ANTECKNINGAR TILL RAKNEOVNING 1 & 2 - LINJAR
ALGEBRA

For att verkligen kunna forsta och tillimpa kvantmekaniken sa maste vi veta
nagot om den matematik som ligger till grund for formuleringen av vagfunktionen.
Dérfor behover vi kiinna till de grundléiggande begreppen i linjir algebra, sasom
vektorer, matriser, baser, vektorrum, egenvektorer, egenvirden etc.

1. VEKTORER OCH VEKTORRUM

En storhet som har bade storlek och riktning kallas for en vektor och en storhet
som inte har nagon riktning, dvs ett "vanligt" tal, kallas for en skaldr. T 3 dimen-
sioner har en vektor 3 komponenter och uttrycks

(1) r = Té, + ye, + 2€,

dér é,, é,, é, ar enhetsvektorerna (1,0,0), (0,1,0) och (0,0,1). Vektorer kan dven
uttryckas pa foljande form:

(2) r=

INIINS

Sjalvkoll: Ser du att de tva uttrycken ar ekvivalenta?

Vektorrum? Ett vektorrum ar en uppsattning av vektorer som ar slutet under
vektoraddition och skalarmultiplikation. Att vektorrummet &r slutet under vek-
toraddition betyder att summan av tva vektorer som finns i vektorrummet dar en
tredje vektor i vektorrummet. For skalarmultiplikation géller att produkten av en
skaldr och en vektor i vektorummet dr en annan vektor i vektorrummet. 1 kvant-
mekaniken tanker vi pa ett vektorrum dér skaldrerna och vektorkomponenterna
far vara komplexa tal och vi inte begransar oss till endast 3 dimensioner.

Vi kan alltsa addera tva vektorer pa foljande sétt
(3) a+b=c

dar resultatet ¢ ocksa dr en vektor. Vektoraddition ar kommutativ, dvs. a4+ b =
b + a, och associativ, dvs. a+ (b+c) = (a+b) +c.

Det finns ocksa en noll-vektor 0 som verkar pa alla vektorer pa foljande sitt

(4) a+0=a,
1
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och en inversvektor a~! sadan att
(5) ata'l=0.
Vi kan multiplicera en vektor med en skaldr pa foljande sétt
(6) aa=Db
dar resultatet dr en vektor. Skaldrmultiplikation ar distributiv med hénsyn till
vektoraddition och skaldraddition
ala+b)=ca+ab
(7) _
(o + B)a = aa + Pa.
Skaldraddition &r associativ med hénsyn till skaldrmultiplikation ("vanlig" multi-
plikation)
(8) a(fa) = (af)a
Sjalvkoll: Vad blir resultatet av Oa och 1a?

Vi kan bilda en linjarkombination av vektorer i rummet pa foljande satt
9) aa+ fb+yc+...

En vektor c sidgs vara linjart beroende av en uppsittning vektorer om den kan
uttryckas som en linjairkombination av dem. Saklart kan man ju alltid bilda en
linjirkombination av noll-vektorn, men om den enda mdjligheten att bilda noll-
vektorn dr att sitta alla koefficienter till noll séigs vektorerna vara linjdrt oberoende,
t.ex. a, b och c ar linjirt oberoende om

(10) aa+fb+7c=0 endastdda a=pF=v=0

Ytterligare en vektoroperation ar punktprodukten (dven kallad skalérprodukt, dot
product eller inre produkt),

(11) A b |al|b|cos¢ om a0 och b #0

0 oma=0ochb=0.
Hér menar vi med |a| lingden av vektorn a och ¢ &r vinkeln mellan vektorerna a
och b. Lingden av en vektor och vinkeln mellan tva vektorer ges av

= vaa
(12) a-b
cos ¢ =
|af[b

Sjalvkoll: Hianger du med pa uttrycken for lingden och vinkeln? Vad blir punk-
tproduken for ortogonala (vinkelrdta) vektorer?
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Att normera en vektor a betyder att man formulerar en enhetsvektor u som har
samma riktning och ar parallell med a, dvs. u = Aa dir A > 0. Vi kan bestdmma
normeringsfaktorn A\ och den normerade vektorn u:

1 1
(13) =|ul=)a|=)a|=A=—=u=—a.
al al

2. BASER

Ett uppsittning av n linjirt oberoende vektorer som spinner upp' ett n dimen-
sionellt rum kallas en bas (n finit). For basen

(14) B = (e, ey,...€,)
kan vi uttrycka en godtycklig vektor som en summa 6ver basen pa foljande sétt

(15) a= Z p€, = a1€1 + asey + - - - + a,e,.

n

Varje sadan vektor dr unikt beskriven av sina vektorkomponenter

(16) a< (ar,ag,...,ap).

Néar vi utfor operationer pa vektorer dr det oftast komponenterna vi arbetar med
a+b< (ag+b,as+0bg,...,a,+by)

(17) aa < (aay, aay, . .., aap)
0+ (0,0,...,0)

Sjalvkoll: Hur ser vektorkomponenterna for inversvektorn ut?

Nackdelen med att arbeta med komponenterna dr att man maste bestdmma sig
for en bas och halla sig till den.

Ortonormal (ON) bas? I kvantmekaniken &r det néstan alltid 6nskvért att ar-
beta med vektorer som ar uttryckta i en ortonormal bas. Att basen ar ortonormal
betyder att basvektorerna dr ortogonala (vinkelrdta sinsemellan) och normerade
till 1angden 1. For tva basvektorer i en ON bas, e; och e;, far vi foljande uttryck
for punktprodukten

1 omi=

1 i€ =0 = o
(18) €i "€ J {0 om i # j

Sjalvkoll: Hénger du med pa varfor det blir sa?

Det som ar sa bra med ON-basen ir att uttrycket fér punktprodukten férenklas
avsevirt. Om vi later B = (eq, e, e3) vara en 3 dimensionell ON-bas i rummet och

ITénk dig hur ett vanligt 3 dimensionellt rum spanns upp av 3 vektorer
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att de godtyckliga vektorerna a = (ay, aq, az) och b = (by, bs, bs) finns i basen, da

a-b= (a1e1 + a9€9 + &393) . (blel + b262 + b3e3)
= aibie; - e1 + azbres - ey + azbses - e3
(19) = CL1b1 + CLQbQ + CL3b3

la| = \/a? + a3 + a3.

Sjalvkoll: Hur ser uttrycket fér punktprodukten ut fér n dimensioner? Hur ser
normeringsfaktorn A ut for en godtycklig vektor a = (a1, as, a3) uttryckt i en ON-
bas? Hint: Titta pa Eq. (13).

For en ON-bas B = (eq, s, €3) i rummet, kan dessutom vektorkomponenterna for
en vektor i rummet, a, bestimmas pa foljade enkla sétt

(20) a=(e;-a)e; + (ex-a)ey + (e3- a)es.

3. MATRISER

Vi har ett 3 dimensionellt vektorrum, vi multiplicerar vektorerna i rummet med
en och samma skalér, eller roterar dem med samma vinkel runt z-axeln. Det vi
precis har gjort kallas en linjdr transformation, T. Det en linjar transformation
gor ar att den tar varje vektor i vektorrummet och transformerar den till en ny
vektor (a — a’ = Ta). Som namet antyder kridvs det att transformationen ar
linjar for godtyckliga vektorer och skaldrer, dvs.

(21) T(aa+ fb) = a(Ta) + B(Thb).

En linjar transformation kan representeras av en matris. I en ON-bas dr en sadan
matris kvadratisk och kan fér n dimensioner stéllas upp pa foljande vis:

Tll T12 .« 0. TITL
(22) T — Ty Ty ... Ty,
T Tho .. Thn

dar T;; ar matriselementet som finns pa rad ¢ och kolumn j. I kvantmekaniken finns
det nagot som kallas for kvantoperatorer, de dr faktiskt ocksa exempel pa linjira
transformationer. Nu nar vi arbetar med matriser maste vi ocksa ta hénsyn till
matrisoperationer. De flesta matrisoperationer fungerar pa liknande sitt som sina
vektormotsvarigheter (vad #r en vektor annat #&n en 1 x n eller m x 1 matris).
En skillnad ar dock att man behéver ta hinsyn till matrisens typ (dvs. dess
dimensioner). Om S och T dr matriser av samma typ kan man addera dem och
bilda en ny matris U av samma typ



ANTECKNINGAR TILL RAKNEOVNING 1 & 2 - LINJAR ALGEBRA 5

I sadana fall giller &ven att matrisaddition 4r kommutativ och associativ, och det
finns en nollmatris sadan att T + 0 =T.

En matris T kan multipliceras med en skalar

a(A+B)=aA+aB
(24) (a+ B)A = aA + A
(af)A = a(BA).

Multiplikation av en matris med en annan dr lite mer invecklad &n multiplikation
av en skaldr och en matris. Det forsta man maste ta hansyn till 4r att matriserna
ar av sadana typer att de faktiskt gar att multiplicera med varandra. For att
matrisen S ska kunna multipliceras med matrisen T géller det att antalet element
i en kolumn i S &r lika manga som antalet element i en rad i T.

S(m xn)-T(nxp)=D(mxp) ok
(25) S(nxm)-T(pxs) inte ok!
dirn#m#p+#s

Sjilvkoll: Ar matrismultiplikation kommutativ?

Om typerna stimmer sa géller att
(26) U=ST+Uj=)Y_ Sulk
k=1

dar U;; motsvarar elementet pa den i:e raden och den j:e kolumnen i matrisen U.
Om matrisen S har m rader och matrisen T har p kolumner sa kommer matrisen
U vara m x p och antalet matriselement U;; vara m - p.

Varje matris (och vektor) kan transponeras. Vid transponering av matrisen T
byter raderna och kolumnerna i matrisen plats med varandra, den resulterande
matrisen kallas for matrisens transponat T.

Tll T21 s Tnl
Tln T2n e Tnn

En n x n matris kallas symmetrisk om T =T och antisymmetrisk om T=-T.
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I kvantmekaniken &r matriselementen komplexa tal. Man kan déarfor definiera
ytterligare en matrisoperation, komplerkonjugatet av en matris, T*, ddr varje ma-
triselement komplexkonjugeras.

Ty T ... T,
) o [T T T
T T ... T

Sjalvkoll: Vad blir transponatet och komplexkonjugatet av kolumnvektorn
al
a2
a=| .|, (a,komplexa)?
Qn
Matrismultiplikation &r generellt inte kommutativ, men for kvadratiska matriser
kan vi definiera kommutatorn:

(29) [S,T] = ST — TS

Transponatet av en matrismultiplikation blir produkten av transporten av de in-
dividuella matriserna i omvéind ordning

(30) (ST) = TS.
Sjalvkoll: Ser du hur detta stimmer?

En enhetsmatris, I, 4r en kvadratisk matris dar matriselementen dr 1 pa huvuddi-
agonalen och 0 annars, dvs [;; = 9;.

10 ...0
01 ...0

(31) I= :
00 ... 1

Sjalvkoll: Stammer féljande likhet : T -1 =1-T? Bevisa ditt svar.
En kvadratisk matris har dven en invers T~! sadan att
(32) T'T=TT'=1

Det finns dock ett krav for att inversmatrisen ska existera: matrisens determinant
maste vara skild fran noll!
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En determinant &r ett tal som associeras med varje kvadratisk matris och brukar
betecknas det(T) eller

Tll T21 <. Tnl
(33) 77.12 TQQ .' .. Tng
Tln T2n s Tnn

Man kan sidga att determinanten &r en funktion fran miangden kvadratiska matriser
till méngden tal. For en 1x 1 matris, T = (7') blir det(T) = 7. Fo6r 2 x 2 matrisen

S = (gn gu) blir det(S) = S11S20 — S21512. For 3 x 3 matrisen blir det lite
21 922

mer komplicerat,

Un U U
(34) U= |Un Ux Usy
Usi Usy Uss

ger det(U) = UnUxUss + UinUzsUsi + UisUsUsy — UsiUxoUys — UspUazUyy —
Us3Us1U15. En bra minnesregel for utrdkning av stora determinanter ar Sarrus
regel:

Inversen av en matrismultiplikation ar produkten av inverserna for de individuella
matriserna i omvand ordning

(35) (ST) ' =TS ..

4. BASBYTE

Ett basbyte &dr egentligen ett byte av perspektiv. Ténk dig en planetmodell i ett
klassrum, ett lampligt koordinatsystem for att beskriva det lilla modell-jordklotets
rorelse kring modell-solen skulle kunna vara centrerat pa en punkt i rummet eller
centrerat pa modell-solen. Om vi istillet &ndrar oss och nu vill studera det riktiga
jordklotets rotation kring den riktiga solen, skulle det nuvarande koordinatsys-
temet vara hogst olampligt. Ett battre val skulle, inte sa foérvanande, t.ex. vara
ett koordinatsystem centrerat pa den riktiga solen. Vi maste darfor byta bas.
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Antag att vi har en bas B, = (ej,e3) i ett plan. I den basen har vektorn a

komponenterna a, = (a1, az). Vi har tva linjart oberoende vektorer f; = \%(el +
ey) och f = \/Li(el — €3), dessa tva vektorer kan bilda en ny bas i planet, Be. Vi
kan uttrycka a i den nya basen pa foljande sétt:

Steg 1: Uttryck den gamla basens vektorer som en linjarkombination av

den nya basens vektorer

{el = \/Lifl + \/Lifz

(36) \e:= -t — Lf,
Steg 2: Satt in detta i a = aye; + ases
1 1 1 1 a; + as a] — ag
a=q (—=f] + —=5() + ax(—=f; — —=£f) = f; + f.
1(\/51 \/52) 2(\/51 \/52) NG 1 NG 2

Vi kan uttrycka komponenterna for den gamla basen i den nya basen pa matrisform
ai1+az 11 a
V2 V- VAN

I

dar (\{5 \/51 ) kallas basbytesmatrisen fran B, till Be. I n dimensioner sa skrivs
V2 V2

den gamla basens vektorer som linjarkombinationen av de nya pa foljande sétt:

i=1
dédr S;; ar elementen i basbytesmatrisen (dvs. koefficienerna for linjirkombina-
tionerna). Komponenterna for en vektor a = (ay,as,...,a,) i den nya basen blir
nu
(39) GIZ-Bf = Z Sija?e
j=1

Vi kan uttrycka sambandet mellan baserna B, och B¢ och basbytesmatrisen, S, pa
foljande satt:

(40) a = SaPe.

Basbytesmatrisen S &r inverterbar, det betyder att det finns en annan basbytes-
matris S™! som tar en vektor fran B¢ tillbaka till Be.

Om vi introducerar ytterligare en bas Bg och U ér basbytesmatrisen fran Be till
Bg, sa dr US basbytesmatris fran Be till By.
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5. EGENVEKTORER OCH EGENVARDEN

Vi atervinder nu till konceptet av linjira transformationer och noterar att vissa
vektorer inte dndras med mer in en multiplikation med en skaldr under trans-
formationen. Sadana vektorer kallas transformationens egenvektorer och skaliren
som egenvektorn multipliceras med kallas egenvdrdet. Vi kan uttrycka detta som
en egenvirdesekvation pa matrisform (observera att vi har da valt en bas)

(41) Ta= )la, a#0.

dir a ir egenvektorn och A egenviirdet. En alternativ formulering av ekvationen
ges enligt

(42) (T — \)a = 0.

For att bestdimma a och A\ maste vi 16sa egenviardesekvationen. Den enda icketriv-
iala 16sningen (dvs. 16sningen a = 0 ar inte sa givande hér) fas nir determinanten
av (T — AI) &r lika med noll,

(Tll - )\) T12 e Tln
T Too — ) ... 15,
(43) det(T - M) =| . ( ” ) ) =0
T Ty oo (Thp— A)

Losningen till ekvationen blir ett algebraiskt uttryck som kallas den karakteristiska
ekvationen:

(44) A"+ N A+ =0

Rotterna till den karakteristiska ekvationen dr egenvirdena. Insdttning av egen-
virdena i egenvirdesekvationen ger oss egenvektorerna.

Om vi kan finna n distinkta egenvérden till en n X n matris, kallas matrisen
diagonaliserbar, dvs. den kan uttryckas pa foljande form:

A0 .. 0
0 X ... O
(45) T= N :
0 0 ... A\

med de normerade egenvektorerna givna enligt

(46) ey
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I kvantmekaniken sa ar vagfunktionen v g egenvektor till Hamiltonianen, H, och
dess egenvirde dr vagfunktionens energi, £, dvs

(47) Hyp = EYp.

6. RELATERADE PROBLEM

Uppgift 1: 1-P7. Lat A=x+2y+3zoch B=y — %z vara tva vektorer

a) Berdkna vektorerna A + B och A — 3B

Losningsforslag.
1 5
A+B=X+(2+1)y+(3—§)zzx—i—3y—|—§z
3 9
A.—3B:X+(2_3)y+(3—|—§)Z:X—y+§Z

e) Berikna skaldrprodukterna x- A,y - A, z-B

Losningsfoérslag. A och B dr bada uttryckta i basen B = (x,y,z). Vi tar basvek-
torerna som ortogonala och normaliserade x = (1,0,0), y = (0,1,0), z = (0,0, 1),
dvs de bildar en ON-bas. Vi kan da ridkna ut skaldrprodukten mellan tva vektorer
enligt a-b = a1b; + asbs + azbs. 1 detta fall far vi:
x-A=1x14+40x24+0x3=1
Yy A=0x1+1x24+0x3=2

1 1
-B=0x1+1 — | = —=
VA xX 1+ x( 2) 5

Uppgift 2: Matrisrikning (Problem A.8 (Giffiths)). Givet de tva matris-
erna:

-1 1 4 2 0 —
A= 2 0 3], B=|01 0
2t =21 2 1 3 2
rakna ut:
a) A+ B
Losningsforslag.
—142 140 i+ (—19) 1 1 0
A+B=| 240 0+1 34+0 =12 1 3
2041 —214+3 2+2 3t 3—21 4
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Losningsforslag.
—1x24+1x0+17x1 —1x0+1x1+2x3 —1Ix(=i)+1x0+ix2
AB = 2x240x0+3x1i 2x0+0x1+3x3 2x (=) +0x0+3x2

20X 24 (=20) x0+2xi 2ix0+4+(=2i)) x1+2x3 2ix(—i)+(=2i) x0+2x2
-3 1+3 &

=4+ 9 6 — 2
6: 6—2 6

e) A*
Losningsforslag. Bara den komplexa delen byter tecken z* = a—bi om 2z = a-+0bi.
-1 1 —i
A= 2 0 3
—2i 20 2

h) det(B)
Lo6sningsforslag. Kom ihag Sarrus’ regel
2 0 —
01 0|=2%x1x240x0xi+(—1)x0x3)—(Ix1x(—i)+3x0x2+2x0x2)
t 3 2
=4-1
=3

Uppgift 3: Ett egenvirdesproblem. Finn egenvirdena och egenvektorerna till

foljande matris:
1 2
M=o )

Losningsforslag. Formeln for egenvirdesekvationen dr (M — AM)a = 0. Den
karakteristiska ekvationen ar:
1—A 2

2 4— )\

Vi far rotterna till den karakteristiska ekvationen genom att 16sa pg-ekvationen:

‘:(1—/\)(4—)\)—4:/\2—5)\:0
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Vi har alltsa tva egenvarden, A = 5 och A = 0. Nu ska vi bara bestimma de
egenvektorer a = (ay,as), som hor till de bada egenvirdena. Vi kommer ihag
formeln for egenvéirdesekvationen (M — Al)a = 0, inséittning av A = 5 ger:

(2 2)()-0

Vi kan skriva detta pa linjar form genom att multiplicera matrisen med egenvektorn
vilket ger:

1
=201 =ay; > a=
2(11-@2:0 (2)

;) For egenvirdet A = 0 kan

{—4(11 + 2@2 =0

Sa for egenvirdet A = 5 far vi egenvektorn a; = (

vi pa samma satt rdkna ut egenvektorn:

1 2 ary\ 0
2 4 (05} o 0
Linjar form ger:

CL1+2CL2:0 2
= a1 = —2a9 =>a= .
2a1+4a2:0 -1

Till slut har vi d&ven bestdmt egenvektorn a; = (_21> for egenvirdet A = 0.



