been first 
coined by Mark Srednicki [4] as a succinct description of how 
a single eigenstate can be thought of, as being in an equilib-
rium thermal state, in the sense now described.

Consider a finite isolated system, with a non-integrable 
Hamiltonian with N degrees of freedom. The eigenstates |Ei〉 
are solutions to Ĥ|Ei〉 = Ei|Ei〉. The solutions should also be 
separated by symmetry sector [76]. For example, as men-
tioned in the introduction, total momentum is often conserved, 
particularly in homogeneous systems with periodic boundary 
conditions. Only in a single sector can we assume that the Ei’s 
are non-degenerate.

Conjecture 1.  For a large class of operators, Ô, we con-
sider its expectation values Oii ≡ 〈Ei|Ô|Ei〉 as a function of 
i. We also consider the microcanonical average 〈Ô〉micro,Ei as 
defined in equation (5). Then

Oii = 〈Ô〉micro,Ei +∆i� (13)

where ∆i has zero mean and ∆2
i  has a magnitude of order 

〈Ô2〉micro,Ei exp(−S(E)) ∝ 〈Ô2〉micro,Ei exp(−const. × N).

The sole fact that Oii varies very little among neighboring 
eigenstates implies that it must be equal to the microcanoni-
cal result because 〈Oii〉 averaged over a small energy window 
must give the microcanonical average. Thus the ETH is really 
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a statement about the small size of fluctuations of expectation 
values between eigenstates. It says that the microcanonical 
average for non-integrable systems, for most purposes, does 
not need to be taken at all, and a single eigenstate can be used.

The most unclear part of this statement is the class of oper-
ators to which it applies. There are clear examples of where 
this fails: For any function f, Ô = f (Ĥ) commutes with Ĥ  and 
therefore Ôii = f (Ei). If f is sufficiently poorly behaved, for 
example a δ function, then this will violate the hypothesis.

But such operators are global, involving all of the degrees 
of freedom in a system. The ETH is believed to work well for 
operators only involving a few degrees of freedom; for exam-
ple, operators involving the momenta of three particles, and 
these do not have to be in the same region of space. But the 
exact limits of where it works and where it fails are still not 
clear. It is generally believed to be valid in most non-integra-
ble systems when Ô involves operators in some local region. 
In fact it has been argued that for entanglement entropy in the 
case of two weakly coupled systems similar to the random 
matrix models considered above, that the smaller system can 
be almost as large as half the system [77]. And this bound 
has been argued to hold for more general quantities for non-
integrable systems as well [78, 79].

The exceptions to the ETH are for systems obeying many 
body localization [10–14]. These are very unusual systems 
that violate the ETH even though the system is non-integrable. 
We will discuss the validity of the ETH further in subsequent 
sections.

The way that the ETH has been defined above, is still a bit 
sloppy in another way. When we gave the size of the ∆i’s, it is 
exponentially small in N. However Hilbert space is exponen-
tially large and we have not defined the distribution of Δ’s. 
It still might be possible that an exponentially small fraction 
of eigenstate do not obey the ETH and have expectation val-
ues significantly different from the microcanonical ensemble. 
This can be thought of as the weak ETH [80].

On the other hand, if we are to say that Oii is always very 
close to microcanonical, for all i, this means we have the 
strong ETH. One might think that the distinction between 
the weak and strong ETH is not important. However even for 
integrable systems, typical states as noted above, give thermal 
averages. In fact, all but a vanishingly small number of eigen-
states, will be in this category and can exhibit the weak ETH 
[47]. There have been some interesting non-integrable models 
that have been devised, that show an exponentially small num-
ber of microcanonical violating eigenstates [81, 82], but their 
interpretation is still the subject of some debate [83, 84].

5.2.  Statement of the hypothesis II

The statement of the ETH has been further expanded to include 
the behavior of off-diagonal matrix elements. This is not nec-
essary to understand how time averages are equivalent to 
ensemble averages. However, among other things, it is impor-
tant in the understanding of dynamic correlation functions, 
and the approach to equilibrium [4, 6, 8, 9]. Here we more 
generally consider Oij ≡ 〈Ei|Ô|Ej〉. For i �= j the hypothesis is 

that, Oij = ∆ij  where ∆ij appears stochastic and has similar 
statistics to those described for equation (13), but now there are 
two relevant energies Ei and Ej. These elements are therefore 
extremely small. Because the statistics of this quantity should 
vary smoothly as a function of Ei and Ej, we can try to quantify 
this for a single system by performing averages over the nearby 
energy levels of i and j, 〈. . . 〉n, so that we can write

Conjecture 2. 

〈|Oij|2〉n = 〈∆i
2〉nF(Ei, Ej)� (14)

with ∆i is the fluctuation in the Oii’s described in equa-
tion (13). F is a function of order unity for Ei = Ej that goes 
to zero as |Ei − Ej| becomes large.

Defining Eij ≡ (Ei + Ej)/2, this can be written somewhat 
more symmetrically as

〈|Oij|2〉n = 〈Ô2〉micro,〈E〉ij f (Eij, Ei − Ej) exp(−S(E)/2)� (15)

where now f (Eij, Ei − Ej) = F(Ei, Ej), describes a function 
that goes to zero when |Ei − Ej| becomes large.

The Oij cannot in general be zero however. For example if 
we consider an operator Â being the square root of Ô, that is 
Ô = Â2, then

〈Ei|(Â − Aii)
2|Ei〉 =

∑
j �=i

|Aij|2.
� (16)

The left hand side is not small and is non-negative. The right 
hand side are terms that appear in the off-diagonal matrix ele-
ments that appear in this hypothesis. What this implies is that 
the off-diagonal matrix elements must be quite evenly distrib-
uted or this hypothesis would be violated. Further constraints 
on these matrix elements have been recently found [79].

5.3. Thermalization

Now we return to the situation illustrated by figure 1. An iso-
lated system is put in a nonequilibrium state, and we ask if it 
will eventually return to equilibrium or stay in a nonequilib-
rium state. To identify if the system is in equilibrium, we ask 
if time averages of observations are in agreement with equilib-
rium statistical mechanics. This requires that 〈〈ψ(t)|Ô|ψ(t)〉〉t 
gives the average predicted from statistical mechanics.

It is worth noting that the averages predicted by quantum 
statistical mechanical ensembles are incorrect in situations 
where the system is in a macroscopic superposition, as exem-
plified by Schroedinger’s cat. We should expect that a precise 
treatment of time averages will yield a result that can include 
this possible initial state.

Equation (4) tells us how time averages can be related to 
expectation values of eigenstates. If we assume the ETH, then 
this becomes to within small corrections

〈〈ψ(t)|Ô|ψ(t)〉〉t =
∑

E

|cE|2〈Ô〉micro,Ei .� (17)

If the coefficients cE are strongly clustered around one energy, 
then because 〈Ô〉micro,Ei is smoothly varying, this will also 
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yield the microcanonical, or equivalently, the canonical aver-
age. On the other hand, it the c’s are not clustered around one 
energy, as is the case for a macroscopic superposition, then 
this time average will yield microcanonical values of observ-
ables weighted over the probability that they are in one of 
those superpositions. This is precisely what one would expect 
should happen in such cases.

Therefore for long enough times, the system will even-
tually return to a state of thermal equilibrium, at least when 
probed with observables for which the ETH is satisfied. This 
argument does not tell us how long one has to wait. The times 
necessary for equation  (4) to be satisfied can be extremely 
long. But at the same time we also know that relaxation for 
some systems are extremely long even for an open system in 
contact with a heat bath. All we can say from the ETH is that 
equilibrium will eventually be achieved.

The crucial qualitative idea behind the ETH, is that each 
eigenstate is itself ‘thermal’, giving the same results as for 
averages in open systems in contact with a heat bath. One way 
to think about this is that a small number of degrees of free-
dom of the isolated system can be considered a subsystem and 
the rest of the system can act as a heat bath which is expected 
to yield thermal properties for the degrees of freedom being 
observed.

5.4.  Does thermalization imply the ETH?

It is worth considering if there may be some alternatives to the 
ETH which can also explain the experimental observation that 
all real systems thermalize. It is also not clear whether or not 
the ETH is really a useful way of understanding thermaliza-
tion because, as stated above, even integrable models satisfy 
the weak ETH.

From a theoretical perspective, both of these questions have 
been addressed [85]. Suppose that we have an isolated system 
and view it as being divided into two, a system of interest, A 
and the rest, B, which can be thought of as a bath for A. We 
now consider starting the system out of equilibrium, in an arbi-
trary product state of A and B. If all such initial states result in 
the thermalization of A, this requires that the ETH hold. But it 
requires that the ETH hold in the strong sense, that all energy 
eigenstates are thermal. If this was not the case, there would be 
certain initial product states that would not thermalize.

Therefore what we have learned is that most systems have 
their eigenstates giving microcanonical answers, whether or 
not they thermalize properly or not. In order to get thermaliza-
tion, we need all eigenstates to give microcanonical averages.

This situation is not completely settled however, because 
it is not clear that all initial product states are experimentally 
realizable. And there are certainly examples of systems that do 
not obey this strong version of the ETH, but rather the weak 
version, but will still be able to thermalize some large class 
of initial states, but certainly not all of them [82]. It would 
indeed be very interesting if there existed some experimental 
isolated systems that could be shown to fail to thermalize from 
certain states that were carefully prepared. This would imply 
that statistical mechanics was not generally valid, opening up 
many interesting possibilities. Barring this possibility, this is 

quite compelling evidence that the ubiquity of thermalization 
seen experimentally, implies the strong version of the ETH.

5.5.  Entropy and the ETH

Another important quantity that is still not well understood 
is the entropy of a system and indeed it has many definitions. 
The Von Neumann entropy for a system with density matrix ρ̂  
is SVN(ρ̂) = −trρ̂ ln ρ̂. For an isolated system in a pure state 
this is zero. The von Neumann entropy represents a lack of 
knowledge about a system, but not what is measured in ther-
modynamic experiments. But is there a way of defining ther-
modynamic entropy in an isolated system? 

The entanglement entropy is often used as a measure of 
mutual information between two systems. Suppose we take 
an isolated system in a pure state, and divide it into two sub-
systems A and B. Then the reduced density matrix for A, 
ρ̂A = trBρ̂ , will in general become mixed because it is entan-
gled with B. The entanglement entropy between A and B is 
defined to be SAB ≡ SVN(ρ̂A).

We cannot directly apply the ETH to this problem because 
the entanglement entropy cannot be written as the expectation 
value of an observable. But the mathematics of this problem are 
quite closely related to the ETH. Theoretical arguments [77] 
and numerical work [86, 87] indicate that this is indeed related 
to the thermodynamic entropy. For homogeneous systems in 
the limit of large N, finite energy eigenstates give an entan-
glement entropy that is equal to the thermodynamic entropy 
of the smaller of A and B. This gives an explicit prescrip-
tion for how to relate thermodynamic entropy to the micro-
scopic description of the system in terms of its wavefunction. 
For integrable systems, this connection no longer holds for 
energy eigenstates, which shows the underlying importance of 
quantum chaos in the validity of thermodynamics.

This way of describing entropy, via entanglement, has no 
clear classical analog. Classically, entropy can be thought 
of as the amount of phase space explored by the system. To 
understand how this can increase in time, degrees of freedom 
are often coarse grained. It has been recently been shown 
[88, 89] that this idea of coarse graining can be extended to 
quantum mechanics by making sequential observations of 
different observables. For example, one can observe coarse 
grained positional degrees of freedom and then energy. This 
allows one to calculate the probabilities of each of these 
coarse grained bins, and construct a Gibbs entropy. For non-
integrable systems by using the same random matrix model 
employed in understanding the ETH [3], this can also be 
shown to lead also to the thermodynamic entropy when the 
system is in an energy eigenstate.

With either definition of entropy, one ends up with the 
same thermodynamic entropy as one would have starting in 
a thermal state. But it is necessary for the system to be non-
integrable in order for these results to hold.

6.  Numerics

Pioneering initial numerical work on quantum systems with a 
large number of degrees of freedom [90] was hampered by the 
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limited computational power available at the time. This led to 
a slightly unclear picture of eigenstate thermalization. At these 
system sizes, there was not a large distinction present between 
integrable and non-integrable systems, but the agreement with 
statistical mechanics was seen to depend on the choice of the 
observable and ‘good’ ones appeared to be necessary in order 
to obtain this agreement. With larger system sizes that are eas-
ily achievable on todays computers, the distinction between 
integrable and non-integrable systems is much more apparent, 
and it is also clear that the agreement with statistical mechan-
ics holds over a much wider class of observables, in agree-
ment with the above theoretical arguments.

The main tool for studying the ETH numerically is exact 
diagonalization. This is a technique that is used to diagonalize 
the Hamiltonian of a discrete system. For example, Hubbard 
models, that allow hopping of particles between different sites 
with some local interaction between particles. Another com-
monly used type of system are ones involving spin degrees 
of freedom on a lattice. Because of the exponential growth of 
Hilbert space with the number of particles, and lattice sites, 
only relatively small systems are accessible this way, in the 
neighborhood of 25 lattice sites. There have been a wide range 
of studies of this type that have given us enormous insight into 
the nature of thermalization. The ETH has been observed in 
a wide variety of these lattice systems [5, 9, 76, 80, 91–103].

Today, even on a modest laptop, useful information can 
quite easily be obtained. As an example, consider hard core 
bosons (HCB) in one dimension, with nearest neighbor 
(NN) and next nearest neighbor (NNN) interactions that can-
not occupy the same site [76]. They evolve according to the 
Hamiltonian

HB =

L∑
i=1

[
−t

(
b†i bi+1 + h.c.

)
+ Vnini+1

− t′
(

b†
i bi+2 + h.c.

)
+ V ′nini+2

]
.

�

(18)

Here we are summing over all lattice sites L. bi and b†
i  are 

the boson annihilation and creation operators, respectively, 
for site i. ni = b†i bi is the boson local density operator. The 
NN and NNN hopping strengths are respectively t and t′. The 
interaction strengths are V  and V ′ respectively. Here we take 
� = t = V = 1.

This model is considered with periodic boundary con-
ditions, meaning that there is translational invariance and 
particle number conservation. Therefore HB divides into inde-
pendent blocks corresponding to different total momenta k. In 
this example we take k  =  1.

We can compare a non-integrable with an integrable choice 
of parameters to see how expectation values depend on energy. 
The choice V ′ = t′ = 0.96 corresponds to a non-integrable set 
of parameters, while V ′ = t′ = 0 is integrable. Here, some-
what arbitrarily, we consider the expectation value of n1n2, 
in different energy eigenstates, with L  =  17 lattice sites and 
with the number of particles equal to 6. Figure 6 plots these 
expectation values for these two cases.

In general, as the size of a non-integrable system increases, 
the fluctuation in expectation values decreases. Unfortunately, 

due to the exponential growth of Hilbert space, one does not 
expect to be able to simulate systems of even 100 particles in 
the future, except perhaps with quantum computers. However 
much has been learnt about such isolated quantum systems by 
performing such numerical experiments, partly because one 
expects a rather rapid decrease in fluctuation as predicted by 
the equation (13), and verified numerically [97].

Many interesting things have been learned from studies of 
this kind, and allow us to answer questions that are very dif-
ficult to study by purely analytic means.

For finite size simulations, one can tune how far one is 
away from integrability. For example, in the hard core boson 
model above, the relevant parameters are t′ and V ′. For the 
small systems that are accessible by exact diagonalization, 
the ETH breaks down for finite t′ and V ′, leading to a lack 
of thermalization [91]. An interesting question to ask is how 
this range of non-thermal parameters varies as system size is 
increased. Does the range where the ETH holds increase to 
all non-zero t′ and V ′ as one approaches the thermodynamic 
limit? Initial numerical evidence on gapped systems supported 
that the ETH works better for larger system sizes [93]. Based 
on analysis of scaling of the participation ratio of eigenstates 
in an operator’s eigenbasis, it was argued that indeed the ETH 
should be valid for any non-integrable parameters in the ther-
modynamic limit [95].

Another interesting question is whether or not the ETH is 
valid in the strong sense as described in section 5.1. Numerical 
evidence on lattice systems appears to support that it actually 
is [98]. By explicitly searching for eigenstates where expecta-
tion values are ‘outliers’: far away from their mean value, one 
can analyze how these scale with system size. The behavior of 
the most extreme outliers as a function of system size, gives 
strong numerical evidence that even these obey the ETH.

Is the random matrix motivation for the ETH of section 4 
nothing more than a happy coincidence, or is this the under-
lying reason from which it comes about? Aside from much 
earlier numerical work analyzing the statistics of energy 
eigenstates and eigenvalues [71], one can look at the ratio of 
fluctuation sizes for off diagonal matrix elements compared 
to diagonal elements. When compared with the results of 
random matrix theory, the results agree very well for large 
enough systems [104].

There is further evidence [103] that the connection of inter-
acting systems to random matrix theory is the underlying rea-
son for the validity of the ETH. This comes about by studying 
periodically driven Floquet systems [105–107]. Reference 
[103] studied systems that could either be in a many body 
localized, or in a thermal phase. They studied the entangle-
ment spectrum of such systems. They did so by tracing over 
half of their system and then considered the logarithm of their 
resultant reduced density matrix. Regarding this as a kind 
of entanglement Hamiltonian, its spectrum could be studied 
numerically. In the case of no driving, although they consid-
ered half of the system, they still found good agreement with 
the ETH in the thermal phase, supporting a strong version of 
it [78]. On the other hand, for periodic driving in the ther-
mal phase, such systems heat up to infinite temperature [107], 
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where the ETH would then predict a trivial entanglement 
Hamiltonian equal to zero. Of course we expect corrections to 
this, and these can be studied numerically. What is quite inter-
esting about these corrections, is that they also agree quite 
well with random matrix theory.

7.  Relation to experiment

Section 3 gave routes to understanding the origin of statistical 
mechanics. It is not clear why anyone but a dyed-in-the-wool 
theorist would care why it works, as it seems so clear that it 
does. But as we have seen, isolated integrable systems are not 
expected to produce systems that properly thermalize. Then 
again, quantum isolated integrable systems would seem very 
hard to produce experimentally.

The situation has changed dramatically over the last dec-
ade or so. There are now many experimental groups investi-
gating the properties of atoms trapped and isolated from the 
outside world at very low temperatures, down to picoKelvin. 
These gases are typically quite dilute with a number density 
of order 1014 cm−3. They are confined through magnetic or 
optical means and the confinement can be of many forms, 
such as a harmonic potential, or optical lattice [16, 17]. These 
isolated systems can have coherence times of seconds, while 
typical relaxation times are often in the millisecond range 
[108], meaning that questions about isolated systems, that 
were purely theoretical twenty years ago, can now be tested 
experimentally. Furthermore control parameters, such as 
magnetic field can be used to tune the two-body interaction 
via the Feschbach resonance [109].

In particular, the difference between integrable and non-
integrable systems is very clear when starting the system out 
of equilibrium, similar to the scenario considered in the intro-
duction. A number of one dimensional experimental systems 

are equivalent to integrable models [110], and very long lived 
momentum oscillations are observed. In contrast to such inte-
grable models, which have very long lived non-equilibrium 
behavior, higher dimensional situations thermalize very rap-
idly [110]. But although many aspects of these experiments 
are well described by theory, it is difficult to produce energy 
eigenstates in order to directly test the ETH. These experi-
ments do show that isolated non-integrable quantum systems 
placed out of equilibrium, do approach the results predicted 
from statistical mechanics, on a time scale far smaller than 
their decoherence time.

A general lesson that has been learnt from these kinds 
of experiments is that many of the traditional approaches to 
understanding quantum statistical mechanics not only fail the 
theoretical litmus test described in section 3.4, but also fail 
to predict real experiments: There really is different behavior 
seen based on integrability, and not all isolated systems do 
thermalize over experimentally important timescales.

In fact, not only is thermalization not seen experimentally 
in integrable models, but also in some random disordered 
systems that are believed to exhibit ‘many body localiza-
tion’ [111], mentioned in section 5. Not only can observables 
such as density and momentum distribution be measured, but 
quantities related to entropy. In an optical lattice experiment 
[112], with 6 rubidium atoms, the second order Rényi entropy 
was determined by an ingenious method of interfering two 
copies of the system. The growth of entanglement could be 
assessed throught this Rényi entropy, and this entropy grew 
and saturated as predicted from ensemble statistical mechani-
cal calculations. Thus despite the small system size, thermali-
zation was evident.

These experiments have also allowed the probing of sys-
tems that are much larger than those that can be analyzed 
numerically, yet they still are quite precise, are highly tunable, 
and allow the measurement of many local observables. In this 
way, they act as an intermediary between solid state experi-
ments that lack this precision, and numerics, which cannot 
attain such system sizes.

8.  Conclusions

The eigenstate thermalization hypothesis is considered by 
most researchers now to be the major conceptual tool in 
understanding how quantum mechanics leads to thermaliza-
tion. Among other things, it allows us to understand how the 
time averages of measurements give rise to the laws of sta-
tistical mechanics. In order to make headway, it makes sense 
to look at an isolated system where outside sources cannot 
influence the dynamics. The most basic statistical mechani-
cal concept in that case, is the microcanonical ensemble. The 
microcanonical ensemble considers energy states withing a 
shell of width ∆E, of which there are normally very many 
in the thermodynamic limit, even with very small ∆E. The 
assumption of statistical mechanics is that time averages of 
observables are given by expectation values averaged over all 
states within ∆E. The ETH says that ∆E can be taken to be so 
narrow as to include just a single energy.

Figure 6.  Numerical results for the hard core boson model of 
equation (18) for 6 particles on 17 lattice sites. The expectation 
value for the observable n1n2, corresponding to the probability 
that two particles will be next to each other, plotted for different 
energy eigenstates. The blue points represent the integrable 
case V ′ = t′ = 0, whereas the red points correspond to the non-
integrable case V ′ = t′ = 0.96
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An intuitive way of understanding the ETH, is to think of 
dividing the system into a smaller and larger region. Even for 
an energy eigenstate, you can then think of the larger region 
as acting as a thermal ‘bath’ for the smaller region. The ETH 
says that for the system in any energy eigenstate, measure-
ments on only the smaller the region are equivalent to a system 
at the appropriate equivalent temperature. As discussed in this 
review, this will not work for an integrable system, for reasons 
that are similar to the explanation in classical mechanics. In 
this sense, the ETH serves a similar purpose as ergodicity, in 
connecting microscopic dynamics to statistical mechanics.

The underlying explanation for the ETH appears to have 
to do with the relationship between non-integrable quantum 
systems and random matrix theory. At a detailed microscopic 
level, at unimaginably small energy scales, the energy level 
spacing statistics fit very well with random matrix models. 
And even the energy eigenstates show a strong connection 
with random matrices. The ETH is a consequence of this 
random matrix description, a statement that is supported by 
detailed numerics for large enough systems [104].

Aside for the current focus of the ETH in condensed matter 
and cold atom systems, the ETH is now being used increas-
ingly in the study of quantum gravity, wormholes and fire-
walls. For example the ‘ER=EPR’ conjecture of Maldacena 
and Susskind [113] considers how two black holes connected 
by a wormhole are related to the entanglement between them. 
This has been analyzed using the ETH [15]. In another work, 
it has been proposed that the ETH can be applied to the metric 
in quantum gravity [114]. As it turns out, understanding the 
microscopic structure of eigenstates is important in a lot of 
applications.

It might seem odd that a statement about energy eigen-
states for macroscopic systems would be so helpful conceptu-
ally in understanding thermalization. The time it would take 
to prepare a system in such an eigenstate is proportional to 
exp(S(E)), which makes it completely inaccessible in most 
experimental circumstances. But to check for ergodicity in 
a classical system also requires unattainable measurement 
times, yet it is still crucial in understanding thermalization 
in that case. In both the quantum and classical cases, these 
sorts of concepts allow one to distinguish behavior that can 
be measured experimentally, such as the ability to thermalize. 
And in the quantum case the structure is perhaps even richer, 
allowing for the existence of exotic systems that exhibit Many 
Body Localization [14], as briefly mentioned earlier. These 
will likely continue to yield interesting new phenomena. 
And there are likely to be other still undiscovered kinds of 
thermalization behavior that exist. For example, the idea of 
‘quantum disentangled liquids’ has been proposed, where a 
system consisting of two different kinds of particles is only 
partially thermalized [115]. There are many reasons to believe 
that the recent focus in this area will continue to lead to many 
new surprises.
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