
ANTECKNINGAR TILL RÄKNEÖVNING 1 & 2 - LINJÄR
ALGEBRA

För att verkligen kunna förstå och tillämpa kvantmekaniken så måste vi veta
något om den matematik som ligger till grund för formuleringen av vågfunktionen.
Därför behöver vi känna till de grundläggande begreppen i linjär algebra, såsom
vektorer, matriser, baser, vektorrum, egenvektorer, egenvärden etc.

1. Vektorer och Vektorrum

En storhet som har både storlek och riktning kallas för en vektor och en storhet
som inte har någon riktning, dvs ett "vanligt" tal, kallas för en skalär. I 3 dimen-
sioner har en vektor 3 komponenter och uttrycks

(1) r = xêx + yêy + zêz

där êx, êy, êz är enhetsvektorerna (1, 0, 0), (0, 1, 0) och (0, 0, 1). Vektorer kan även
uttryckas på följande form:

(2) r =

xy
z

 .

Självkoll: Ser du att de två uttrycken är ekvivalenta?

Vektorrum? Ett vektorrum är en uppsättning av vektorer som är slutet under
vektoraddition och skalärmultiplikation. Att vektorrummet är slutet under vek-
toraddition betyder att summan av två vektorer som �nns i vektorrummet är en

tredje vektor i vektorrummet. För skalärmultiplikation gäller att produkten av en

skalär och en vektor i vektorummet är en annan vektor i vektorrummet. I kvant-
mekaniken tänker vi på ett vektorrum där skalärerna och vektorkomponenterna
får vara komplexa tal och vi inte begränsar oss till endast 3 dimensioner.

Vi kan alltså addera två vektorer på följande sätt

(3) a+ b = c

där resultatet c också är en vektor. Vektoraddition är kommutativ, dvs. a + b =
b+ a, och associativ, dvs. a+ (b+ c) = (a+ b) + c.

Det �nns också en noll-vektor 0 som verkar på alla vektorer på följande sätt

(4) a+ 0 = a,
1
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och en inversvektor a−1 sådan att

(5) a+ a−1 = 0.

Vi kan multiplicera en vektor med en skalär på följande sätt

(6) αa = b

där resultatet är en vektor. Skalärmultiplikation är distributiv med hänsyn till
vektoraddition och skaläraddition

(7)
α(a+ b) = αa+ αb

(α + β)a = αa+ βa.

Skaläraddition är associativ med hänsyn till skalärmultiplikation ("vanlig" multi-
plikation)

(8) α(βa) = (αβ)a

Självkoll: Vad blir resultatet av 0a och 1a?

Vi kan bilda en linjärkombination av vektorer i rummet på följande sätt

(9) αa+ βb+ γc+ . . .

En vektor c sägs vara linjärt beroende av en uppsättning vektorer om den kan
uttryckas som en linjärkombination av dem. Såklart kan man ju alltid bilda en
linjärkombination av noll-vektorn, men om den enda möjligheten att bilda noll-
vektorn är att sätta alla koe�cienter till noll sägs vektorerna vara linjärt oberoende,
t.ex. a, b och c är linjärt oberoende om

(10) αa+ βb+ γc = 0 endast då α = β = γ = 0

Ytterligare en vektoroperation är punktprodukten (även kallad skalärprodukt, dot
product eller inre produkt),

(11) a · b =

{
|a||b| cosφ om a 6= 0 och b 6= 0

0 om a = 0 och b = 0.

Här menar vi med |a| längden av vektorn a och φ är vinkeln mellan vektorerna a
och b. Längden av en vektor och vinkeln mellan två vektorer ges av

(12)
|a| =

√
a · a

cosφ =
a · b
|a||b|

Självkoll: Hänger du med på uttrycken för längden och vinkeln? Vad blir punk-
tproduken för ortogonala (vinkelräta) vektorer?
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Att normera en vektor a betyder att man formulerar en enhetsvektor u som har
samma riktning och är parallell med a, dvs. u = λa där λ > 0. Vi kan bestämma
normeringsfaktorn λ och den normerade vektorn u:

(13) 1 = |u| = |λa| = λ|a| ⇒ λ =
1

|a|
⇒ u =

1

|a|
a.

2. Baser

Ett uppsättning av n linjärt oberoende vektorer som spänner upp1 ett n dimen-
sionellt rum kallas en bas (n �nit). För basen

(14) B = (e1, e2, . . . en)

kan vi uttrycka en godtycklig vektor som en summa över basen på följande sätt

(15) a =
∑
n

anen = a1e1 + a2e2 + · · ·+ anen.

Varje sådan vektor är unikt beskriven av sina vektorkomponenter

(16) a↔ (a1, a2, . . . , an).

När vi utför operationer på vektorer är det oftast komponenterna vi arbetar med

(17)

a+ b↔ (a1 + b1, a2 + b2, . . . , an + bn)

αa↔ (αa1, αa2, . . . , αan)

0↔ (0, 0, . . . , 0)

Självkoll: Hur ser vektorkomponenterna för inversvektorn ut?

Nackdelen med att arbeta med komponenterna är att man måste bestämma sig
för en bas och hålla sig till den.

Ortonormal (ON) bas? I kvantmekaniken är det nästan alltid önskvärt att ar-
beta med vektorer som är uttryckta i en ortonormal bas. Att basen är ortonormal
betyder att basvektorerna är ortogonala (vinkelräta sinsemellan) och normerade
till längden 1. För två basvektorer i en ON bas, ei och ej, får vi följande uttryck
för punktprodukten

(18) ei · ej = δij =

{
1 om i = j

0 om i 6= j

Självkoll: Hänger du med på varför det blir så?

Det som är så bra med ON-basen är att uttrycket för punktprodukten förenklas
avsevärt. Om vi låter B = (e1, e2, e3) vara en 3 dimensionell ON-bas i rummet och

1Tänk dig hur ett vanligt 3 dimensionellt rum spänns upp av 3 vektorer
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att de godtyckliga vektorerna a = (a1, a2, a3) och b = (b1, b2, b3) �nns i basen, då

(19)

a · b = (a1e1 + a2e2 + a3e3) · (b1e1 + b2e2 + b3e3)

= a1b1e1 · e1 + a2b2e2 · e2 + a3b3e3 · e3
= a1b1 + a2b2 + a3b3

|a| =
√
a21 + a22 + a23.

Självkoll: Hur ser uttrycket för punktprodukten ut för n dimensioner? Hur ser
normeringsfaktorn λ ut för en godtycklig vektor a = (a1, a2, a3) uttryckt i en ON-
bas? Hint: Titta på Eq. (13).

För en ON-bas B = (e1, e2, e3) i rummet, kan dessutom vektorkomponenterna för
en vektor i rummet, a, bestämmas på följade enkla sätt

(20) a = (e1 · a)e1 + (e2 · a)e2 + (e3 · a)e3.

3. Matriser

Vi har ett 3 dimensionellt vektorrum, vi multiplicerar vektorerna i rummet med
en och samma skalär, eller roterar dem med samma vinkel runt x-axeln. Det vi
precis har gjort kallas en linjär transformation, T̂ . Det en linjär transformation
gör är att den tar varje vektor i vektorrummet och transformerar den till en ny
vektor (a → a′ = T̂a). Som namet antyder krävs det att transformationen är
linjär för godtyckliga vektorer och skalärer, dvs.

(21) T̂ (αa+ βb) = α(T̂a) + β(T̂b).

En linjär transformation kan representeras av en matris. I en ON-bas är en sådan
matris kvadratisk och kan för n dimensioner ställas upp på följande vis:

(22) T =


T11 T12 . . . T1n
T21 T22 . . . T2n
...

...
. . .

...
Tn1 Tn2 . . . Tnn


där Tij ärmatriselementet som �nns på rad i och kolumn j. I kvantmekaniken �nns

det något som kallas för kvantoperatorer, de är faktiskt också exempel på linjära

transformationer. Nu när vi arbetar med matriser måste vi också ta hänsyn till
matrisoperationer. De �esta matrisoperationer fungerar på liknande sätt som sina
vektormotsvarigheter (vad är en vektor annat än en 1 × n eller m × 1 matris).
En skillnad är dock att man behöver ta hänsyn till matrisens typ (dvs. dess
dimensioner). Om S och T är matriser av samma typ kan man addera dem och
bilda en ny matris U av samma typ

(23) S+T = U↔ Sij + Tij = Uij.
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I sådana fall gäller även att matrisaddition är kommutativ och associativ, och det
�nns en nollmatris sådan att T+ 0 = T.

En matris T kan multipliceras med en skalär

(24)

α(A+B) = αA+ αB

(α + β)A = αA+ βA

(αβ)A = α(βA).

Multiplikation av en matris med en annan är lite mer invecklad än multiplikation
av en skalär och en matris. Det första man måste ta hänsyn till är att matriserna
är av sådana typer att de faktiskt går att multiplicera med varandra. För att
matrisen S ska kunna multipliceras med matrisen T gäller det att antalet element
i en kolumn i S är lika många som antalet element i en rad i T.

(25)

S(m× n) ·T(n× p) = D(m× p) ok!

S(n×m) ·T(p× s) inte ok!

där n 6= m 6= p 6= s

Självkoll: Är matrismultiplikation kommutativ?

Om typerna stämmer så gäller att

(26) U = ST↔ Uij =
n∑

k=1

SikTkj

där Uij motsvarar elementet på den i:e raden och den j:e kolumnen i matrisen U.
Om matrisen S har m rader och matrisen T har p kolumner så kommer matrisen
U vara m× p och antalet matriselement Uij vara m · p.

Varje matris (och vektor) kan transponeras. Vid transponering av matrisen T
byter raderna och kolumnerna i matrisen plats med varandra, den resulterande
matrisen kallas för matrisens transponat T̃.

(27) T̃ =


T11 T21 . . . Tn1
T12 T22 . . . Tn2
...

...
. . .

...
T1n T2n . . . Tnn


En n× n matris kallas symmetrisk om T̃ = T och antisymmetrisk om T̃ = −T.
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I kvantmekaniken är matriselementen komplexa tal. Man kan därför de�niera
ytterligare en matrisoperation, komplexkonjugatet av en matris, T∗, där varje ma-
triselement komplexkonjugeras.

(28) T∗ =


T ∗11 T ∗12 . . . T ∗1n
T ∗21 T ∗22 . . . T ∗2n
...

...
. . .

...
T ∗n1 T ∗n2 . . . T ∗nn


Självkoll: Vad blir transponatet och komplexkonjugatet av kolumnvektorn

a =


a1
a2
...
an

 , (an komplexa) ?

Matrismultiplikation är generellt inte kommutativ, men för kvadratiska matriser
kan vi de�niera kommutatorn:

(29) [S,T] ≡ ST−TS

Transponatet av en matrismultiplikation blir produkten av transporten av de in-
dividuella matriserna i omvänd ordning

(30) (S̃T) = T̃S̃.

Självkoll: Ser du hur detta stämmer?

En enhetsmatris, I, är en kvadratisk matris där matriselementen är 1 på huvuddi-
agonalen och 0 annars, dvs Iij = δij.

(31) I =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


Självkoll: Stämmer följande likhet : T · I = I ·T? Bevisa ditt svar.

En kvadratisk matris har även en invers T−1 sådan att

(32) T−1T = TT−1 = I.

Det �nns dock ett krav för att inversmatrisen ska existera: matrisens determinant

måste vara skild från noll!
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En determinant är ett tal som associeras med varje kvadratisk matris och brukar
betecknas det(T) eller

(33)

∣∣∣∣∣∣∣∣
T11 T21 . . . Tn1
T12 T22 . . . Tn2
...

...
. . .

...
T1n T2n . . . Tnn

∣∣∣∣∣∣∣∣
Man kan säga att determinanten är en funktion från mängden kvadratiska matriser
till mängden tal. För en 1×1 matris, T = (T ) blir det(T) = T . För 2×2 matrisen

S =

(
S11 S12

S21 S22

)
blir det(S) = S11S22 − S21S12. För 3 × 3 matrisen blir det lite

mer komplicerat,

(34) U =

U11 U12 U13

U21 U22 U23

U31 U32 U33


ger det(U) = U11U22U33 + U12U23U31 + U13U21U32 − U31U22U13 − U32U23U11 −
U33U21U12. En bra minnesregel för uträkning av stora determinanter är Sarrus

regel :

U11 U12 U13 U11 U12

U21 U22 U23 U21 U22

U31 U32 U33 U31 U32

+ + +

− − −

Inversen av en matrismultiplikation är produkten av inverserna för de individuella
matriserna i omvänd ordning

(35) (ST)−1 = T−1S−1.

4. Basbyte

Ett basbyte är egentligen ett byte av perspektiv. Tänk dig en planetmodell i ett
klassrum, ett lämpligt koordinatsystem för att beskriva det lilla modell-jordklotets
rörelse kring modell-solen skulle kunna vara centrerat på en punkt i rummet eller
centrerat på modell-solen. Om vi istället ändrar oss och nu vill studera det riktiga
jordklotets rotation kring den riktiga solen, skulle det nuvarande koordinatsys-
temet vara högst olämpligt. Ett bättre val skulle, inte så förvånande, t.ex. vara
ett koordinatsystem centrerat på den riktiga solen. Vi måste därför byta bas.
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Antag att vi har en bas Be = (e1, e2) i ett plan. I den basen har vektorn a
komponenterna ae = (a1, a2). Vi har två linjärt oberoende vektorer f1 = 1√

2
(e1 +

e2) och f2 = 1√
2
(e1 − e2), dessa två vektorer kan bilda en ny bas i planet, Bf . Vi

kan uttrycka a i den nya basen på följande sätt:

(36)

Steg 1: Uttryck den gamla basens vektorer som en linjärkombination av

den nya basens vektorer{
e1 =

1√
2
f1 +

1√
2
f2

e2 =
1√
2
f1 − 1√

2
f2

Steg 2: Sätt in detta i a = a1e1 + a2e2

a = a1(
1√
2
f1 +

1√
2
f2) + a2(

1√
2
f1 −

1√
2
f2) =

a1 + a2√
2

f1 +
a1 − a2√

2
f2

Vi kan uttrycka komponenterna för den gamla basen i den nya basen på matrisform

(37)

(a1+a2√
2

a1−a2√
2

)
=

( 1√
2

1√
2

1√
2
− 1√

2

)(
a1
a2

)

där

( 1√
2

1√
2

1√
2
− 1√

2

)
kallas basbytesmatrisen från Be till Bf . I n dimensioner så skrivs

den gamla basens vektorer som linjärkombinationen av de nya på följande sätt:

(38) en =
n∑

i=1

Sijfi (j = 1, 2, . . . , n),

där Sij är elementen i basbytesmatrisen (dvs. koe�cienerna för linjärkombina-
tionerna). Komponenterna för en vektor a = (a1, a2, . . . , an) i den nya basen blir
nu

(39) aBf
i =

n∑
j=1

Sija
Be
j

Vi kan uttrycka sambandet mellan baserna Be och Bf och basbytesmatrisen, S, på
följande sätt:

(40) aBf = SaBe .

Basbytesmatrisen S är inverterbar, det betyder att det �nns en annan basbytes-
matris S−1 som tar en vektor från Bf tillbaka till Be.

Om vi introducerar ytterligare en bas Bg och U är basbytesmatrisen från Bf till
Bg, så är US basbytesmatris från Be till Bg.
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5. Egenvektorer och Egenvärden

Vi återvänder nu till konceptet av linjära transformationer och noterar att vissa
vektorer inte ändras med mer än en multiplikation med en skalär under trans-
formationen. Sådana vektorer kallas transformationens egenvektorer och skalären
som egenvektorn multipliceras med kallas egenvärdet. Vi kan uttrycka detta som
en egenvärdesekvation på matrisform (observera att vi har då valt en bas)

(41) Ta = λa, a 6= 0.

där a är egenvektorn och λ egenvärdet. En alternativ formulering av ekvationen
ges enligt

(42) (T− λI)a = 0.

För att bestämma a och λ måste vi lösa egenvärdesekvationen. Den enda icketriv-
iala lösningen (dvs. lösningen a = 0 är inte så givande här) fås när determinanten
av (T− λI) är lika med noll,

(43) det(T− λI) =

∣∣∣∣∣∣∣∣
(T11 − λ) T12 . . . T1n

T21 (T22 − λ) . . . T2n
...

...
. . .

...
Tn1 Tn2 . . . (Tnn − λ)

∣∣∣∣∣∣∣∣ = 0.

Lösningen till ekvationen blir ett algebraiskt uttryck som kallas den karakteristiska

ekvationen:

(44) cnλ
n + cn−1λ

n−1 + · · ·+ c1λ+ c0 = 0

Rötterna till den karakteristiska ekvationen är egenvärdena. Insättning av egen-
värdena i egenvärdesekvationen ger oss egenvektorerna.

Om vi kan �nna n distinkta egenvärden till en n × n matris, kallas matrisen
diagonaliserbar, dvs. den kan uttryckas på följande form:

(45) T =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn


med de normerade egenvektorerna givna enligt

(46)


1
0
...
0

 ,


0
1
...
0

 , . . . ,


0
0
...
1

 .
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I kvantmekaniken så är vågfunktionen ψE egenvektor till Hamiltonianen, H, och
dess egenvärde är vågfunktionens energi, E, dvs

(47) HψE = EψE.

6. Relaterade problem

Uppgift 1: 1-P7. Låt A = x+ 2y + 3z och B = y − 1
2
z vara två vektorer

a) Beräkna vektorerna A+B och A− 3B

Lösningsförslag.

A+B = x+ (2 + 1)y + (3− 1

2
)z = x+ 3y +

5

2
z

A− 3B = x+ (2− 3)y + (3 +
3

2
)z = x− y +

9

2
z

e) Beräkna skalärprodukterna x ·A, y ·A, z ·B

Lösningsförslag. A och B är båda uttryckta i basen B = (x,y, z). Vi tar basvek-
torerna som ortogonala och normaliserade x = (1, 0, 0), y = (0, 1, 0), z = (0, 0, 1),
dvs de bildar en ON-bas. Vi kan då räkna ut skalärprodukten mellan två vektorer
enligt a · b = a1b1 + a2b2 + a3b3. I detta fall får vi:

x ·A = 1× 1 + 0× 2 + 0× 3 = 1

y ·A = 0× 1 + 1× 2 + 0× 3 = 2

z ·B = 0× 1 + 1×
(
−1

2

)
= −1

2

Uppgift 2: Matrisräkning (Problem A.8 (Gi�ths)). Givet de två matris-
erna:

A =

−1 1 i
2 0 3
2i −2i 2

 , B =

2 0 −i
0 1 0
i 3 2


räkna ut:

a) A+B

Lösningsförslag.

A+B =

−1 + 2 1 + 0 i+ (−i)
2 + 0 0 + 1 3 + 0
2i+ i −2i+ 3 2 + 2

 =

 1 1 0
2 1 3
3i 3− 2i 4


b)AB
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Lösningsförslag.

AB =

 −1× 2 + 1× 0 + i× i −1× 0 + 1× 1 + i× 3 −1× (−i) + 1× 0 + i× 2
2× 2 + 0× 0 + 3× i 2× 0 + 0× 1 + 3× 3 2× (−i) + 0× 0 + 3× 2

2i× 2 + (−2i)× 0 + 2× i 2i× 0 + (−2i)× 1 + 2× 3 2i× (−i) + (−2i)× 0 + 2× 2


=

 −3 1 + 3i 3i
4 + 3i 9 6− 2i
6i 6− 2i 6


e) A∗

Lösningsförslag. Bara den komplexa delen byter tecken z∗ = a−bi om z = a+bi.

A∗ =

−1 1 −i
2 0 3
−2i 2i 2


h) det(B)

Lösningsförslag. Kom ihåg Sarrus' regel∣∣∣∣∣∣
2 0 −i
0 1 0
i 3 2

∣∣∣∣∣∣ = (2× 1× 2 + 0× 0× i+ (−i)× 0× 3)− (i× 1× (−i) + 3× 0× 2 + 2× 0× 2)

= 4− 1

= 3

Uppgift 3: Ett egenvärdesproblem. Finn egenvärdena och egenvektorerna till
följande matris:

M =

(
1 2
2 4

)
Lösningsförslag. Formeln för egenvärdesekvationen är (M − λI)a = 0. Den
karakteristiska ekvationen är:∣∣∣∣1− λ 2

2 4− λ

∣∣∣∣ = (1− λ)(4− λ)− 4 = λ2 − 5λ = 0

Vi får rötterna till den karakteristiska ekvationen genom att lösa pq-ekvationen:

λ =
5

2
±

√(
5

2

)2

=
5

2
± 5

2

⇒ λ1 =
5

2
+

5

2
= 5

⇒ λ2 =
5

2
− 5

2
= 0
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Vi har alltså två egenvärden, λ = 5 och λ = 0. Nu ska vi bara bestämma de
egenvektorer a = (a1, a2), som hör till de båda egenvärdena. Vi kommer ihåg
formeln för egenvärdesekvationen (M− λI)a = 0, insättning av λ = 5 ger:(

−4 2
2 −1

)(
a1
a2

)
=

(
0
0

)
Vi kan skriva detta på linjär form genom att multiplicera matrisen med egenvektorn
vilket ger: {

−4a1 + 2a2 = 0

2a1 − a2 = 0
⇒ 2a1 = a2 ⇒ a =

(
1
2

)
Så för egenvärdet λ = 5 får vi egenvektorn a1 =

(
1
2

)
. För egenvärdet λ = 0 kan

vi på samma sätt räkna ut egenvektorn:(
1 2
2 4

)(
a1
a2

)
=

(
0
0

)
Linjär form ger: {

a1 + 2a2 = 0

2a1 + 4a2 = 0
⇒ a1 = −2a2 ⇒ a =

(
2
−1

)
.

Till slut har vi även bestämt egenvektorn a2 =

(
2
−1

)
för egenvärdet λ = 0.


