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Abstract

In this thesis we explore different aspects of the physics of multi-species atomic systems in
optical lattices. In the first part we will study cold gases in the first and second excited
bands of optical lattices - the p and d bands. The multi-species character of the physics in
excited bands lies in the existence of an additional orbital degree of freedom, which gives rise
to qualitative properties that are different from what is known for the systems in the ground
band. We will introduce the orbital degree of freedom in the context of optical lattices and
we will study the many-body systems both in the weakly interacting and in the strongly
correlated regimes.

We start with the properties of single particles in excited bands, from where we investigate
the weakly interacting regime of the many-body p- and d-orbital systems in Chapters 2
and 3. This presents part of the theoretical framework to be used throughout this thesis,
and covers part of the content of Paper I and of Preprint II. In Chapter 4, we study Bose-
Einstein condensates in the p band, confined by a harmonic trap. This includes the finite
temperature study of the ideal gas and the characterization of the superfluid phase of the
interacting system at zero temperature for both symmetric and asymmetric lattices. This
material is the content of Paper I.

We continue with the strongly correlated regime in Chapter 5, where we investigate the Mott
insulator phase of various systems in the p and d bands in terms of effective spin models.
This covers the results of Paper II, of Preprint I and parts of Preprint II. More specifically,
we show that the Mott phase with a unit filling of bosons in the p and in the d bands can
be mapped, in two dimensions, to different types of XYZ Heisenberg models. In addition,
we show that the effective Hamiltonian of the Mott phase with a unit filling in the p band
of three-dimensional lattices has degrees of freedom that are the generators of the SU(3)
group. Here we discuss both the bosonic and fermionic cases.

In the second part, consisting of Chapter 6, we will change gears and study effects of disorder
in generic systems of two atomic species. This is the content of Preprint III, where we consider
different systems of non-interacting but randomly coupled Bose-Einstein condensates in 2D,
regardless of an orbital degree of freedom. We characterize spectral properties and discuss
the occurrence of Anderson localization in different cases, belonging to the different chiral
orthogonal, chiral unitary, Wigner-Dyson orthogonal and Wigner-Dyson unitary symmetry
classes. We show that the different properties of localization in the low-lying excited states
of the models in the chiral and the Wigner-Dyson classes can be understood in terms of
an effective model, and we characterize the excitations in these systems. Furthermore, we
discuss the experimental relevance of the Hamiltonians presented here in connection to the
Anderson and the random-flux models.
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Abstrakt

I den här avhandling studeras olika aspekter av system best̊aende av atomer i olika or-
bitaltillst̊and. Vi inleder med en undersökning av flerkroppssystem i optiska gitter, i det
första och andra exciterade bandet - p- och d-banden. Som diskuteras i texten s̊a innebär de
olika till̊atna orbitaltillst̊anden en ytterligare frihetsgrad, som i sin tur ger kvalitativa egen-
skaper som skiljer sig fr̊an de kända egenskaperna fr̊an liknande, icke-degenererade system
i grundtillst̊andet. I denna del av avhandlingen introducerar vi denna azimuthala frihets-
grad för optiska gitter och vi studerar flerkroppssystem i regimerna av b̊ade svag och stark
korrelerad växelverkan.

Mer specifikt, vi inleder med en diskussion av fysiken för ett enpartikelsystem i de exciterade
banden i ett optiskt gitter och introducerar ”mean-field”-metoder för att karaktärisera den
supraflytande fasen av system av b̊ade p- och d-orbitaler i kapitel 2 och 3. Detta innefat-
tar delar av det teoretiska ramverk som användes för denna avhandling och täcker delar
av inneh̊allet i Paper I och Preprint II. I kapitel 4 studerar vi det bosoniska flerkroppssys-
temet i p-bandet i en laserfälla av den harmoniska typen. Detta innefattar undersökning av
systemet modellerat som en ideal gas vid nollskilda temperaturer och karaktäriseringen av
den superflytande fasen hos det interagerande systemet vid 0 K, b̊ade för symmetriska och
asymmetriska gitter. Detta material utgör inneh̊allet i Paper I.

Vi fortsätter med att beskriva den starkt korrelerade regimen i kapitel 5, där vi ocks̊a un-
dersöker Mott-isolator-fasen för olika system i p- och d-banden genom användandet av effek-
tiva spin-modeller. Detta omfattar resultaten i Paper II, i Preprint I och delar av Preprint II.
Mer specifikt s̊a visar vi att Mott-fasen med en atom per gitterpunkt, i tv̊a dimensionella git-
ter och bosoniska p- eller d-band, är analoga med olika typer av s̊a kallade XYZ Heisenberg-
modeller. Vidare visar vi att den effektiva Hamiltonianen i lägsta Mott-fasen i p-banden i
tredimensionella gitter beskrivs av pseudo-spin operatorer tillhörande SU(3)-algebran. Vi
diskuterar b̊ade det bosoniska och fermioniska fallet.

I kapitel 6 lämnar vi de tidigare övningarna bakom oss och utforskar effekten av oordning
i generiska system best̊aende av tv̊a typer av atomer. Detta är inneh̊allet i Preprint III,
där vi granskar skilda system av icke-interagerande men slumpvist kopplade Bose-Einstein-
kondensat i tv̊a dimensioner, oberoende av azimuthala frihetsgrader. Vi karaktäriserar spek-
trala egenskaper och diskuterar eventuell Anderson-lokalisation i de olika fallen. Som vi
visar i texten s̊a tillhör de olika fallen olika symmetriklasser, av kiral ortogonal, kiral unitär,
Wigner-Dyson-ortogonal eller Wigner-Dyson-unitär typ. I synnerhet visar vi att det krävs
högre grad av oordning för att skapa lokaliserade tillst̊and för Wigner-Dyson-klasserna än
för de kirala symmetriklasserna. Vi uttrycker detta resultat i termer av en effektiv modell
i vilken vi integrerat ut de högfrekventa moderna ur systemet. Vidare diskuterar vi rele-
vansen av dessa system för att experimentellt studera Anderson-modellen eller modeller med
slumpmässiga flöden.
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1. Introduction

After the experimental realization of the optical lattices, and the subsequent observation in
2002 [1] of the Mott-insulator to superfluid transition predicted 15 years earlier [2], systems
of cold atoms became a powerful tool for exploring many-body quantum phenomena [3].
The degree of control and manipulation in these systems is so great, that nowadays it is
possible to engineer lattices with all sorts of different configurations, that allow for the study
of many-body quantum physics both in the weakly interacting and in the strongly corre-
lated regimes [4]. In other words, cold atoms in optical lattices provide highly controllable
laboratories for testing models of solid state and condensed matter physics.

This is because, similar to the behavior of electrons that is described by the celebrated
Hubbard model, the many-body dynamics in the optical lattice is dominated by the two
basic ingredients consisting of hopping and repulsive interactions [5]. When the constituent
particles are bosons, this is well described by the so called Bose-Hubbard Hamiltonian,

Hs = −
∑
〈i,j〉

t(â†iaj + â†j âi) +
∑
i

U n̂i (n̂i − 1), (1.1)

where âi (â†i) destroys (creates) an atom in the i-th site, in a site-localized state of the
ground - the s band [5]. The first term describes nearest neighbors hopping, which occurs
with amplitude t, and the second term describes the two-body interactions, which occur with
matrix elements proportional to U .

Despite its apparent simple form, the list of experimental achievements with basis in this
model is very long. It includes, among others, the simulation of phase transitions and
magnetic systems [6, 7], the development of single-site addressing [8, 9], the realization of
topological states [10] as well as studies of equilibration and of Lieb-Robinson bounds [11, 12].
What it doesn’t include, however, is a whole class of interesting phenomena with origin on
the degeneracy of the onsite, or orbital, wave-functions. Orbital selective phenomena has
been widely studied in the condensed matter community and are important, for example,
for explaining the transitions from metal to insulator in transition-metal oxides [13, 14], as
well as magnetoresistance [15] and superconductivity in these and other materials [15], and
in He3 systems [16]. But experimentally controllable systems to address related questions
were not available until very recently, when the first steps were taken towards the study of
orbital physics with cold atoms in optical lattices [17].

Excited bands of optical lattices provide a natural framework for the study of orbital phy-
sics [18]. Indeed, the site-localized states in isotropic square and cubic lattices feature an
intrinsic degeneracy, that can be readily seen from analogy with the harmonic oscillator in
two and three dimensions: Respectively, the first excited state is two- and three-fold degen-
erate, the second excited state is three- and six-fold degenerate, and so on. In addition, the
wave-functions of the different states have different spatial profiles in the different directions,
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1. Introduction

which directly determine the properties of the dynamics. At the single-particle level, for ex-
ample, this anisotropy of the orbitals implies a tunneling rate that is direction dependent.
At the many-body level, the non-vanishing matrix elements characterizing the interacting
processes in the system are also strongly dependent on the spatial profile of the orbital states.
These give rise to very rich phenomena beyond the Bose-Hubbard model of Eq. (1.1) [18, 19].
To cite just a few, it includes a superfluid phase with a complex-valued order parameter and
that spontaneously breaks time-reversal symmetry [20, 21]; and insulating phases with dif-
ferent types of ordering [22] with possibility of frustration in 3D and that allow for the study
of exotic models of magnetism [23]. Fermionic systems in the p band have also been charac-
terized and feature very rich physics beyond the s-wave isotropy of the ground band [24, 25].
Moreover, these are also alternative systems that can realize multi-species Hamiltonians with
cold atoms [18], and in particular, that can be used to overcome some of the experimental
difficulties of the usual (multi-species) setups in low dimensions [18].

The purpose of this thesis is to provide an introduction to orbital physics in the excited bands
of optical lattices, and to report a number of studies that have been performed on this and
in another multi-species system in the past years. We will start by discussing the properties
of a single particle in a periodic potential in Chapter 2, from where we introduce the orbital
states and the dynamics of the many-body systems. The focus of Chapter 3 is the weakly
interacting regime. Here we present an overview on mean-field techniques and study mean-
field properties of the bosonic systems in the p band of two- and three-dimensional optical
lattices, and in the d band of the two-dimensional case. We also compute the phase diagram
of the Mott-insulator to superfluid transition for the d-band system. We present some results
of previous studies on the topic, and part of the work of Preprint II. In Chapter 4, we study
the superfluid phase of the p band system in two dimensions that is confined by a harmonic
trap. We characterize how the inhomogeneous density of the confined system affects the
physics of the homogeneous case, and we also study finite temperature properties of the
non-interacting case. This is the topic of Paper I.

Moving away from the mean-field territory, we study the strongly correlated regime in the p
and d bands in Chapter 5. More specifically, we characterize the properties of the Mott phase
with a unit filling of various systems in terms of effective spin models, that are obtained
using perturbation theory with the tunneling as the small parameter. These systems are
explored in the context of quantum simulation, where they are shown to be useful for the
study of paradigm models of quantum magnetism. We take a step forward in this direction
and present an experimental scheme for implementation and manipulation of the systems
discussed. This is the most extensive Chapter of this thesis, and is based on the material of
Paper II, Preprint I and part of Preprint II.

Motivated by the studies of Chapter 5, we then investigate, in Chapter 6, a system of
non-interacting Bose-Einstein condensates that are randomly coupled in a two-dimensional
optical lattice. This is the content of Preprint III. Here we characterize spectral properties
and discuss the occurrence of Anderson localization in different cases, that belong to different
symmetry classes of the classification scheme of disordered systems [26]. These consist of
the chiral orthogonal, chiral unitary, Wigner-Dyson orthogonal and Wigner-Dyson unitary
symmetry classes. We will show that when compared to the chiral classes, the onset of
localization in terms of the disorder strength is delayed in the Wigner-Dyson classes, and
we explain this result in terms of an effective model obtained after integrating out the
fastest modes in the system. We also characterize the excitations, which feature vortices in
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1. Introduction

the unitary classes and domain walls in the orthogonal ones. Furthermore, we discuss the
experimental relevance of these systems for studying both the Anderson and the random-flux
models. Finally, we present the concluding remarks in Chapter 7.
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2. Optical lattices, excited bands and all that

“And God said, “Let there be light,” and there was
light. And God saw that light was good. Some time
later, there were optical lattices; and then it was even
better.”

—Adapted from a famous book.

This chapter provides an introduction to the physics in excited bands of optical lattices. We
will start by briefly discussing general features of the physics in optical lattices in Sec. 2.1.
In Sec. 2.2 we review properties of single particles in periodic potentials and introduce the p
and d orbitals in excited bands. The Hamiltonians of the many-body systems are discussed
in Sec. 2.4, together with symmetry properties of each case. The presentation of the p-band
case follows Refs. [18, 27] and Paper I. The discussion about the d-band case follows Preprint
II. In Sec. 2.5 we present an overview about experiments with cold atoms in excited bands
of optical lattices.

2.1. Optical lattices

Optical lattices are spatially periodic potentials, created from the superposition
of linearly polarized lasers, that can be used to trap neutral atoms via AC Stark
shift [1].

The basic idea behind the implementation of optical lattices relies on the use of electric field
with a spatial dependence for inducing a position-dependent shift on the energy levels of
an atom [1, 5]. We will illustrate how this works by considering the interaction of a two-
level atom with monochromatic laser light [28, 29]. For that, we start with the Hamiltonian
describing two electronic atomic levels, i.e., the ground |g〉 and excited |e〉,

Ha = Eg|g〉〈g|+ Ee|e〉〈e|, (2.1)

where Eg and Ee are the corresponding ground and excited states energies and we define
ω0 = Ee − Eg.

Let us assume that the wavelength of the laser λL is much greater than the atomic size1 and
write the Hamiltonian describing the dipole coupling of the atom with the oscillating electric
field

HI = −e r ·E0 cos(ωLt), (2.2)

1At the atomic scale, i.e., the Bohr radius, spatial variations of the electric field can be neglected. This is
called the dipole approximation [28].
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2. Optical lattices, excited bands and all that

where −er is the electric dipole moment operator, E0 is the electric field amplitude and ω0

the laser frequency [28]. The Hamiltonian of the atom-laser interaction then follows

H = Ha +Hi = ~
(

−ω0/2 Ω cos(ωLt)
Ω∗ cos(ωLt) ω0/2

)
, (2.3)

where Ω = E0
~ 〈g|e r|e〉 is the Rabi frequency, and due to parity selection rules 〈g|r|g〉 =

〈e|r|e〉 = 0.

Two situations are of particular interest here [30]: (i) close to resonance, when ω0 ≈ ωL,
|ω0 − ωL| � ω0, ωL; and (ii) far off resonance, when |ω0 − ωL| � ω0, ωL. We consider them
separately:

(i) Close to resonance, the probability of transition between the |g〉 and |e〉 states is time
dependent and given by

P (t) =
Ω2

|Ω|2 + (ωL − ω0)2
sin2

(
t

2

√
|Ω|2 + (ωL − ω0)2

)
. (2.4)

In particular, if an initial state is given such that all the atoms are in the |g〉 state, a
pulse of π duration - the so called π pulse, is capable of exciting the entire population
to the |e〉 state. This is not the regime for implementation of optical lattices, but as
will be discussed later, it is of relevance for manipulations in experiments with cold
atoms.

(ii) The regime of interest for creating the optical lattices is far-off resonance, where one
obtains the Stark shifts. In fact, in the rotating frame with respect to the light field,
the effective Hamiltonian of the total system is static, and given by2

H =
~
2

(
∆ 2Ω

2Ω∗ −∆

)
, (2.5)

where ∆ = ωL − ω0 is the detuning of the laser with respect to the atomic transition.
Far from resonance, when |∆| � |Ω|, the energies of the eigenstates of this effective
system3 are then given by

εg = −~ω0

2
+

~
4

|Ω|2

(ωL − ω0)

εe =
~ω0

2
− ~

4

|Ω|2

(ωL − ω0)
,

(2.6)

showing that as the result of atom-light interactions, we can create a conservative
potential4 with the shifts of the atomic energy levels. Accordingly, if the electric field
has a spatial dependence5, then the induced shift on the atomic levels will also depend
on the position. As stated in the beginning, this is the basic principle underlying the

2To derive Eq. (2.5), one applies the rotating wave approximation, where rapidly oscillating terms are
neglected.

3That is, the bare energies plus the Stark shifts.
4Dissipative processes involve spontaneous emission, that can be neglected in the large detuning case since

excited states have vanishingly probability of being populated.
5That is, if Ω = Ω(r).
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2. Optical lattices, excited bands and all that

implementation of optical lattices6! The potential produced is in turn proportional to
the intensity of the light field,

V = −1

2
α(ωL)|E|2 =

~|Ω|2

4∆
, (2.7)

with α(ωL) the polarizability of the atom [31].

In its simplest implementation, an optical lattice can be constructed from the interference
of counter-propagating laser beams [31]. This gives rise to a standing wave

V (r) =
∑
σ

V0

4
sin2(kσσ), (2.8)

where σ = {x, y, z} labels the different direction, kσ = 2π/λσ is the wave number of the laser
in the direction σ and V0 = ~Ω2

0/4∆. From here on, unless stated otherwise, all the periodic
potentials are sinusoidal potentials, as in Eq. (2.8). In this context, any of the inverse wave
vectors lσ = k−1

σ = λσ/2π provide a natural choice for parametrizing the length scale7, and
any of the recoil energies Eσr = ~2k2

σ/2m (for an atom of mass m) provides a natural choice
for fixing the energy scale.

A final disclaimer is in order: Whenever the words “dimensionless” and “position” appear
together, we mean that position is scaled in terms of one of the lσ. Whenever “dimensionless”
comes together with “energy”, the energies are scaled in terms of one of the Eσr , for the
direction σ to be specified. 1D, 2D and 3D are used to denote one, two and three dimensions,
respectively.

2.2. Single particles in periodic potentials

Two main properties characterize the problem of a quantum particle interacting with a
periodic potential [32, 33]: (i) that the energy spectrum displays a band structure, where
regions with allowed energies are separated by forbidden gaps, and (ii) that the solutions of
the eigenvalue equation are given by Bloch functions. This is formulated in one dimension8

(1D) as

ĤΨ(x) = EΨ(x), where Ĥ = − ~2

2m
∂2
x + V (x) (2.9)

with m the mass of the particle and V (x) = V (x+ d) the periodic potential with periodicity
d. The expression for the Bloch functions can be obtained from the Bloch theorem [33] and
is given by

Ψν,q(x) = eiqxuν,q(x), (2.10)

where uν,q is a periodic function satisfying uν,q(x) = uν,q(x+ d). q and ν are good quantum
numbers labeling, respectively, quasi-momentum and band index, and the use of ν implicitly

6As a sidenote, we notice that this relies on the assumption of adiabatic motion of the atoms and therefore,
outside the very low temperature regime, this derivation should include corrections.

7Notice that the size of each site in a 1D lattice taken in the direction σ, for example, is λσ/2, which is
typically of the order of 400nm. For comparison, the typical size of the cells in solid state is of the order
of Ångströms.

8Extensions to other dimensions are straightforward. We use the 1D case here just as an illustration.
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2. Optical lattices, excited bands and all that

assumes the reduced scheme where quasi-momentum q ∈ [−π/d, π/d) varies in the first
Brillouin zone [33]. To each of the values of ν and q there is an associated energy, and in
general the relation between the free particle momentum and the quasi-momentum q appears
in the form of a complicated (transcendental) equation9. Nevertheless, the eigenstates of
Eq. (2.9) are plane waves (delocalized in the lattice) that experience a modulation due to
the lattice periodicity.

As an alternative to Bloch functions, a basis that is commonly used for describing parti-
cles interacting with periodic potentials is given by the Wannier functions [32]. They are
constructed in terms of the Bloch functions according to the prescription

wν,j(x) =
∑
q

e−iqRjΨν,q(x), (2.11)

where Rj labels the coordinates of the j-th site and the sum runs over the quasi-momenta
in the first Brillouin zone. The Wannier basis differs from the Bloch basis in two main
aspects [32]: First, the prescription given by Eq. (2.11) implies that each of the lattice sites
accommodates only one Wannier function with band index ν. Second, this is a site localized
basis labeled by the band index and the position in the lattice. Since Wannier functions
are not the eigenstates of Eq. (2.9), quasi-momentum is not a good quantum number to be
used as a label here. Nevertheless, Wannier functions at different sites satisfy the following
orthonormality condition in its quantum numbers∫

dxwν,j(x)wν′ ,i(x) = δνν′ δij . (2.12)

We will illustrate further properties of these systems by considering results obtained from
numerical diagonalization of the Mathieu equation for a particle in a sinusoidal potential,
Eq. (2.9), where

V (x) = V0 sin2(kxx), (2.13)

and V0 is the lattice amplitude.

The band structure in Fig. 2.1 immediately reveals that increasing values of V0 are associated
with larger energy gaps and band energies of smaller widths. This should be the case,
because the size of the energy gap is proportional to the absolute value of the reflection
coefficient in the barrier [33], which is larger for larger V0. In the same way, the width of
the band is proportional to the absolute value of the transmission coefficient [33], which
is smaller for larger values of V0

10. Furthermore, the narrowing down of the band widths
can be alternatively understood from the viewpoint of an effective mass, that is defined
from the inverse of the band curvature. Namely, flatter bands are related to heavier effective
masses and therefore reduced mobility in the lattice, whereas the contrary is valid for steeper
bands [33].

We compare samples of the Bloch and Wannier functions of the first and second bands in
Figs. 2.2, 2.3 and 2.4, for different values of V0, where the delocalized vs. localized character of

9This is already the case in the simplest example, of the Kronig-Penney problem with a repulsive potential
constructed from equally spaced δ-functions (see, e.g. [33]).

10For a more detailed discussion about how the transmission and reflection coefficients of the barrier are
related to the size of the energy gaps and energy widths, see Exercise 1 (f) and (g) of Chapter 8 of
Ashcroft and Mermin, Ref. [33].
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2. Optical lattices, excited bands and all that

Figure 2.1.: Band structure of a system with V0 = 0.5Er (blue), V0 = 5Er (red) and V0 = 17Er
(green). As discussed in the text, the widths of the bands are larger for smaller values of
the lattice amplitude. In addition, the energy gaps between the different bands increase
for increasing values of V0.

Figure 2.2.: (a) Real part of the Bloch functions of the first and (b) second bands for different values
of quasi-momentum q and for V0 = 5Er. Notice here that the Bloch function of the 2nd
band is strictly imaginary if q = 0.

the Bloch vs. Wannier functions can be immediately noticed. As for the Wannier functions,
increasing values of the potential amplitude V0 promote a faster decay from the position at
the minimum of the potential, yielding Wannier functions that are more localized at each
site. For completeness the probability density associated to each of these Wannier functions
is given in Fig. 2.5 (a) and (b).

8



2. Optical lattices, excited bands and all that

Figure 2.3.: Imaginary part of the Bloch functions of the first (in (a)) and second (in (b)) bands for
different values of quasi-momentum q and for V0 = 5Er. The parameters of the color
scheme in (b) are identical to the ones used in (a). In contrast to the result of Fig. 2.2,
here we notice that the 1st band Bloch function with q = 0 is strictly real. We point out
that there is an arbitrary phase to be fixed in the definition of the Bloch functions. Once
this phase is fixed, however, and say, the Bloch function of the first band with q = 0
is purely real, then the Bloch function in the second band with q = 0 will be purely
imaginary.

Figure 2.4.: Wannier functions of the first and second bands for systems with V0 = 0.5Er (green),
V0 = 5Er (red) and V0 = 17Er (blue). Notice that the Wannier functions are not positive
definite. This is necessary in order to satisfy the orthonormality relation of Eq. (2.12).

Figure 2.5.: Probability density of the first and second bands Wannier functions for systems with
V0 = 0.5Er (green), V0 = 5Er (red) and V0 = 17Er (blue).

9



2. Optical lattices, excited bands and all that

2.3. Meet the orbital states!

In the context of optical lattices, orbital states are site-localized states in ex-
cited energy bands [18]. The first excited bands form the p, whereas the second
excited bands form the d band. Accordingly, they have the associated p and d
orbitals [18].

In isotropic square and cubic lattices in 2D and 3D, respectively, excited bands have an
intrinsic degeneracy that gives rise to a degeneracy between the orbitals [18]. In particular,
orbital states are anisotropic in magnitude and in some cases also in parity [15]. In this
section, we characterize the properties of the systems in the p and d bands.

2.3.1. Orbital states in the harmonic approximation

In order to become more familiar with the physics in excited bands, we consider the system
in the harmonic approximation. This consists in approximating each well of the sinusoidal
potential with a harmonic potential, i.e., V (x) = sin2(kxx) ≈ k2

xx
2, and therefore exact solu-

tions are easily obtained and simple enough to expose properties of the physics in analytical
terms. We notice, however, that the harmonic approximation is justified only in very partic-
ular cases11 [21, 34] and that its quantitative predictions are otherwise very limited12 [21, 35].
Nevertheless, we use it here to construct an intuitive picture of the orbital states.

Let us then consider the eigenvalue problem in a 2D separable lattice13,

ĤΨ =

(
− ~2

2m
∂2
x + Vx sin2(kxx)− ~2

2m
∂2
y + Vy sin2(kyy)

)
Ψ = EΨ, (2.14)

where Vσ and kσ, σ = {x, y} are the potential amplitude and wave vector in the direction σ.
We also rescale the variables with k−1

y to obtain the dimensionless positions kyy → y
′

and

kyx→ x
′
, and with Eyr = ~2k2

y/2m to obtain dimensionless energies Ṽσ = Vσ/E
y
r , and expand

the potential around its minimum keeping only first order contributions. This yields,

Ĥ

Eyr
Ψ =

(
−∂2

x′
+ Ṽx

k2
x

k2
y

x
′2 − ∂2

y′2
+ Ṽyy

′2

)
Ψ. (2.15)

Since we are dealing with the case of a separable lattice, it is possible to find the solutions in
the x- and y- directions by solving each of the equations independently. We start by solving
the equation for y

′
, (

−∂2
y′

+ Ṽyy
′2
)

Ψ(y
′
) = εy′Ψ(y

′
), (2.16)

from where we identify the characteristic length of the oscillator y−4
0 = Ṽy. The ground, first

and second excited states, with corresponding energies ε0
y′

, ε1
y′

and ε2
y′

, are given by

φ0(y′) = N0(y0)e−y
′2/2y20 = N0(Ṽ −1/4

y )e−
√
Ṽyy′2/2, (2.17)

11The limit of very deep potential wells is required, for example.
12In fact, as we discuss later in greater details, the harmonic approximation can lead to misleading conclusions

in the many-body system.
13By separable lattice we mean that the dynamics of different directions is decoupled.
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2. Optical lattices, excited bands and all that

φ1(y′) = N1(y0)y′ e−y
′2/2y20 = N1(Ṽ −1/4

y )y′ e−
√
Ṽyy′2/2, (2.18)

and
φ2(y′) = N2(y0)(y

′2 − 1) e−y
′2/2y20 = N2(Ṽ −1/4

y )(y
′2 − 1) e−

√
Ṽyy′2/2, (2.19)

with the normalization factors

N0(z) =

(
1

π1/4z1/2

)
, (2.20)

N1(z) =

( √
2

π1/4z3/2

)
, (2.21)

and

N2(z) =

(
1

π1/2
(

3
4z

5 − z3 + z
)1/2

)
. (2.22)

The equations for x
′

are solved in the same way, but since the scaling has been taken with
respect to the dynamics in the y direction, the characteristic length of the oscillator is given
here by x−4

0 = Ṽxk
2
x/k

2
y. The expression of the wave-functions of the ground and excited

states, with energies ε0
x′

, ε1
x′

and ε2
x′

follow as

φ0(x′) = N0(x0)e−x
′2/2x20 = N0(Ṽ −1/4

x (kx/ky)
−1/2)e

−
√
Ṽxkx
ky

x′2/2
, (2.23)

φ1(x′) = N1(x0)x′ e−x
′2/2x20 = N1(Ṽ −1/4

x (kx/ky)
−1/2)x′ e

−
√
Ṽxkx
ky

x′2/2
, (2.24)

and

φ2(x′) = N2(x0)(x
′2 − 1) e−x

′2/2x20 = N2(Ṽ −1/4
x (kx/ky)

−1/2)(x
′2 − 1) e

−
√
Ṽxkx
ky

x′2/2
. (2.25)

With the expressions of the eigenfunctions at hand, we can now describe the energy levels
and eigenstates of the 2 dimensional system in the harmonic approximation. For simplicity
we consider from now on an isotropic lattice for which Ṽx = Ṽy and kx = ky. The true
ground state within this approximation has energy E0 = (ε0x′ + ε0y′) and its eigenfunction has
a Gaussian profile in both the x and y directions:

Ψ0(x′, y′) = N0(x0)N0(y0)e−x
′2/2x20−y′2/2y20 . (2.26)

p-orbital states in the harmonic approximation

The first excited state is doubly degenerate. It has energy given by E1 = (ε1x′+ε
0
y′) = (ε0x′+ε

1
y′)

and the corresponding eigenfunctions are

Ψx(x′, y′) = N1(x0)N0(y0)x′ e−x
′2/2x20−y′2/2y20 (2.27)

and
Ψy(x

′, y′) = N0(x0)N1(y0)y′ e−x
′2/2x20−y′2/2y20 , (2.28)

11



2. Optical lattices, excited bands and all that

Figure 2.6.: Comparison between the numerically obtained Wannier functions and the Wannier func-
tions in the harmonic approximation, Eqs. (2.17) and (2.19), for a 1D system with
V0 = 17Er (see discussion in the text).

respectively. These are the p-orbital states14! As can be verified, the different directions
are characterized by different parities, i.e., the spatial profile of the different orbitals are
odd in the direction of the label α, in which the wave-function has a node, and even in the
perpendicular direction. From here on, we denote the orbital states in the p band by pα,
with α referring to a spatial direction.

In Fig. 2.6 we compare the ground and first excited Wannier functions obtained from numeri-
cal diagonalization of the Mathieu equation with the ground and first excited states obtained
in the harmonic approximation. It illustrates the situation where V0 = 17Er, which repre-
sents a lattice with rather deep wells. This can be seen from the characteristic flatness of the
bands in Fig. 2.1, and the harmonic approximation is expected to give a good qualitative
picture of the system. In addition, in Fig. 2.7 we show the px and py orbitals obtained from
diagonalization of the Mathieu equation. Notice, however, the important difference that
the energy bands are not equally spaced in sinusoidal lattices, as will always be the case in
the harmonic approximation. This property has important consequences as we will discuss
later in Sec. 2.5, since it helps improving the stability in experimental realizations of the
many-body system in the p band [17].

Figure 2.7.: Left and right panels show the px- and the py-orbital states, obtained from diagonalization
of the Mathieu equation.

14These expressions are valid only in the harmonic approximation. The qualitative features, however, are
still valid in the general case.
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2. Optical lattices, excited bands and all that

Figure 2.8.: Left, center and right panels show the dx2 -, dy2- and the dxy-orbital states, obtained from
numerical diagonalization of the Mathieu equation.

d-orbital states in the harmonic approximation

We continue with the second excited state, which is triply degenerate in 2D. It has energy
given by E2 = (ε2x′ + ε0y′) = (ε0x′ + ε2y′) = (ε1x′ + ε1y′) and the corresponding eigenfunctions are
given, respectively, by

Ψx2(x′, y′) = N2(x0)N0(y0)(x
′2 − 1) e−x

′2/2x20−y′2/2y20 , (2.29)

Ψy2(x′, y′) = N0(x0)N2(y0)(y
′2 − 1)e−x

′2/2x20−y′2/2y20 (2.30)

and
Ψxy(x

′, y′) = N1(x0)N1(y0)x
′
e−x

′2/2x20−y′2/2y20 . (2.31)

Now meet the d-orbitals15! In analogy to the p-orbital system, from here on we use dx2 , dy2
and dxy to denote the states in the d band. As illustrated in Fig. 2.8, these wave-functions
are also labeled after the direction of the node, and the superscript refers to the existence of
two nodes. In particular, the dxy orbital has one node in both directions.

As a final remark, we notice that the use of the harmonic approximation might be very
dangerous when describing the system in the d band [36]. As shown in Fig. 2.9, the anhar-
monicity of the sinusoidal lattice is capable of breaking the three-fold degeneracy suggested
in analogy with the 2D harmonic oscillator, such that the dxy orbital has slightly higher
energy. The implications for the many-body system are studied in Sec. 3.2.

Figure 2.9.: The three d bands; Ex2(qx, qy), Ey2(qx, qy) and Exy(qx, qy) obtained from numerical
diagonalization of the Mathieu equation for the potential with amplitude Vx = Vy = 20Er.

15In the same way as for the p orbitals, although these expressions are only valid in the harmonic approxi-
mation, the qualitative features of the states remain valid in the general case.
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2. Optical lattices, excited bands and all that

2.4. From one to many: many-body systems in excited bands

In general terms, the dynamics of a gas of N atoms of mass m can be represented by a
Hamiltonian of the type

H =
N∑
i=1

(
p2
i

2m
− Vext(ri)

)
+ Vint({ri, rj}), (2.32)

where the first term describes single-particle contributions including effects of an external
potential Vext, and the second term describes interactions between the atoms - thereby
accounting for the effects of collective nature.

In the ideal scenario, Vint should include all interactions in the system, i.e., that appear from
the result of two-body collisions, three-body collisions and so on16. In real life, however, exact
solutions for problems involving interacting many-body quantum particles are known only
in very few or particular cases17. The way out, therefore, involves the use of approximations
that are capable of accounting not for all, but for all the relevant interactions required for a
good description of the experimental reality.

Recall that our interest is the physics of (many and also a few) interacting atoms in excited
bands of optical lattices. We therefore aim at describing systems of very cold and dilute
gases, where the atoms occupy the orbital states discussed in Sec. 2.4. By “very cold” we
mean that the temperatures considered are close to the absolute zero18. By “very dilute”
we mean that the distance between any two atoms fixed by n = N/V - where N is the
total number of particles and V the volume of the system - is very large19. In the lab, for
example, these systems are produced with densities20 of the order of 1015 atoms per cm3.
Under these circumstances, it is reasonable to truncate the interaction term to the two-body
part [38, 37].

Due to the characteristic low densities, the distances between the particles are always large
enough to justify the use of the asymptotic expression of the wave function of the relative
motion [38]. In addition, as a consequence of the low temperatures T , the relative momentum
corresponding to kinetic energies kBT , where kB is the Boltzmann constant, justifies that
the collisions are effectively described by s-wave scattering processes, that are completely
characterized by the corresponding phase shift [39]. At very low temperatures, however, the
phase shift is not the best parameter for characterizing the cross section of the scattering
processes.

The reason why this is the case can be illustrated21 by considering the (differential)
cross section σ of two particles in a state with relative momentum k and energy ~2k2/2µ,
where µ is the reduced mass:

dσ

dΩ
=

sin2(δ0(k))

k2
k→0−−−→ a2, (2.33)

16“Ambition is the last refugee of failure” - Oscar Wilde
17When it happens, its almost like finding a unicorn.
18Or much less than the bandwidth. The temperature is typically of the order of ∼ 1nK.
19Compared to the scattering length, as we discuss next.
20For comparison, the density of air at room temperature is ∼ 1.25 × 10−3g/cm3, the density of water is

1g/cm3 and the density of a white dwarf can be estimated as 1.3× 106g/cm3 [37].
21This argument is based on the discussion presented in Ref. [39].
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2. Optical lattices, excited bands and all that

with δ0(k) the phase shift and a a quantity with dimensions of length. Since at very
low temperatures lim k → 0, the presence of k2 in the denominator of Eq. (2.33) would
require that sin(δ0(k)) vanishes linearly for any value of the cross section [39].

The trick here is to use instead the scattering length a defined as

lim
k→0

k

sin(δ0(k))
≡ −1

a
, (2.34)

that is, up to the choice of a sign, exactly the same length parameter in Eq. (2.33). Now
this is a good quantity for parametrizing the low energy scattering cross section, for it can
also be further interpreted as the first term of the expansion in powers of k of the effective
range expansion [39],

k cot(δ0(k)) ≡ −1

a
+
r0

2
k2 + ..., (2.35)

where r0 is the so called effective range of the potential. In these terms, low energy scattering
processes can be characterized by only two parameters22, a and r0.

The values of a are determined with the standard scattering theory. Now assuming that a is
a known quantity, the Hamiltonian (2.32) is implemented in terms of an effective interaction
that we assume can capture the physics seen in the lab. We consider here that Vint(ri, rj)
describes short-range (contact) interactions, Vint = gδ(ri−rj), with coupling constant given
by g = 2π~2a/µ, where µ is the reduced mass of the two particles [31]. Accordingly, the
effective potential for two identical particles of mass m follows as

Vint(ri, rj) =
4π~2a

m
δ(ri − rj). (2.36)

In the language of second quantization, this can be further re-written with the field operators
Ψ̂(r) and Ψ̂†(r), that annihilate and create a particle of mass m at position r as

V̂int =
4π~2a

m

∫
dr′drΨ̂†(r′)Ψ̂†(r)δ(r−r′)Ψ̂(r)Ψ̂(r′) =

4π~2a

m

∫
dr′Ψ̂†(r′)Ψ̂†(r′)Ψ̂(r′)Ψ̂(r′).

(2.37)
If the system is composed of bosonic atoms, the operators satisfy the commutation relations
[Ψ̂(r), Ψ̂†(r′)] = δ(r − r′). If the atoms are fermions, then {Ψ̂(r), Ψ̂†(r′)} = δ(r − r′).
Therefore, the full expression of the Hamiltonian describing the weakly-interacting many-
body system is given by

Ĥ =

∫
dr′
{

Ψ̂†(r′)

[
−~2∇2

2m
+ V (r′)

]
Ψ̂(r′) +

Ũ0

2
Ψ̂†(r′)Ψ̂†(r′)Ψ̂(r′)Ψ̂(r′)

}
, (2.38)

where V (r′) accounts for the effects of external potentials superimposed to the system, and
the coupling constant Ũ0 = 4π~2a/m.

We will now expand the field operators in terms of the orbital states of the p and d bands
of the sinusoidal optical lattice23

Vlatt(r) =
∑
σ

Ṽσ sin2(σ
′
) (2.39)

22In fact, regardless of formal expressions, any two potentials that are characterized by the same s-wave
scattering length a and effective range interaction r0 will give rise to the same effective interaction.

23Since we will restrict the atoms to live in the corresponding band, we are also assuming the single-band
approximation.

15



2. Optical lattices, excited bands and all that

in 3D and 2D, respectively, and with σ the corresponding directions. We assume for the
moment that no other external potential is present in the system and therefore we take
V (r

′
) = Vlatt(r

′
) in Eq. (2.32).

In these terms, the expression of the field operators follows as

Ψ̂†(r) =
∑

α,j w
∗
α,j(r)â†α,j(r)

Ψ̂(r) =
∑

α,j wα,j(r)âα,j(r),
(2.40)

where â†α,j and âα,j create and annihilate an atom in an orbital state wα,j(r), taken here as

the lattice Wannier function in the j-th site of the lattice (j = (jx, jy, jz), jx, jy, jz ∈ N ).
We will use α ={x, y, z} whenever studying the p-band system with the pα-orbital states in
the 3D lattice; and α = {x2, y2, xy} whenever studying the d-band system in 2D.

As an additional point, let us stress here that the orbital states are not eigenstates of
the single-particle Hamiltonian. We illustrate this by considering the explicit expression
of the p-orbital wave-functions of a separable lattice, constructed with the site-localized
Wannier functions24, wν,j(α), with ν = 1, 2 and α a spatial direction25, that are given
by

wx,j(r) = w2,jx(x)w1,jy (y)w1,jz (z)

wy,j(r) = w1,jx(x)w2,jy (y)w1,jz (z)

wz,j(r) = w1,jx(x)w1,jy (y)w2,jz (z).

(2.41)

Now recall that the eigenstates of the single-particle Hamiltonian are Bloch functions
(see Eq. (2.10)), and that the relation between Bloch and Wannier functions is given by

wν,Rj(r) =
∑
q

e−iq·Rjφν,q(r),

where we use Rj = (xj , yj , zj) = (πjx, πjy, πjz) and q = (qx, qy, qz) is the index which
labels the quasi-momentum.

2.4.1. The many-body system in the p band

The bosonic case

After inserting (2.40) in Eq. (2.38) and truncating the kinetic term to its leading contribution
- the tight-binding approximation; and the interaction processes to happen only onsite, the
Hamiltonian describing bosonic atoms in the p band of a 3D optical lattice is given by

ĤB = Ĥ0 + Ĥnn + Ĥnn′ + ĤOD. (2.42)

The first term is the free Hamiltonian

Ĥ0 = −
∑
σ,α

∑
〈i,j〉σ

tασ(â†α,iâα,j + â†α,j âα,i), (2.43)

24Which themselves are also not eigenstates of the single-particle Hamiltonian.
25Our notation here assumes that ν is the index which labels the energy band from which the Wannier

function is computed.
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that describes the nearest neighbour tunneling of atoms in the pα-orbital state, α = {x, y, z},
in the direction σ = {x, y, z}. Notice the absence of tunneling events with change of orbital
state: Such processes are excluded by parity selection rules26.

The second and third terms of Eq. (2.42) describe different types of density-density interac-
tions:

Ĥnn =
∑
α

∑
i

Uαα
2
n̂α,i(n̂α,i − 1), (2.44)

beween atoms in the same orbital state, with n̂α,i = â†α,iâα,i; and

Ĥnn′ =
∑

α,β,α6=β

∑
i

Uαβn̂α,in̂β,i, (2.45)

β = {x, y, z}, between atoms in different orbital states.

Finally, the last term

ĤOD =
∑

α,β,α 6=β

∑
i

Uαβ
4

(â†α,iâ
†
α,iâβ,iâβ,i + â†β,iâ

†
β,iâα,iâα,i) (2.46)

describes interactions that transfer atoms within different types of orbital states.

The expression for the tunneling amplitude in the direction σ is given in terms of the orbital
states by

tασ = −
∫
drw∗α,i(r)

[
−∇2 + V (r)

]
wα,j+1σ(r), (2.47)

and due the different curvatures of the excited bands in the directions perpendicular (⊥)
and parallel (‖) to the label of the orbital wave functions, t⊥t‖ < 0, where t⊥ and t‖ refer
to the tunnelings in the corresponding directions. In the same way, the expression of the
interaction coefficients is given by

Uαβ = U0

∫
dr |wα,j(r)|2|wβ,j(r)|2. (2.48)

As a final remark we recall that in the bosonic case [âα,i, â
†
β,j ] = δαβδij .

Symmetries of the many-body bosonic system in the p band

Because each term in Eq. (2.42) has the same number of creation and annihilation operators,
the Hamiltonian is clearly invariant under global U(1) transformations. This reflects the
overall conservation of particle number in the system, and therefore

[Ĥ,
∑
j

(nxj + n̂yj + n̂zj)] = 0. (2.49)

Here, however, the key ingredient that distinguishes the dynamics in the p band from the
systems in the ground band, is the presence of processes that transfer atoms between dif-
ferent orbital states, Eq. (2.46). Although a similar term is present in the Hamiltonian

26In the separable lattices considered here. This needs not to be the case in different setups.
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describing spinor Bose-Einstein condensates, its relative strength compared to other pro-
cesses is typically very small, such that these contributions can be safely neglected [27]. This
is not the case for the p-band system, because the coupling constant of orbital changing
processes is exactly the same as the one of mixed density-density interactions defined in
Eq. (2.45). Furthermore, the presence of orbital changing processes implies that instead of
a U(1) × U(1) × U(1) global symmetry, the dynamics of bosonic atoms in the p band has
a U(1) × Z2 × Z2 global symmetry, and therefore total population of each of the orbital
states is conserved only modulo 2 [18]. This has also fundamental implications on the estab-
lishment of long-range phase coherence in the system, because the presence of Z2 (discrete)
symmetries violate the assumptions of the Hohenberg-Mermin-Wagner theorem [40, 41]. As
a consequence, this system is not prohibited of (long-range) ordering even in low dimensions,
and therefore the existence of a true condensate in the thermodynamic limit is not precluded
for bosons in the p band.

We also notice that in isotropic lattices27 transformations of the type

âα,j 
 ±âβ,j (2.50)

leave the Hamiltonian invariant for any permutation of α and β. Moreover, these lattices
feature additional Z2 symmetries, associated to the swapping of any two orbital states,
followed by a change of indices in the lattice, i.e.,

âα,j → âβ,j′

âβ,j → âα,j′ ,
(2.51)

where the j = (jx, jy, jz) indices become jα → jβ and jβ → jα in j
′
.

Let us now take a closer look at the symmetries of the 2D lattice by considering the isotropic
case, where Uxx = Uyy, Uxy = Uyx, tx‖ = ty‖ and tx⊥ = ty⊥. Here the rotation â

′
x,j

â
′
y,j

→
 cos θ − sin θ

sin θ cos θ

 âx,j

ây,j

 (2.52)

leaves the Hamiltonian invariant for different values of θ = (0, π/2, π) ± kπ, where k ∈ Z.
This is not the case in asymmetric lattices, however, where even under the condition of orbital
degeneracy the tunneling coefficients tα‖ 6= tβ‖ , t

α
⊥ 6= tβ⊥. As a consequence, transformations

of the type âx,j → ây,j , ây,j → âx,j do not leave the Hamiltonian unaltered.

For asymmetric lattices there is a particular case for which the system contains an
additional SO(2) symmetry [34]. This corresponds to the harmonic approximation in
the limit of vanishing tunneling28, where Uαα = 3Uαβ = U . As pointed out in Ref. [34],
this special case is better studied with the angular-momentum like annihilation operators
â±,j = (âx,j ± iây,j)/

√
2, in terms of which the local part of the Hamiltonian can be

written as [34]

Ĥj = U
2

[
n̂j
(
n̂j − 2

3

)
− 1

3

]
+ δ

[
(n̂j − 1)(L̂+,j + L̂−,j)

]
+λ
[
1
4 L̂

2
z,j − 3(L̂+,j − L̂2

−,j)2 − n̂j
]
,

(2.53)

27Where tα‖ = tβ‖ and tα⊥ = tβ⊥ for α 6= β and Uxx = Uyy = Uzz with again all the Uαβ equal for α 6= β.
28This is only valid in the case of separable lattices.
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where U = (Uxx +Uyy)/2, δ = (Uxx −Uyy)/2 and λ = Uxy −U/3. The density operator

can be expressed as n̂j = â†+,j â+,j + â†−,j â−,j , and the angular momentum operators

are L̂z,j = â†+,j â+,j − â
†
−,j â−,j and L̂±,j = â†±,j â∓,j/2. It follows from the properties

of the harmonic oscillator eigenstates that in the harmonic approximation λ = δ = 0
for any lattice configuration, and therefore [Ĥj , L̂z,j ] = 0 [34]. This is not the case
for sinusoidal optical lattices, for there λ, δ 6= 0 destroys the axial symmetry, and
consequently [Ĥj , L̂z,j ] 6= 0 [34]. Notice, however, that rather from being of geometric
character, this dynamical enhancement [42] of the SO(2) symmetry appears entirely due
to the specific form in which the eigenvalue problem can be rewritten in the harmonic
approximation29.

The fermionic case

Due to the Pauli blockade preventing the occupation of the same orbital state by more than
one particle, fermionic atoms in the p band behave according to

ĤF = Ĥ0 + Ĥnn′ , (2.54)

with Ĥ0 and Ĥnn′ defined in Eqs. (2.43) and (2.45), respectively. Here, however, {âα,i, âβ,j} =
δαβδij . The expressions for the tunneling elements and the various coupling constants are
the same as in the bosonic case, defined in Eqs. (2.47) and (2.48).

Symmetries of the many-body fermionic system in the p band

Since Eq. (2.54) contains only number operators, the Hamiltonian of the fermionic system in
the p band has the U(1)×U(1)×U(1) symmetry. Accordingly, in addition to a global U(1)
transformation, associated to conservation of total number in the system, it also conserves
the number of particles in each of the orbital states.

“To P or not to P? (bands!)”
—William Shakespeare. Adapted from the tragedy of Hamlet.

2.4.2. The many-body system in the d band

We obtain the many-body Hamiltonian describing bosonic atoms in the d band by following
the same procedure adopted for treating the p-band system: We expand the field operators,
Eq. (2.40), in terms of the orbital states of the d band for α = {x2, y2, xy}30 , and assume
the tight-binding and single-band approximations. The result is [36]

Ĥ = Ĥd + Ĥxy, (2.55)

where the first term describes the processes involving only the dx2- and dy2- orbital states,
while the second term contains all the processes that involve the dxy orbital. The two parts of

29This is similar to the conservation of the Laplace-Runge-Lenz vector in Kepler problems (see e.g. Ref. [42]).
30We denote the creation and annihilation operators for the states in the d band by d̂†α and d̂α.

19



2. Optical lattices, excited bands and all that

the Hamiltonian can be decomposed further, according to the different types of processes:

Ĥd = Ĥd
0 + Ĥd

t + Ĥd
nn + Ĥd

da + Ĥd
od (2.56)

and
Ĥxy = Ĥxy

0 + Ĥxy
t + Ĥxy

nn + Ĥxy
da + Ĥxy

od . (2.57)

The first terms in each of these equations describe the onsite energies of the different orbitals
Eα and Exy, with α = {x2, y2},

Ĥd
0 =

∑
α

∑
i

Eαn̂α,i, (2.58)

and
Ĥxy

0 =
∑
i

Exyn̂xy,i. (2.59)

The second terms describe the tunneling processes,

Ĥd
t = −

∑
σ,α

∑
〈i,j〉σ

(
tασ d̂
†
α,id̂α,j +H.c.

)
(2.60)

and
Ĥxy
t = −

∑
σ

∑
〈i,j〉σ

tpd̂†xy,id̂xy,j . (2.61)

Notice here that while atoms in the dx2 and dy2 orbitals are characterized by anisotropic
tunneling in the directions parallel (‖) and perpendicular (⊥) to the nodes of the orbital
state, the dxy-orbital atoms tunnel in both directions with the same magnitude, tp. The
expressions of the tunneling amplitudes are given below:

tασ = −
∫
drw∗α,i(r)

[
−∇2 + V (r)

]
wα,i+1σ(r)

tp = −
∫
drw∗xy,i(r)

[
−∇2 + V (r)

]
wxy,i+1σ(r).

(2.62)

In addition, as opposed to the situation in the p band, the parallel and perpendicular tun-
nelings in the d band satisfy tα‖ t

α
⊥ > 0. Furthermore, tp < 0.

We turn now to the interacting part of the Eq. (2.55). It contains the density-density
interactions, both between atoms in the same orbital, and in different orbital states,

Ĥd
nn =

∑
α

∑
i

Uαα
2
n̂α,i (n̂α,i − 1) +

∑
α,β,α 6=β

∑
i

Uαβn̂α,in̂β,i (2.63)

and

Ĥxy
nn =

∑
i

Upp
2
n̂xy,i (n̂xy,i − 1) +

∑
α

∑
i

2Upαn̂xy,in̂α,i; (2.64)

interactions that move population between the orbital states in pairs31,

Ĥd
od =

∑
α,β,α6=β

∑
i

Uαβ
4

(
d̂†α,id̂

†
α,id̂β,id̂β,i + d̂†β,id̂

†
β,id̂α,id̂α,i

)
(2.65)

31These are the same orbital-changing interactions of the p-band system.
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and

Ĥxy
od =

∑
α

∑
i

Upα
2

(
d̂†xy,id̂

†
xy,id̂α,id̂α,i + d̂†α,id̂

†
α,id̂xy,id̂xy,i

)
+
∑
β 6=α

Unααβ d̂
†
α,id̂

†
β,id̂xy,id̂xy,i


(2.66)

and finally, the density-assisted processes that also transfer atoms, albeit without conserving
any particle number apart from the total population, between the different orbital states:

Ĥd
da =

∑
α,β,α 6=β

∑
i

Unpαβ

(
d̂†α,in̂α,id̂β,i + d̂†β,in̂α,id̂α,i

)
(2.67)

and
Ĥxy
da =

∑
α,β,α6=β

∑
i

2Unpαβ d̂
†
α,in̂xy,id̂β,i. (2.68)

The various coupling constants are given by

Uαβ =
U0

2

∫
dr |wα,i(r)|2|wβ,i(r)|2, α = (x, y, p), for (x2, y2, xy),

Unααβ =
U0

2

∫
dr |wα,i(r)|3|wβ,i(r)|, α = (x, y), for (x2, y2),

Unpαβ =
U0

2

∫
dr |wxy,i(r)|2|wα,i(r)||wβ,i(r)|, α = (x, y), for (x2, y2).

(2.69)

Symmetries of the many-body bosonic system in the d band

Since each term in Eq. (2.55) contains the same number of operators and complex conjugates,
the system is invariant under a global U(1) phase transformation that is associated to the
overall conservation of number in the system. As opposed to the bosonic system in the p band,
however, the presence of density-assisted processes in the d band breaks the conservation of
number modulo 2 in each of the orbital states. Therefore, the only symmetry left is the
Z2 symmetry associated to the swapping of the dx2 and dy2 orbital states, followed by the
interchange of spatial indices. More explicitly, the many-body Hamiltonian (2.55) is invariant
under the transformation

d̂x2,j → d̂y2,j′

d̂y2,j → d̂x2,j′ ,
(2.70)

where j = (jx, jy) and j
′

= (jy, jx). In particular, since the tp tunneling amplitude is

isotropic in the different directions, d̂xy,j = d̂xy,j′ .

“To D or ..? “
—Re-adapted.

2.5. How to get there?

The novel features of the dynamics in excited bands, and in particular, the possibility of
probing orbital selective phenomena in optical lattices [17], stimulated considerable experi-
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mental effort in recent years for exploring the physics beyond the ground band. Although
nowadays we are provided with different techniques [43, 44] for loading atoms to higher
bands, in this section we restrict the discussion to experiments with bosons, and to the ones
of greatest relevance to the lattice configurations that are covered in this thesis.

Loading atoms to the p band - the experiment of Müller et. al.

As reported in the experiment of Müller et. al. [17], bosonic atoms32 can be loaded from the
Mott insulator phase in the s band to the p band of optical lattices with stimulated Raman
transitions.

The idea here is to use the interaction of a two-level atom with the laser light to couple
different vibrational levels of a sinusoidal and separable 3D lattice potential. Deep in the
Mott insulator phase, single sites can be approximated by harmonic potentials, and different
vibrational levels in this potential correspond to the different bands of the optical lattice.

To illustrate how this happens, consider a Raman coupling between electronic atomic states of
87Rb. These are two-photon processes where the two levels are coupled with an intermediate
virtual state, far detuned from all the other states of the system [17]. Because of this
intermediate coupling, implementation of Raman transitions requires the use of two different
lasers, whose corresponding wave vectors we denote here by kL1 and kL2 . In addition, since
the photons carry momentum, this will also couple the vibrational levels that we call |1〉 and
|2〉, with a matrix element given by

Ω1Ω∗2
δ
〈2|ei(kL1

−kL2
).x|1〉. (2.71)

Ωi are the Rabi frequencies between the |i〉 states, i = 1, 2 with another far detuned aux-
iliary state of this system, say |aux〉, and δ is the detuning between |aux〉 and the virtual
intermediate state.

Now recall the discussion on Sec. 2.1, where in the regime far off resonance the probability
of transitions between the states of the two-level system are time dependent and given by
Eq. (2.4). By selecting a pulse with the appropriate time, and the laser wave vector with
the appropriate configuration33, it is then possible to transfer population from the ground
to the excited vibrational level in a particular direction [29]. In other words, the coupling
here is between the different orbital states!

With use of these techniques, Müller et. al. experimented with atoms in the p band of 1D,
2D and 3D (separable) optical lattices. The main results are summarized here:

(i) Long lifetimes: Atomic population was reported to survive in a metastable state in the
excited band with considerable long lifetimes, of the order of 10-100 times larger than
the characteristic scale for tunneling in the lattice. The lifetimes depend mainly on two
factors, namely the atomic density, and the depth of the lattice sites.

32Fermionic atoms can be promoted to the p band by a different process, which is based on full occupation
of the states in the s band in such a way that the next atoms are restricted to occupy the excited band.

33That is, a pulse that couples the two states in different directions of the optical lattice.
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(ii) Decay channels: The reason why the lifetimes in the p band are affected both by the
atomic density and the depth of the lattice sites is because the main decay channel
stems from atom-atom collisions. Therefore the larger the densities, the larger the
probability of atomic collisions. In the same way, the increased rate of tunneling in the
limit of shallower potential wells increases the probability of encounters between two
atoms, and consequently, the probability of atomic collisions. In addition, we notice
that the anharmonicity of the sinusoidal lattices prevents the occurence of first order
processes in which the energy of a state of two atoms in the p band is resonant with
the energy of a state with one atom in the s and the other in the d band. Although
this increases the stability of the system in the p band, we remark that higher order
processes can still contribute to the decay of population from the excited band.

(iii) Establishment of coherence: the authors found that by changing the parameters of the
system, i.e., by lowering the lattice such as to reach the regime of the superfluid phase,
the system exhibited a state with long-range coherence at nonzero quasi-momentum.
This observation was based on time of flight experiments, where the momentum distri-
bution in the lattice was recorded. In particular, for specific conditions of hold times
it was possible to notice a π phase difference in between neighbouring sites in the
directions parallel to the label of the orbital wave functions.

We will address experimental considerations about many-body systems in the p band in
Sec. 5.2.2, where the techniques used in this experiment are extended for further manipulation
of the orbital states.

Going even higher - a brief comment regarding experiments in the d band

The possibility of preparing atoms in the d band with 99% fidelity has been recently reported
in Ref. [44]. This realization is based on the use of a standing-wave pulse, for instantaneously
switching an optical lattice on and off. This induces transitions between states of definite
quasi-momentum in different bands that are allowed by selection rules. Starting from the
ground-state of the system with the lattice switched off, for example, it is possible to prepare
superpositions of states at even bands s, d, g... Transitions between the states of odd bands
are also possible, with the use of a moving lattice.

Although this experimental scheme is not suitable for promoting atoms to the p band from
the ground-state of a system without the lattice, the lifetime on the d band is quite long,
of the order of µs. As we discuss further in Sec. 5.4, this opens great opportunities in the
context of quantum simulations.
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harmonic approximation

For further reference, we compute here the various coupling constants in the harmonic ap-
proximation. As discussed before, under this assumption the Wannier functions are taken
as Hermite polynomials, and therefore (2.48) and (2.47) can be obtained from computation
of simple Gaussian integrals. Here

Uxx = U0

∫
dx

( √
2

π1/4x
3/2
0

)4

x4 e−2x2/x20

∫
dy

(
1

π1/4y
1/2
0

)4

e−2y2/y20

= U0

( √
2

π1/4x
3/2
0

)4
3

4

√
π

25/2
x5

0

(
1

π1/4y
1/2
0

)4√
π

2
y0 = U0

(
3

8π

1

x0y0

)
.

(A.1)

Analogous calculation yields Uyy = U0

(
3

8π
1

x0y0

)
.

We now compute Uxy:

Uxy = U0

∫
dx

( √
2

π1/4x
3/2
0

)2

x2 e−x
2/x20

(
1

π1/4x
1/2
0

)2

e−x
2/x20×∫

dy

( √
2

π1/4y
3/2
0

)2

y2 e−y
2/y20

(
1

π1/4y
1/2
0

)2

e−y
2/y20

= U0

∫
dx

( √
2

π1/2x2
0

)2

x2e−2x2/x20

∫
dy

( √
2

π1/2y2
0

)2

y2e−2y2/y20

= U0

(
1

8π

1

x0y0

)
,

(A.2)

from where it follows that Uxx = Uyy = 3Uxy. Notice, however, that the relation Uαα/Uαβ =
3 is only true in the harmonic approximation, and that this is the case regardless of the wave
vectors of the lattice kx and ky. In fact, it is very surprising that the coupling constants
in the harmonic approximation do not even depend on the values of the lattice vector, but
only on the lattice amplitudes Vx and Vy

1 [34]. This is not the case, however, when the
Hamiltonian parameters are computed with use of the lattice Wannier functions.

Now according to Eq. (2.47), we use Eqs. (2.27) and (2.28) to compute the tunneling coeffi-

1In the harmonic approximation this happens because the degeneracy condition fixes the ratio kx/ky.
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A. p-band Hamiltonian parameters in the harmonic approximation

Figure A.1.: Comparison between the values of the couplings obtained from analytical and numerical
computations as a function of V . It is shown in (a) that the harmonic approximation
fails to reproduce the results obtained numerically for the tunneling coefficients when
tunneling occurs in the direction of the node. In (b) we show the results for the interac-
tion coefficients. In particular the estimates obtained from the harmonic approximation
are always larger than the values of the couplings computed numerically.

cients as

−txx =

( √
2

π1/4x
3/2
0

)2

Vx

∫
dxx(x+ d) sin2 x e−x

2/2x20e−(x+d)2/2x20

+

( √
2

π1/4x
3/2
0

)2 ∫
dx

d

dx
(xe−x

2/2x20)
d

dx

(
(x+ d)e(x+d)2/2x20

)
.

(A.3)

d is used here as the lattice constant, and we have already used that the integral in the
y-direction yields 1. In the same way,

−txy =

(
1

π1/4y
1/2
0

)2

Vy

∫
dy sin2 y e−y

2/2x20e−(y+d)2/2y20

+

(
1

π1/4y
1/2
0

)2 ∫
dy

d

dy
e−y

2/2y20
d

dy
e−(y+d)2/2y20 .

(A.4)

The expressions for tyx and tyy are obtained by making x→ y and y → x with x0 → y0 and
y0 → x0.
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Figure A.2.: Ratio Uxx/Uxy for different values of the amplitude of the optical potential. Notice
here that Uxx/Uxy is always larger than 3 for numerical computations with the lattice
Wannier functions.

26



3. General properties of the bosonic system
in the p and in the d bands

Since the majority of topics covered in this thesis are focused on the properties of many-
body systems with bosons, we use this chapter to discuss general features of the bosonic
case in more details. General properties of the fermionic system will be discussed whenever
required.

The discussion will start with the system in the p band, with special emphasis on the mean-
field formalism that is used to characterize the properties of the superfluid phase of the
confined system in Chapter 4. This is the content of Sec. 3.1, where we also include an
overview of the results of Ref. [21], which studied p-orbital bosons with homogeneous density
in the lattice. Next, in Sec. 3.2, we characterize the superfluid phase of the bosonic system
in the d band. This is part of the material of Preprint II, which contains the first theoretical
discussion of d-orbital bosons.

3.1. p-orbital bosons from a mean-field viewpoint

Mean-field techniques provide an efficient first tool for investigating effects of collective nature
in systems of interacting particles [45]. At this level of description, the system’s symmetries
become key ingredients, and the collective properties are characterized by the order param-
eters that encode the relevant degrees of freedom in the phases with broken symmetry [45].
This approach has been proven very successful in the study of the weakly interacting Bose
gas [37], and will be adopted here to characterize the properties of the superfluid phase of
bosonic atoms in the p band. The method used proceeds with the following program1:

(i) We will first obtain a mean-field version of the many-body Hamiltonian with use of the
coherent-state ansatz;

(ii) With the mean-field Hamiltonian at hand, we construct the corresponding Lagrangian,
and consider independent variations with respect to the relevant degrees of freedom.
This yields the equations of motion for the order parameter;

(iii) In the last step we will propagate the Euler-Lagrange equations in imaginary time to
obtain the configuration of the order parameters which minimizes the energy.

1As will become clear along the text, this approach is equivalent to analysis of the saddle-point solution of
the path integral of Eq. (2.42).
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We will implement this routine by first considering the normal ordered version of Eq. (2.42),
where we replace the operators âα,j with the complex numbers ψα,j . This attributes a
coherent state at each site,

|Ψ〉 =
∏
j

|ψ〉j =
∏
j

|ψx,j , ψy,j , ψz,j〉j (3.1)

such that âα,j |Ψ〉 = ψα,j |Ψ〉. However, since the product form of Eq. (3.1) cannot capture
effects of correlations between neighbouring sites, this is used with self-consistent equations
for obtaining the solutions of the problem in a self-consistent fashion.

We then continue with the expression of the the single site many-body wave function in the
Fock basis

|Ψ〉j = exp

(
−
|ψx,j |2 + |ψy,j |2 + |ψz,j |2

2

) ∑
nx,ny ,nz

ψnxx,jψ
ny
y,jψ

nz
z,j√

nx!ny!nz!
|n〉j , (3.2)

where |n〉j = |nx, ny, nz〉j represents the state with nx atoms in the px orbital, ny atoms in
the py orbital and nz atoms in the pz orbital at the site j. Since the onsite order parameter
in this language is the coherent state ψα,j = 〈Ψ|âα,j |Ψ〉, which clearly does not preserve
the number of particles2, this is used to describe the phase with broken U(1) symmetry.
Furthermore, we use it to express the full onsite order parameter, containing the onsite
spatial dependence, by using the expansion of the annihilation operator (2.40) in terms of
the Wannier functions introduced in Sec. 2.1:

ψj(r) ≡ 〈Ψ̂j(r)〉 =
∑
α

wα,j〈âα,j〉. (3.3)

The behavior of the order parameter ψα will be described from the equations of motion
derived from independent variation of the Lagrangian

L =
∑
α

∑
j

i

2

[
ψ∗α,j

d

dt
ψα,j − ψα,j

d

dt
ψ∗α,j

]
−HMF , (3.4)

with respect to ψα,j and ψ∗α,j . The mean-field Hamiltonian is given by3

HMF = −
∑
α,σ

∑
〈i,j〉σ

tαijψ
∗
α,iψα,j +

∑
α

∑
j

Uαα
2
nα,jnα,j +

∑
α,β,α 6=β

∑
j

Uαβnα,jnβ,j

+
∑

α,β,α6=β

∑
j

Uαβ
4

(
ψ∗α,jψ

∗
α,jψβ,jψβ,j + ψ∗β,jψ

∗
β,jψα,jψα,j

)
,

(3.5)

where the density of the pα-orbital state is given by nα,j = |ψα,j |2 and normalization was
imposed in the whole lattice as

N = Nx +Ny +Nz =
∑
j

(
|ψx,j |2 + |ψy,j |2 + |ψz,j |2

)
, (3.6)

with N the total number of atoms.

2In fact, number fluctuations computed on coherent states follow a Poissonian distribution [46].
3Recall that the coherent-state expectation value is carried out with the normal-ordered version of Hamil-

tonian (2.42).
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3. General properties of the bosonic system in the p and in the d bands

We are now ready to write the Euler-Lagrange equations for the order parameters,

−i
∂ψx,j
∂t

= −
∑

σ∈{x,y,z}

txσ(ψx,j+iσ − 2ψx,j + ψx,j−1σ)

+(Uxx|ψx,j |2 + (Uxy + Uyx)|ψy,j |2 + (Uxz + Uzx)|ψz,j |2)ψx,j

+

(
Uxy + Uyx

2

)
ψ2
y,jψ

∗
x,j +

(
Uxz + Uzx

2

)
ψ2
z,jψ

∗
x,j

−i
∂ψy,j
∂t

= −
∑

σ∈{x,y,z}

tyσ(ψy,j+iσ − 2ψy,j + ψy,j−1σ)

+(Uyy|ψy,j |2 + (Uxy + Uyx)|ψx,j |2 + (Uyz + Uzy)|ψz,j |2)ψy,j

+

(
Uxy + Uyx

2

)
ψ2
x,jψ

∗
y,j +

(
Uzy + Uyz

2

)
ψ2
z,jψ

∗
y,j

(3.7)

−i
∂ψz,j
∂t

= −
∑

σ∈{x,y,z}

tzσ(ψz,j+iσ − 2ψz,j + ψz,j−1σ)

+(Uzz|ψx,j |2 + (Uxz + Uzx)|ψx,j |2 + (Uyz + Uzy)|ψy,j |2)ψz,j

+

(
Uxz + Uzx

2

)
ψ2
x,jψ

∗
z,j +

(
Uyz + Uzy

2

)
ψ2
y,jψ

∗
z,j ,

that correspond to a set of coupled (discrete) Gross-Pitaevskii equations, one for each of the
pα orbitals.

In the next step, Eqs. (3.7) are propagated (numerically) in imaginary time with a trial initial
function. This is the last part of the program and the one which leads to the configuration
of the order parameter at the global energy minimum.

To illustrate how this procedure works [47], let us consider the Schrödinger equation

Ĥψ = Eψ such that the wave function ψ evolves in time according to ψ(t) = e−iĤtψ(0),
where we used ~ = 1. Writing ψ in the basis of its energy eigenstates, ψ =

∑
n cnφn,

with cn = 〈ψ|φn〉,
ψ(t) =

∑
n

cne
−iEntφn,

where En corresponds to the n-th energy level of the system. Now using t→ iτ , with

ψ(τ) =
∑
n

cne
−Enτφn,

the overlap between the ground state with the ψ(τ) propagated in imaginary time, and
after a long propagation time, is given by

〈ψ(τ)|c0φ(τ)〉 → lim
τ→∞

c20e
−2E0τ

c20e
−2E0τ +

∑
n=1 c

2
ne
−2Enτ

= 1

Therefore, in the limit of τ → ∞, ψ(τ) will converge to the true ground state of the
system, as long as the overlap between these states is non-vanishing. For finite τ , the
corrections appear as

ψ(τ) = c0e
−E0τφ(0) +O(e−τ(E1−E0)).
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3. General properties of the bosonic system in the p and in the d bands

This method can also be applied to the non-linear system described by Eqs. (3.7), but
in this case propagation has to be carried out self-consistently.

In the simpler cases, as e.g., when atomic population is homogeneously distributed in the
lattice4, much of the behavior of the system can be alternatively understood from direct
study of Eq. (3.5). Since the order parameters are complex numbers, say

ψα,j = eiθα,j |ψα,j |, (3.8)

full characterization of the configuration with minimum energy involves knowledge on both
the phases and densities5. In the situation of equal density, however, we are only left with
analysis of the phases.

From the non-interacting part of the mean-field Hamiltonian

H0
MF = −

∑
α,σ

∑
〈i,j〉σ

tασψ
∗
α,iψα,j = −2

∑
α,σ

∑
〈i,j〉σ

tασ |ψα,i||ψα,j | cos(θα,j − θα,i), (3.9)

we immediately identify that tunneling processes couple the phases of the onsite order pa-
rameters, within the same orbital state, at neighbouring sites. As discussed in Sec. 2.4, since
tα‖ < 0 and tα⊥ > 0, these processes minimize energy by imposing a stripped configuration to
the phases along the lattice. In fact, the phase of the pα-orbital state has values in the lattice
that satisfy θα,j = θα(jx, jy, jz)±π modulo (jα, 2). Therefore, from tunneling contributions,
the order parameters at neighbouring sites are set to exhibit the same phase in the directions
perpendicular to the label of the orbitals, while in the parallel directions they exhibit a π
phase difference.

Let us now consider the interacting part of the mean-field Hamiltonian. Substitution of (3.8)
in the terms describing density-density interactions lead to

H(j)
nn =

Uxx
2
|ψx,j |4 +

Uyy
2
|ψy,j |4 +

Uzz
2
|ψz,j |4

+2Uxy|ψx,j |2|ψy,j |2 + 2Uxz|ψx,j |2|ψz,j |2 + 2Uyz|ψy,j |2|ψz,j |2.
(3.10)

Since (2.44) and (2.45) contain only number operators, this term is phase independent. This
is not the case, however, for the processes describing the transferring of population between
different orbitals,

H
(j)
OD = Uxy|ψx,j |2|ψy,j |2 cos(2(θx,j − θy,j)) + Uxz|ψx,j |2|ψz,j |2 cos(2(θx,j − θz,j))

+Uyz|ψy,j |2|ψz,j |2 cos(2(θy,j − θz,j)),
(3.11)

where the order parameters are required to satisfy a specific onsite phase-locking. In what
follows, we discuss the cases of the two- and three-dimensional lattices separately.

4That is, when |Ψα,i| = |Ψβ,i|.
5This discussion follows Ref. [21] and Paper I.
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3. General properties of the bosonic system in the p and in the d bands

Figure 3.1.: Schematic representation of phase ordering of the different orbital states order parame-
ters. Left pannel: The direction of the arrows are used here to define an angle. Black and
red arrows describe θx,j and θy,j , respectively. Notice the π/2 phase difference between
θx,j and θy,j , that is required for minimizing the onsite energy of the mean-field Hamil-
tonian Eq. (3.12). In the right pannel we illustrate the vortex/anti-vortex structure at
different lattice sites.

3.1.1. The two-dimensional lattice

In the two-dimensional case, the phases between the px and py orbitals are locked with a
π/2 phase difference. This can be easily noticed from the relation

H
(j)
FD 2D

= Uxy|ψx,j |2|ψy,j |2 cos(2(θx,j − θy,j)), (3.12)

which is minimized for θx,j − θy,j = ±π/2 (Uxy > 0). When this is combined with the
stripped pattern imposed by the tunneling contributions, the phases of the order parameters
become constrained as illustrated in Fig. 3.1.

Further properties of this system can be characterized from the expression of the full onsite
order parameter defined in (3.3). Writing its explicit dependence on the orbital states wave-
functions [35],

ψj(r) = ψx,jwx,j(r) + ψy,jwy,j(r) (3.13)

and using the condition of π/2 phase difference between the two orbitals, we obtain

ψj(r) = |ψx,j |wxj(r)± i|ψy,j |wy,j(r). (3.14)

Four lessons can be learnt from this expression: First, that the ± sign alternates between
neighbouring sites, defining a staggered configuration for the onsite current flowing between
the condensates in the px and py orbitals. Second, that the phase locking of Eq. (3.14) en-
forces the density |ψj(r)|2 to be maximally spread on the sites, which additionally minimizes
the interaction energy. Third, that the complex character of the order parameter yields a
lowest energy state with non-zero angular momentum. Finally, the fourth lesson we learn
is that since the Wannier functions satisfy the orthonormality conditions (2.12), the onsite
order parameter can be interpreted as a spinor with the form

ψj =

[
|ψx,j |
±i|ψy,j |

]
, (3.15)
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3. General properties of the bosonic system in the p and in the d bands

where the basis states contain all the spatial dependence of the orbital wave-functions wx,j(r)
and wy,j(r), and where the length of the spinor gives the onsite atom number, i.e., Nj =√
|ψx,j |2 + |ψy,j |2. In this formulation the order parameter can be fully characterized by a

Bloch vector Jj = (Jx,j , Jy,j , Jz,j), with components

Jx,j = ψ∗x,jψy,j + ψ∗y,jψx,j ,

Jy,j = i(ψ∗x,jψy,j − ψ∗y,jψx,j),

Jz,j = |ψx,j |2 − |ψy,j |2,

(3.16)

that corresponds to a mean-field version of the Schwinger bosons [48]. The length of the Bloch
vector determines the total number of atoms at the site j, |Jj | = Nj , and Jz,j computes the
onsite population imbalance between atoms occupying px- and the py-orbital states. Due to
the required onsite phase-locking relation, Jx,j is always zero.

We now study the spatial dependence of the order parameter that is absent in the Bloch
vector picture. In the simplest case of the harmonic approximation, where the Wannier
functions can be taken as Hermite polynomials (see Sec. 2.3.1), the onsite order parameter
is given by

ψ
(ha)
j = [|ψx,j |x± i|ψy,j |y] e−

x2+y2

σ2 , (3.17)

where the effective width of the oscillator σ2 is determined from the lattice parameters. If

|ψx,j | = |ψy,j |, then this is an angular momentum eigenstate, Lz,j = −i∂θj , Lz,jψ
(ha)
j (r) =

±ψ(ha)
j (r), and in the whole lattice, the order parameter is in a staggered-vortex configuration

as shown in Fig. 3.1. In terms of the Bloch sphere, Jx,j = 0 for every j6 and the Bloch vector
points parallel to the direction defined by Jy,j .

Outside the harmonic approximation, when the Wannier functions are the proper solutions
of the Mathieu equation, the onsite vortices/anti-vortices are not necessarily eigenstates of
Lz,j even when Jz,j = 0. However, the onsite order parameter has vanishing density at the
center of the site with a vortex-like singularity. In the same way, a staggered-vortex-like
solution permeates the entire lattice.

3.1.2. The three-dimensional lattice

In three-dimensional lattices7, the onsite order parameter has components Lα, α = {x, y, z}
and

Ψj =

 ψx,j
ψy,j
ψz,j

 =

 |ψx,j |eiθx,j|ψy,j |eiθy,j
|ψz,j |eiθz,j

 . (3.18)

The simplest case to characterize phase properties in the state with minimum energy is that
of equal occupation of the three orbitals, i.e., when |ψx,j | = |ψy,j | = |ψz,j |. Here, Eq. (3.11)

6This was already the case due to the π/2 phase difference between px and py orbitals.
7We follow here the analysis of Ref. [21].
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3. General properties of the bosonic system in the p and in the d bands

is minimized for θx,j − θy,j = θy,j − θz,j = θz,j − θx,j = ±2π/3± π, such that

Ψj =

√
Nj

3
eiθj

 1

e2πi/3

e4πi/3

 , (3.19)

where Nj is the total atom number at the site j and θj is an arbitrary phase. Here each
of the orbital states has a unit of angular momentum per atom which points along the
axis L ∝ (±1,±1,±1). Now since the phase relation to be satisfied is a (dependent) linear
combination of the phases of the different orbital states and Uαβ > 0, the relative phases
of the orbital order parameters are frustrated. This property was previously pointed out in
Ref. [18], where it is argued8 that “the onsite frustrated phase configurations come in two
different “chiralities” that cannot be converted into each other by shifting any one of the
phases by the π shift allowed by the Z2 symmetry”. Namely, in a right-hand configuration
defined by current flow from the px → py → pz → px orbitals, the phases are given by
θx,j = 0, θy,j = 2π/3 and θz,j = 4π/3. Analogously, in the left-hand configuration current
flows from the px ← py ← pz ← px orbitals and θx,j = 0, θy,j = 4π/3 and θz,j = 2π/3. In
particular, the direction of the current flow is not affected by addition of π to any of the
phases.

In light of the frustrated character of the phase relation in the three orbital case, one can
use known properties of the onsite phase lockings to investigate the system even further. For
example, let us assume the specific phase locking of Eq. (3.19) and reverse the question by
asking: Is this phase relation valid regardless of the values of Uαα and Uαβ, or is there any
condition imposed over the values of these couplings?

We follow here the approach of Ref. [21], and re-write the interacting part of the mean-field
Hamiltonian as9

Hnn =
Uxx
2

(n2
x + n2

y + n2
z) + 2Uxy(nxny + nxnz + nynz),

HFD = Uxy (cos(∆xy)nxny + cos(∆xz)nxnz + cos(∆xz −∆xy)nynz),

(3.20)

where nα = |ψα|2, and ∆αβ = 2(θα − θβ). In these terms, defining n = (nx, ny, nz), the
interaction energy functional can be written in the quadratic form of the nα variables,

E[ψx, ψy, ψz] = nTMn, (3.21)

with

M =


Uxx/2 Uxy(2 + cos(∆xy)) Uxy(2 + cos(∆xz))

Uxy(2 + cos(∆xy)) Uxx/2 Uxy(2 + cos(∆xz −∆xy))

Uxy(2 + cos(∆xz)) Uxy(2 + cos(∆xz −∆xy)) Uxx/2

 .
(3.22)

8We refer to the original reference [18] for more discussions on the properties of the broken symmetry phase
of three orbital system.

9Due to typos in Ref. [21], there are different factors in the calculations presented here. We point out,
however, that this does not change the conclusions drawn by the authors.
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Solving for the eigenvalues we find

λ1 = Uxx − 3Uxy

λ2 = Uxx − 3Uxy

λ3 = Uxx + 6Uxy,

(3.23)

which requires Uxx > 3Uxy for having a positive definite matrix M . When this condition
is violated, the onsite order parameters cannot lock the phases as in Eq. (3.21). In fact,
since for this range of parameters M is not positive definite, fluctuations on the top of the
state with definite phase become divergent and therefore any type of ordering is destroyed.
Nevertheless, in sinusoidal optical lattices Uxx > 3Uxy, and therefore this analysis suggests
the possibility of finding a degenerate ground-state with different configurations of phase
locking. It also reveals an additional limitation of the harmonic approximation, in which
case Uxx = 3Uxy.

As a final remark we stress that a complete characterization of the frustrated phases in the
three-orbital state requires the study of the |ψx,j | 6= |ψy,j | 6= |ψz,j | case, where qualitative
properties are expected to be different. Here we refer the reader to Ref. [21].

3.2. Mean-field properties of the bosonic system in the d band

In this section we study the phase diagram of the superfluid to Mott-insulator transition of
the system with bosonic atoms in the d band of 2D isotropic square lattices10. While the
properties of the Mott insulator phase are studied in details in Sec. 5.4, we focus here on
the description of the superfluid phase from a mean-field perspective. Before proceeding,
however, we discuss the techniques used in the computation of the phase diagram.

In the mean-field approach of Sec. 3.1, the superfluid phase of the p-band system was charac-
terized by combining the onsite solutions minimizing the local part of the mean-field Hamil-
tonian, Eqs. (3.10) and (3.11), with the conditions required for minimizing the kinetic term.
The result was the global (long-range) phase coherence implemented as a staggered-vortex
configuration. While this approach usually provides an accurate description deep in the
superfluid phase, it is not suitable for capturing the transition to the Mott insulator state.

A next step for improving this näıve mean-field description is provided by the Gutzwiller
mean-field technique [49, 50]. It is based on the use of an ansatz for the system’s wave-
function, that although still factorized on the site indices, is constructed such as to include
onsite number fluctuations in a self-consistent way. Next, this wave-function is used to
compute an energy functional whose ground-state properties are used to characterize the
many-body system. The improvement here is that the Gutzwiller method accounts for
Gaussian fluctuations on the top of the saddle point solution, obtained from the partition
function in the representation of coherent states11. More specifically, and already in the

10This section is based on the work of Preprint II.
11In particular, even though mean-field methods are usually not very reliable in low dimensions, the Gutzwiller

ansatz provides a good estimate of the boundaries of the superfluid to Mott insulator transition in the s
band even in 2D [49, 50].
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Figure 3.2.: Order parameter ψ = |〈d̂x2,i〉| = |〈d̂y2,i〉| of the superfluid phase of bosonic atoms in the
d band. The corresponding order parameter for the dxy-orbital is approximately zero
except for t/U < 10−3 where it is, however, at least one order of magnitude smaller
than ψ. As is seen, the chemical potential is varied such that the first four Mott lobes
are illustrated (dark blue regions representing a vanishing superfluid order parameter).
For this plot, the relative strengths between the interaction terms has been taken as
{Uxy, Upp, Upx, Unpxy, Unxxy}/U = {0.17, 0.9, 0.3, 0.04, −0.03}, with U = Uxx = Uyy
and corresponding to a lattice with amplitude V = 40. With this lattice depth, Ex2 =
Ey2 = 0 and Exy = 1.6U , and the relative tunnelings are {tα⊥, |tp|}/tα‖ = {0.002, 0.007}.

notation of the d orbitals,

|Ψ〉Gutz =
∏
i

ci|φi〉i, (3.24)

with the wave-function at the site i given by

|φi〉 =
∑

nx2 ,ny2 ,nxy

c(i)
nx2 ,ny2 ,nxy

|nx2 , ny2 , nxy〉. (3.25)

|nx2 , ny2 , nxy〉 is a Fock state with nβ atoms n the dβ orbital, for β = {x2, y2, xy}, which

is normalized as
∑

nx2 ,ny2 ,nxy
|c(i)
nx2 ,ny2 ,nxy

|2 = 1. The energy functional is then written as

EGutz

[
c

(i)
nx2 ,ny2 ,nxy

]
= Gutz〈Ψ|Ĥ|Ψ〉Gutz, for the Hamiltonian of Eq. (2.55). This is further

minimized with use of the Nelder-Mead algorithm, with the self-consistently obtained ampli-

tudes c
(i)
nx2 ,ny2 ,nxy

. In particular, since the Mott state is characterized by vanishing number

fluctuations, the Gutzwiller order parameter ψdβ = Gutz〈Ψ|d̂β|Ψ〉Gutz also vanishes in this
phase, in contrast with the superfluid, where it has nonzero values.

The Mott phases with different fillings are mapped out after inclusion of the chemical po-
tential µ. This yields the Hamiltonian (see Eq. (2.55))

Ĥd + Ĥxy → Ĥd + Ĥxy − µ
∑
i

n̂i, (3.26)

with n̂i = n̂x2,i + n̂y2,i + n̂xy,i. The numerical study is performed in a truncated Hilbert
space of dimension 64, that accounts for up to three atoms in each of the three onsite orbital
states. Also, since out of four nearest neighbours the tunneling amplitudes are tα‖ and tα⊥ for
the two neighbouring sites in the directions parallel and perpendicular to the node of the
wave-functions, the effective Gutzwiller tunneling is taken as t = 2(tα‖ + tα⊥). The results,

presented in Fig. 3.2, show the superfluid order parameter ψ = 〈d̂x2,i〉 = 〈d̂y2,i〉 in the
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µt-plane for the energies scaled with Uαα (see Eq. (2.69)). The order parameter signalling
occupation of the dxy orbital, ψxy is zero everywhere, except for t/Uαα < 10−3. However,
still in this case the occupation of the dxy orbital is two orders of magnitude smaller than of
the other two orbitals, and therefore, the dynamics of bosons on the d band can be described
by the effective two-orbital model of Eq. (2.56). In addition, Fig. 3.2 also shows that the
extent of the Mott lobes fall off with n−1

0 , for n0 the lattice filling. This is in agreement with
mean-field results obtained for the Bose-Hubbard model in the ground band.

At higher fillings when the typical interaction energy becomes considerably larger than
the gap between the Exy and Eα bands, we expect that the dxy orbital will also become
populated. Indeed, as we checked numerically, for the same parameters used in Fig. 3.2,
and {µ, t}/U = {5, 0.5}, for example, the occupations of the three orbitals are given by
(〈n̂x2〉, 〈n̂y2〉, 〈n̂xy〉) ≈ (3.3, 3.3, 1.7). Here, however, due to the higher truncation required
in the number of particles, computations are considerably more costly than for the system
at low densities, and are thus carried out for a fixed value of the chemical potential µ/U
and for varying t/U . In addition, this suggests that the spatial structure of the onsite order
parameter should be studied separately for the system with both low and high densities, as
we continue next.

3.2.1. Onsite superfluid states

Low/moderate atomic densities

The same approach used in Sec. 3.1.1 to study the spatial shape of the onsite order parameter
of the system in the p band can be adapted for the d-band case. Direct generalization of
the onsite vortex structure suggets that the full onsite order parameter in the d band is
characterized by doubly-quantized vortices, as described by a state of the form

Ψ(r) =
√
Ns
2

[
wx2(r) + wy2(r)±

√
2iwxy(r)

]
⇔

Ψ =
√
Ns/2

 1
−1

±
√

2i

 ,

(3.27)

where Ns is the number of atoms at the site and is fixed a priori. At low densities the
existence of such a state is precluded, however, since according to the Gutzwiller study the
dxy orbital has negligible occupation. In addition, it is not possible to construct a doubly-
quantized vortex with only the dx2 and dy2 states.

To explore the possibilities and to characterize the spatial properties of the full onsite order
parameter, we study the mean-field version of Hamiltonian (2.55), obtained with use of the
coherent-state ansatz. In this picture

d̂α,i → ψα,i = |ψα,i|eiθα,i , (3.28)
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which yields

Hd
MF = −

∑
σ,α

∑
〈i,j〉σ

2tασ |ψα,i||ψα,j | cos (θα,i − θα,j) +
∑
α

∑
i

Eαnα,i +
∑
α

∑
i

Uαα
2
n2
α,i

+
∑
α,β

2Uαβnα,inβ,i +
∑
α

∑
i

Uαβ|ψα,i|2|ψβ,i|2 cos (2(θα,i − θβ,i))

+
∑
α

∑
i

2Unααβ|ψα,i|3|ψβ,i| cos (θα,i − θβ,i),

(3.29)
for α, β = {x2, y2}, and with the sum over nearest neighbours running through each pair
only once. Even though this approximation is valid for systems with up to ∼ 10 particles
per site, we believe this still gives a good picture of the superfluid state. Indeed, as we see
next, the study of the three-orbital system predicts a similar state for describing the onsite
superfluid.

In the same way as for the system in the p band, the order parameter of the superfluid
phase in the d band is a complex number and requires the study of both the density and
phase properties. But with the atoms occupying only the dx2 and dy2 states, and with equal
population, we can resume the study to characterization of phase properties. We then start
with the local part of (3.29) and notice the dependence on the relative phase δi = θx,i−θy,i of
the individual order parameters for the superfluid in the dx2 and dy2 orbitals. Contrary to the
system in the p band, where the relative phase of π/2 is determined by the orbital changing
processes, the system in the d band features the additional density-assisted interactions that
are minimized by a π relative phase at each site. We therefore minimize the full Eq. (3.29)
with respect to δi to obtain

δ̄i = arccos

(
−Unxxy

Uxy

)
, (3.30)

where δ̄i is the relative phase, onsite, at the energy minimum.

This leads to the solution

Ψvor(r) =

√
Ns

2

(
wx2(r)eiδi + wy2(r)

)
, (3.31)

which is illustrated in Fig. 3.3 for the system with V = 40. In Fig. 3.3 (a) we show the
atomic onsite density |Ψvor(r)|2, and in (b), the phase of the order parameter Arg[Ψ(r)].
At each site, the condensate order parameter is characterized by two vortex/anti-vortex
pairs, each of which has a ±2π phase winding around the singularity point. Now since
the tunneling in the d band has the same sign in both the parallel and the perpendicu-
lar directions, i.e. tα‖ , t

β
⊥ > 0, the orientation of the onsite vortices at neighbouring sites

is the same. Due to the underlying Z2 symmetry of the system, each of the two vortex-
lattices with different orientations correspond to a state with spontaneously broken symme-
try. In the solution of Fig. 3.3, and starting at the upper left corner, the phase winding is
clockwise/anti-clockwise/clockwise/anti-clockwise. In the alternative solution, the state has
anti-clockwise/clockwise/anti-clockwise/clockwise winding instead.

Now how does the state with restored Z2 symmetry looks like? We answer this question by
noticing that the phase dependence on R = Unxxy/Uxy is the factor determining the shape of
the onsite vortex pairs. In fact, for R = 1, the vortices are annihilated by the anti-vortices.
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Figure 3.3.: The onsite density |Ψ(x)|2/Ns and the corresponding phases Arg[Ψ(x)] in (a) and (c),
and (b) and (d), respectively. Here we assumed that the atomic density is rather low
such that we can neglect any population of the dxy orbital. In the upper two plots we
consider a lattice with an amplitude V = 40. It is seen in (b) that the phase of the
order parameter winds 2π at the four points where the density vanishes. This reflects
the presence of four vortices - two vortex/anti-vortex pairs. In the lower two plots we
use the same parameters but put Unxxy = −2Uxy in order to reach the regime where the
state qualitatively changes. Here a dark soliton is separating the central peak from the
surrounding circle.

When R > 1, the onsite order parameter is given by

Ψsol(r) =

√
Ns

2

(
wdx2 ± wdy2

)
, (3.32)

and as shown in Fig. 3.3 (c) and (d), it is characterized by an immobile dark soliton with
vanishing density at the circle, together with a phase jump from 0 to π. In case where the
ratio R could be externally controlled, this system would be driven through a phase transition
from a “soliton”-superfluid to a “vortex”-superfluid with broken Z2 symmetry. In addition,
the discontinuity of ∂RH

d
MF |R=1 suggests the existence of a first order phase transition. We

remark, however, that even though this external tuning of R might be experimentally non-
trivial, this analysis is nevertheless useful for shedding additional light on the properties of
the superfluid phase of bosonic atoms in the d band.

High atomic densities

At large fillings, n0 � 1, minimization of the energy functional must be handled with the
additional dxy orbital. Therefore we use Eq. (3.28) together with the equivalent expression
for the dxy orbital ψxy,i = |ψxy,i|eiθxy,i , and we write the full mean-field Hamiltonian for the
system in the d band

HMF = Hd
MF +Hxy

MF , (3.33)
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3. General properties of the bosonic system in the p and in the d bands

where

Hxy
MF = −

∑
σ

∑
〈i,j〉σ

2 tp cos (θα,i − θα,j) +
∑
i

Upp
2
nxy,i (nxy,i − 1) +

∑
α

∑
i

2Upαnxy,inα,i

+
∑
α

∑
i

Upα|ψxy,i|2|ψα,i|2 cos (2(θα,i − θxy,i)) +
∑
β

4Unpxy cos (θα,i − θβ,i)

+
∑
β

2Unαxy|ψxy,i|2|ψα,i||ψβ,j | cos (2θxy,i − (θα,i − θβ,i))

.
(3.34)

Since the analytical expression of the fix point is not of much help in this case, we continue
with a numerical study. Here again, we minimize the mean-field Hamiltonian with use of
the Nelder-Mead algorithm. The result is shown in Fig. 3.4, where the onsite occupations of
the orbitals are given by (dx2 , dy2 , dxy) = (0.36, 0.33, 0.31) such that no specific dominance
is found. In comparison with the results of the previous case, the vortex/anti-vortex pairs
are rotated in the presence of dxy-orbital atoms, and the atomic distribution is squeezed.
In addition, this example clearly shows the tendency of the vortices with positive winding
to migrate to the center of the site, where the density is higher. This suggests that as
interactions become stronger, and the density more squeezed, two of the vortices will be
located in regions with vanishingly small density such that the onsite state would be closer
to a state with doubly quantized vortices. However, this continuous deformation does not
violate conservation of angular momentum, since in reality this corresponds to two singly
excited vortices coming infinitely closed to each other. Furthermore, due to tp < 0, the
ψxy changes sign between neighbouring sites such that the orientation of the doubly excited
vortices alternate in the full lattice, yielding a state with zero angular momentum. The
two possible orientations are again related to the breaking of the Z2 symmetry, and we have
checked that also here, the state with restored symmetry is characterized by a dark soliton.

In summary, even in the presence of the third dxy orbital, the onsite superfluid preserves the
structure of the effective two-orbital system discussed in the previous section. Therefore,
rather than doubly quantized vortices, as one could in principle expect in analogy with the
results obtained for the p-band system, the onsite superfluid state in the d band features
pairs of vortices/anti-vortices.
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3. General properties of the bosonic system in the p and in the d bands

Figure 3.4.: The same as Fig. 3.3 but deep in the superfluid phase (n0 � 1) where all three orbitals
are considerably populated. The difference between the upper and lower plots is the
sign of the order parameter ψdxy

(the two states have equal energy), which reflects the
states in two neighbouring sites in the lattice. Despite the fact that the dxy orbital
is largely populated in this case, the general structure of the superfluid state shown in
Fig. 3.3 (a) and (b) survives, i.e., the onsite order parameter hosts two vortex/anti-vortex
pairs. However, the state gets distorted with two of the vortices at the very edge of the
distribution. As for Fig. 3.3, the potential amplitude V = 40.
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4. Confined p-orbital bosons

In the laboratory, experiments with optical lattices are most often performed in the pres-
ence of an additional external potential for confining the atoms. The confining potential is
typically much weaker1 than the optical lattice, and has a characteristic length scale much
larger than the lattice period. However, the presence of an external trap gives the system a
inhomogeneous density, which can have important consequences for the phase diagram. In
fact, different regions with locally homogeneous densities are now allowed to coexist in the
lattice for a given set of parameters, and therefore considerations of trapped systems are
important for obtaining a more realistic picture of the systems under study.

The mean-field analysis carried in Chapter 3 revealed the structure of the order parameter
characterizing the homogeneous system of bosonic atoms in the p band. In isotropic square
lattices, for example, we have seen that the state with minimum energy exhibits alternating
vortices/anti-vortices at neighbouring sites, that define a staggered configuration for the
onsite current flowing between the condensates in the px and py orbitals. But how is this
picture modified when the system is in the presence of an external confining potential?

In this chapter, we study the superfluid phase of p-orbital bosons confined by a harmonic
trap. In light of the anisotropic tunneling in the p band, how is the inhomogeneous density
modifying the physics of the homogeneous system? This is the question adressed in Paper I.
We will follow it here, starting with the analysis of the the ideal gas in the p band in Sec. 4.1,
where we also study finite temperature properties. We consider the interacting case from a
mean-field perspective in Sec. 4.2, and conclude with a study of the system in anisotropic
lattices in Sec. 4.3.

4.1. The ideal gas

Let us start by considering the simplest case of the non-interacting system in an isotropic
optical lattice and in the presence of the harmonic trap

Vtrap(r) =
mω̃

2
(x
′2 + y

′2) =
ω

2
(x2 + y2). (4.1)

Here ω̃ is the trap frequency, ω =
√

2mω̃/~k2 is the dimensionless trap frequency2, with k
the wave-vector of the laser, and x = kx

′
and y = ky

′
are dimensionless positions.

1In the sense that the leading physics stems from the optical potential.
2Notice that the characteristic length of the trap ltrap � λ/2, where λ is the wavelength of the laser.
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The Hamiltonian describing this system is given by

H(0) = −
∑
σ,α

∑
〈i,j〉σ

tασψ
∗
α,iψα,j +

∑
α

∑
j

ω2

2
(x2

j + y2
j)nα,j , (4.2)

where nα,j = |ψα,j |2 is the onsite density of the pα-orbital state, α = {x, y}.

A remark is in order: For consistency with the notation used in the analysis to be
carried out in the next section, we use here the mean-field notation for the analysis
of the ideal gas. Notice, however, that since the non-interacting case has a quadratic
Hamiltonian, we have actual access to the exact solutions of the problem, rather than
that of an effective description.

We proceed with the Schrödinger equation for (4.2),

i
∂

∂t
Ψ = H(0)Ψ. (4.3)

As stated before, this equation is governed by a quadratic Hamiltonian that we notice,
furthermore, has similar structure to the Mathieu equation expanded in momentum eigen-
states [51]. This can be written in matrix form, for each of the orbital states and say, for the
2D system3 as

i
∂

∂t



...
ψα,(i−1,{j})
ψα,(i,{j})
ψα,(i+1,{j})

...

 =



. . .
...

h
(0)
i−2,{j} −tαy 0 0 0

. . . −tαy h
(0)
i−1,{j} −tαy 0 0 . . .

. . . 0 −tαy h
(0)
i,{j} −tαy 0 . . .

0 0 −tαy h
(0)
i+1,{j} −t

α
y

...
. . .





...
ψα,(i−1,{j})
ψα,(i,{j})
ψα,(i+1,{j})

...

 .

(4.4)
In this notation, H(0) is a 2N × 2N matrix, where N counts the number of sites, ψα,(i,{j})
is a N × 1 vector whose label j runs over all the columns of the i-th row, i.e., ψ∗α,(i,{j}) =

3Since it is straightforward to write the matrix form of the ideal gas Hamiltonian in the 3D lattice, we only
write explicit expressions of the 2D case here.
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(
ψα,(i,1), ψα,(i,2), . . .

)
,

h
(0)
i,{j} =



. . .
...

ω2

2 R
2
i,j−2 −tαx 0 0 0

. . . −tαx ω2

2 R
2
i,j−1 −tαx 0 0 . . .

. . . 0 −tαx ω2

2 R
2
i,j −tαx 0 . . .

0 0 −tαx ω2

2 R
2
i,j+1 −tαx

...
. . .



(4.5)

is a 1D tight-binding Hamiltonian, and −tαy = −tαy1N×N , where 1N×N is the identity matrix
of size N×N . Analytical solutions of Eq. (4.4) can be obtained for special cases, from Fourier
expansions of the Mathieu functions. However, since the expressions can be cumbersome,
not much is learnt by taking a step in this direction [51].

On the other hand, an analytical study of the trapped system can be performed in the
continuum limit, where the solutions of the problem have simpler closed form. In this
framework we make ψα,j → ψα(x, y), and the expression of the kinetic energy becomes

ψα,j+1σ − 2ψα,j + ψα,j−1σ →
∂2

∂σ2
ψα(x, y).

The corresponding Schrödinger equations then reads,

i ∂∂tψx(x, y) =
[
−|txx|∂2

x − |txy |∂2
y + ω2

2 (x2 + y2)
]
ψx(x, y)

i ∂∂tψy(x, y) =
[
−|tyx|∂2

x − |t
y
y|∂2

y + ω2

2 (x2 + y2)
]
ψy(x, y),

(4.6)

where we have imposed a phase imprint in the wave-function ansatz. In fact, with the
equations in this form, the phase factors associated to the stripped pattern in the lattice
are absorbed in the redefinition of the tunneling coefficients, where we have transformed
tαα → −tαα.

By introducing the effective mass mαβ = |tαβ |−1/2, and parallel and transverse frequencies

ω‖ = ω
√

2|tαβ |, α = β

ω⊥ = ω
√

2|tαβ |, α 6= β,

(4.7)

Eq. (4.6) can be further re-written as

i
∂

∂t
ψx(x, y) =

[
p2
x

2mxx
+

p2
y

2mxy
+
mxxω

2
‖

2
x2 +

mxyω
2
⊥

2
y2

]
ψx(x, y), (4.8)

with a corresponding equation for the py orbital state. We notice, moreover, that by im-
plementing the stripped pattern in the wave-function ansatz prior to taking the continuum
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limit, we avoid dealing with a Hamiltonian that is not bounded from below. This is nothing
but a gauge transformation with the overall effect of inverting the p band and shifting its
minimum energy to the center of the Brillouin zone, but the physics remains unaltered.

In any way, this shows that the continuum approximation enormously simplifies analytical
considerations by re-writing Eq. (4.4) as the eigenvalue problem of a 2D anisotropic harmonic
oscillator. In this picture, since both mασ and ωασ (see Eqs. (4.7)) depend intrinsically on
the tunneling anisotropy, the ground-state ψα(x, y) of Eq. (4.8) will have a Gaussian profile,
with different widths in the different directions. This fact can be used to characterize the
system in more general terms, by defining the anisotropy parameter

Sx =

√
(∆xx)2

(∆xy)2
, (4.9)

where (∆αβ)2 = 〈β2〉α − 〈β〉2α, and 〈..〉α represents the expectation value taken with respect
to ψα(x, y). Accordingly, the anisotropy in the density of py-orbital atoms is characterized by
an equivalent expression, that in isotropic square lattices satisfies SxSy = 1. For this reason
we will now drop the subscript and use S = Sx whenever discussing such anisotropies. In
particular, in the continuum case discussed here

Scont =

(
|txx|
|txy |

)1/4

=

(
ω‖

ω⊥

)
. (4.10)

The limit where ω‖ = ω⊥ corresponds to the case of isotropic tunneling, and yields S = 1.
As soon as this isotropy is broken, however, S 6= 1. Accordingly, this reveals that the density
of atoms in each of the orbital states is narrowed down in the direction perpendicular to the
label.

4.1.1. The ideal gas at finite temperatures

The possibility of re-writing the Schrödinger equation of the non-interacting system in a
rather simple form allows for the study of thermodynamic properties of condensation in
the p band. Let us proceed with this analysis by first considering the simplest case of
the continuum limit, described in Eqs. (4.6), where known properties of condensation in
harmonically trapped systems can be directly used [37]. The critical temperatures for Bose-
Einstein condensation in 2D and 3D are given by

T (2D)
c = ω

(2D)
eff

√
6N/π2 (4.11)

and
T (3D)
c = ω

(3D)
eff (N/ζ(3))1/3, (4.12)

where ζ(3) ≈ 1.20206. The effective trapping frequencies are defined [37] as

ω
(2D)
eff = 3ω

√
|txx||txy | (4.13)

and
ω

(3D)
eff = 4ω(|txx||txy ||txz |)1/3 = 4ω(|txx||txy |2)1/3. (4.14)
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Figure 4.1.: Critical temperature for the establishment of Bose-Einstein condensation in the p band as
a function of the atom number denoted by N . (a) shows the results of the 2D system while
(b) shows the results for the 3D system. We also compare the results obtained for the
continuum approximation (dashed line) with the results of the discrete model obtained
numerically (solid line). The parameters here are ω2/2 = 0.001 for the dimensionless
trap strength and |txx/txy | = 20.1, which corresponds to the ratio between the tunneling
coefficients for Vx = Vy = 17. In order to concile the notations used in Paper I and along
this thesis we notice that tαβ = tαβ .

The critical temperatures for the discrete model can also be computed. This is done with
the use of the numerically obtained eigenvalues of Eq. (4.4)4 in

NT =
∑
n6=0

1

eβ(En−µ) − 1
, (4.15)

where β = Er/kBT is the inverse (dimensionless) temperature and µ is the chemical potential
computed for a fixed number of atoms NT .

The results are shown in Fig. 4.1, where we compare the critical temperatures of both the
discrete and continuous cases. In particular, we notice the disagreements between the two
predictions, which become more pronounced for increasing values of N . We understand this
difference as a consequence of the different density of states in the two cases. In fact, since
the general expression for the critical temperature of a confined ideal gas in d dimensions
kBTc ∝ N1/d depends on the density of states [52], any difference between the two cases
should become more pronounced for large N .

We proceed by examining the 2D case with more details. In particular, we are interested
in characterizing the behavior of the density as one crosses the transition to the condensed
state: Is there any difference in the profile of the atomic density as the temperature is lowered
below Tc?

In the high temperature limit, we expect the system to show isotropic density. This is because
in this regime, the system should be described by the Boltzmann distribution, which is
itself isotropic. However, as the temperature is lowered, low temperature properties become
relevant and the condensed state of p-orbital bosons is characterized by a bimodal structure

4Diagonalization is performed on the Hamiltonian of a truncated lattice.
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Figure 4.2.: Populations per site of the 2D Bose gas in the p band and for a single orbital state. (a)
shows a situation where T > Tc, while in (b) T = 0. In both cases the total number
of atoms in the system Ntot = 1000, the dimensionless trap strength ω2/2 = 0.001 and
potential depths are Vx = Vy = 17.

with the atoms squeezed either in the x or the y direction of the lattice. This is illustrated
in Figs. 4.2 (a) and (b), where we show the density

ntotal(j) = N0|ψ0(j)|2 +
∑
n 6=0

|ψn(j)|2

eβ(En−µ) − 1
(4.16)

for two different temperatures, above Tc and for the ground state (where T = 0). As
expected, this behavior follows as a consequence of the tunneling anisotropy.

To conclude this analysis, we use the anisotropy parameter defined in Eq. (4.9) to characterize
the density anisotropy as a function of the temperature for a system with 1000 atoms, in
Fig. 4.3. As shown in Fig. 4.1 (a), above the (scaled) critical temperature Tc ≈ 0.9, the
atomic density becomes isotropic in the xy-plane.
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4. Confined p-orbital bosons

Figure 4.3.: The anisotropy parameter S (see text) that is used to characterize the anisotropy in
the density in the 2D system, and as a function of the temperatures scaled with txx. The
number of atoms considered is N = 1000, the dimensionless trap strength is ω2/2 = 0.001
and Vx = Vy = 17. This figure is also taken from Paper I, and therefore tαβ = tαβ in the
notation of this thesis.

4.2. Mean-field equations of the interacting system in 2D

In this section we extend the approach used in Sec. 3.1 to study the interacting system of
bosons in the p band confined by a harmonic potential. We first recall that the expression of
the many-body Hamiltonian, Eq. (2.42), was obtained from expansion of the field operators
of Eq. (2.38) in terms of the p-orbital states (2.40). For the confined system, however, the
external potential contribution contains an additional term to describe the harmonic trap,
i.e.,

V (r)→ Vlatt(r) + Vtrap(r), (4.17)

where as usual
Vlatt(r) = Vx sin2(x) + Vy sin2(y), (4.18)

and the expression of the trap potential is given by Eq. (4.1).

As stated previously, we are considering the regime where the characteristic length of the
trap ltrap � λ/2, such that the system can be treated in the local density approximation5.
Under this assumption the lattice potential is approximately periodic, and the orbital states
can be taken as the site-localized Wannier functions of the non-trapped case. The effects of
the confinement are implemented locally, as a shift of the onsite energies, in what amounts
to describing the system with a position-dependent chemical potential. The many-body
Hamiltonian then follows as

Ĥ2D = −
∑

α

∑
〈i,j〉σ t

α
σ â
†
α,iâα,j +

∑
α

∑
j
ω
2 (x2

j + y2
j)n̂α,j

+
∑

α

∑
j
Uαα

2 n̂α,j(n̂α,j − 1) +
∑

αβ,α 6=β
∑

j Uαβn̂α,j n̂β,j

+
∑

αβ,α 6=β
∑

j
Uαβ

4 (â†α,j â
†
α,j âβ,j âβ,j + â†β,j â

†
β,j âα,j âα,j),

(4.19)

5Notice, however, that because of the tunneling anisotropy, the local chemical potential is not the only factor
determining local properties of the density.
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where again n̂α,j = â†α,j âα,j is the number operator of the pα-orbital state.

To proceed with the study, we implement the program discussed in Sec. 3.1, and character-
ize mean-field properties of the system. This starts with use of the coherent-state ansatz in
Eq. (4.19), which yields the corresponding mean-field Hamiltonian. This mean-field Hamil-
tonian is then used in the Euler-Lagrange equations, that are propagated in imaginary time
with a trial wave-function. The result is the state with minimum energy, that corresponds
to the order parameter describing the superfluid phase of the confined p-orbital bosonic
system.

As in Sec. 3.6, we impose the normalization in the whole lattice as

N = Nx +Ny =
∑
j

|ψx,j |2 +
∑
j

|ψy,j |2, (4.20)

where N is the total number of atoms, and the order parameters are again governed by a
set of coupled (discrete) Gross-Pitaevskii equations, one for each orbital-state pα,

−i
∂ψx,j
∂t

= −
∑

σ∈{x,y}

txσ(ψx,j+iσ − 2ψx,j + ψx,j−1σ) +
ω2

2
(x2

j + y2
j)ψx,j

+(Uxx|ψx,j |2 + (Uxy + Uyx)|ψy,j |2)ψx,j +

(
Uxy + Uyx

2

)
ψ2
y,jψ

∗
x,j

−i
∂ψy,j
∂t

= −
∑

σ∈{x,y}

tyσ(ψy,j+iσ − 2ψy,j + ψy,j−1σ) +
ω2

2
(x2

j + y2
j)ψy,j

+(Uyy|ψy,j |2 + (Uxy + Uyx)|ψx,j |2)ψy,j +

(
Uxy + Uyx

2

)
ψ2
x,jψ

∗
y,j ,

(4.21)

where the expressions for the couplings are given by Eqs. (2.47) and (2.48)6.

Propagation of a trial wave-function in imaginary time is carried on with Eqs. (4.21) re-
written in the form

i
∂Ψj

∂t
=

[
H11 H12

H21 H22

]
Ψj , (4.22)

where Ψj =

[
ψx,j
ψy,j

]
and

H11 = −txx∂2
x − txy∂2

y + Uxx|ψx,j |2 + (Uxy + Uyx)|ψy,j |2,

H22 = −tyx∂2
x − tyy∂2

y + Uyy|ψy,j |2 + (Uxy + Uyx)|ψx,j |2,

H12 =

(
Uxy + Uyx

2

)
ψy,jψ

∗
x,j ,

H21 =

(
Uxy + Uyx

2

)
ψx,jψ

∗
y,j .

(4.23)

Since time evolution is performed by a Hamiltonian containing both position- and momen-
tum-dependent terms, this step is implemented numerically with the use of the split-operator

6We remind that the coupling constants and tunneling coefficients are computed with lattice Wannier func-
tions obtained from numerical solution of the Mathieu equation for the potential (4.18).
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method [53]. This method uses the Trotter expansion to factorize the evolution operator,
and therefore becomes exact only in the limit of vanishingly small time steps. For better
accuracy, we propagate the system with a tiny time step that was chosen after consistently
checking the results against time steps of different sizes.

Details of the computation are given in the following:

• The time evolution operator is written as

U(δt) = e−iHδt = exp

{
−i
[
H11 H12

H21 H22

]
δt

}

= exp

{
−i
([

H11 0
0 H22

]
+

[
0 H12

H21 0

])
δt

}
and since we assume the lim δt→ 0, this equation is further approximated as

U(δt) ≈ e
−iδt

 H11 0
0 H22

︸ ︷︷ ︸
U1(δt)

e
−iδt

 0 H12

H21 0

︸ ︷︷ ︸
U2(δt)

. (4.24)

• We expand U2(δt):[
0 H12

H21 0

]2

=

 (Uxy+Uyx
2

)2
|ψx,j |2|ψy,j |2 0

0
(
Uxy+Uyx

2

)2
|ψx,j |2|ψy,j |2

 (4.25)

and [
0 H12

H21 0

]3

=

(
Uxy + Uyx

2

)3

|ψx,j |2|ψy,j |2
[

0 ψy,jψ
∗
x,j

ψx,jψ
∗
y,j 0

]
, (4.26)

from where it follows

(−iδt)n

n!
An =

(−iδt)n

n!
|ψx,j |n−1|ψy,j |n−1

[
0 ψy,jψ

∗
x,j

ψx,jψ
∗
y,j 0

]
(4.27)

for odd n, and
(−iδt)n

n!
An =

(−iδt)n

n!
|ψx,j |n|ψy,j |n

[
1 0
0 1

]
(4.28)

for even n.

Gathering all the terms of this expansion,

U2(δt) =

 U
(11)
2 U

(12)
2

U
(21)
2 U

(22)
2

 , (4.29)

where

U
(11)
2 = U

(22)
2 = cos

((
Uxy + Uyx

2

)
δt|ψx,j ||ψy,j |

)
,

U
(12)
2 = −iδt

(
Uxy + Uyx

2

)
sinc

((
Uxy + Uyx

2

)
δt|ψx,j ||ψy,j |

)
ψy,jψ

∗
x,j
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4. Confined p-orbital bosons

Figure 4.4.: (a) and (b) show populations in the px- and in the py-orbital states respectively. (c)
illustrates the corresponding population imbalance Jz,j . The dimensionless system pa-
rameters are Vx = Vy = 17, ω = 0.005, and U0N = 1. Excess of atoms in the px-orbital
state appears in the horizontal axis and is indicated by red color, while in the vertical
axis the system displays excess of atoms in the py-orbital state.

and

U
(21)
2 = −iδt

(
Uxy + Uyx

2

)
sinc

((
Uxy + Uyx

2

)
δt|ψx,j ||ψy,j |

)
ψx,jψ

∗
y,j .

The idea now is to make Ψ(δt) = U1(δt)U2(δt)Ψ = U1(δt)Ψ1, where Ψ1 = U2(δt)Ψ with
U1(δt) defined in (4.24). This involves evolution with a diagonal matrix which contains
different types of contributions (see the expressions of H11 and H22 in Eqs. (4.23)). Namely,
it features a first part with dependence on the spatial derivatives; and a second part that
depends on the densities of the orbital order parameters. We will first evolve Ψ1 with the part
of U1 that depends on the densities. This yield Ψ1 → Ψ̃1. After this step, the remaining part
is handled in momentum space. By means of a Fourier transform we obtain the expression
of Ψ̃1 in the momentum representation, F [Ψ̃1] = Ψ̃, which can then be easily evolved with
the lattice dispersion relations7[
ψ̃x,j(δt)

ψ̃y,j(δt)

]
=

[
e−iδt[2t

x
x(1−cos kxx)+2txy(1−cos kxy)] 0

0 e−iδt[2t
y
x(1−cos kyx)+2tyy(1−cos kyy)]

] [
ψ̃x,j
ψ̃y,j

]
.

(4.30)
By Fourier transforming it back to the position representation, the final result is Ψ(δt) (cf.
Eq. (4.22)). This is used again as a new trial wave-function, that is propagated in imaginary
time. This procedure is repeated until convergence has been reached.

Fig. 4.4 shows the density profile of the px- and py-orbital order parameters in the confined
system in (a) and (b), respectively. Comparison with Fig. 4.2 (b), reveals the same trend
observed for the ideal gas case, where the density is elongated in the direction of the orbital
label. Fig. 4.4 (c) shows the population imbalance in the lattice that corresponds to the
z-component of the Bloch vector defined in (3.16), Jz,j .

Since the density anisotropy is a consequence of the tunneling anisotropy, what happens
in the regime where interactions start to dominate over the tunneling contributions? More

7In momentum space the term −tασ∂2
σ corresponds to tασk

2
ασ. Here however we use k2ασ → 2tασ(1 − cos kασ)

to account for the (inverted) shape of the p band and the discrete character of the system.
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4. Confined p-orbital bosons

importantly, how does the system react as we change the parameters to cross the different
regimes? Tunneling contributions can be suppressed in this lattice in two ways. In the
most immediate one, the intensity of the laser is tuned such as to yield very deep potential
wells where the atoms have reduced mobility. The other way is via Feshbach resonances,
that increase the coupling constant Ũ0 (see Eq. (2.38)) and therefore decrease the relative
strength of the tunneling relative to interacting processes. This limit, where interactions
are so strong that other effects of the dynamics can be neglected, is also known as the
Thomas-Fermi limit [37].

In the interacting system, anisotropies in the density of the order parameters will be also
characterized with the same quantity defined in Sec. 4.1 for the ideal gas:

S =

√
(∆xx)2

(∆xy)2
.

We computed it here for different values of the system’s parameters. As Fig. 4.5 shows,
this anisotropy parameter approaches S → 1 in the limit of vanishing tunneling regardless
of the way chosen for suppressing such processes. However, we notice that suppression of
tunneling via the deepening of the lattice potential leads to an initial increase of S in the V
axis. After reaching a maximum value, S decays monotonically, until reaching 1. Although
there is no particular reason for expecting such behavior, that in fact is not even hinted in
the analysis of the continuum limit (Scont

8 cf. Eq. (4.10)), this can be a consequence of the
poor description provided by the tight-binding approximation in the limit of shallow sites.
Accordingly, the results should not be taken too literally in that region. We complement the
analysis by showing the density profile of the px and py orbitals in Figs. 4.6 (a) and (b) for
a situation with moderate interaction, where U0N = 15, ω = 0.005 and V = Vx = Vy = 17.
As expected, it confirms the previous conclusions driven in this section.

Now in light of the inhomogeneous density profile in the confined system, what is the fate of
the staggered vortex solution predicted for the homogeneous case?9 In order to characterize
the stability of the staggered-vortex solution in the presence of population imbalance between
the two orbital states, we invoke the mean-field version of Schwinger bosons, discussed pre-
viously in Sec. 3.1.1. As we argued there, the profile of the full onsite order parameter
Eq. (3.3), features true vortices/anti-vortices, in the sense of eigenstates L̂z,j , only in the

harmonic approximation. Outside this limit, the condition Ĵz,j = 0 is not enough to ensure
a perfect staggered vortex solution.

In the confined system, we have seen that the tunneling anisotropy introduces a natural
population imbalance in the lattice (see, e.g., Fig. 4.4), and therefore Jz,j is typically nonzero
everywhere. However since population imbalance is more pronounced at the edges of the
condensed cloud, it is still possible to have regions of non-trapped like physics at the center
of the trap, where Jz,j ≈ 0. This is illustrated in Figs. 4.7 (a) and (b), which display the Bloch
vector in the yz-plane10, Jj = (0, Jy,j , Jz,j). Here, we use the horizontal axis to represent

8It should be noticed, however, that the expression provided by Scont is obtained in the limit of U0 = 0
and it does not approach 1 as V → ∞. On the other hand, since the kinetic term relative to interaction
becomes negligible under these circumstances, any small U0 > 0 is sufficient to make Scont → 1. For
moderate values of the lattice depth V , Scont increases monotonically with increasing values of V . This
behavior is not predicted by the discrete model (Eq. (4.6)), and therefore we keep in mind that the two
descriptions yield qualitatively different predictions in the limit of deep lattices.

9Cf. the analysis of Chapter 3.
10Recall here that Jx,j is always zero.
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4. Confined p-orbital bosons

Figure 4.5.: The condensate anisotropy parameter S (see Eq. (4.9)) as a function of the interaction
strength U0N and of the lattice amplitude V = Vx = Vy for the system with dimensionless
trap frequency ω = 0.005. It illustrates that the system enters the Thomas-Fermi regime
whenever the relative strength of the tunneling compared to interactions becomes small,
i.e., S → 1.

Figure 4.6.: These plots display populations in the px- (a) and py- (b) orbital states, for Vx = Vy = 17,
ω = 0.005 and U0N = 15. Due to the strength of the interactions, the anisotropy in the
density is not so pronounced as compared to the results in Figs. 4.4 (a) and (b).
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4. Confined p-orbital bosons

Figure 4.7.: Bloch vector at different sites of the optical lattice. We use the horizontal axis to represent
the y-component of the spin and the vertical axis to represent the spin z-component. The
x-component of the spin is strictly zero due to the specific onsite phase locking between
the px- and the py-orbital states. Information about the density is encoded in the length
of the Bloch vector (see Eq. (3.16)) and the offset from the horizontal axis encodes
information about the breakdown of the antiferromagnetic order. The black dots are
used to denote the lattice sites. In (a) U0N = 1 and in (b) U0N = 15. The other
parameters are the same as in Fig. 4.6. This illustrates, in particular, that the staggered-
vortex solution remains valid in a larger number of sites in the center of the trap in the
limit of large interactions.

the y-spin direction, and the vertical axis to represent the z-spin direction. Therefore, a
clear dominance of the Jy,j component appears at the center of the trap. At the edges, the
Bloch vector is no longer pointing to the horizontal direction, revealing the breakdown of
the staggered vortex solution in these regions. This study also shows, in addition, that in
the limit of large interactions, the staggered vortex solution can survive in a larger number
of sites in the center of the trap.

As a final remark, we notice that an interesting direction consists of the generalization of
this study to the case of the 3D confined lattice. In the same way as for the 2D system,
we expect that the center of the trap can be approximately described by the homogeneous
density case, as discussed in Sec. 3.1.2. However, instead of the SU(2) structure of the two-
orbital system, the structure of the three-orbital one is intrinsically SU(3)11. In addition,
since this case can accomodate frustrated states, it would be relevant to investigate how
effects of the confinement affect frustration. Furthermore, since the tunneling anisotropy
creates population imbalance for only one of the orbital states (i.e., the one with the parallel
label) in each direction, a systematic study of the properties on the edges of the cloud are
also of interest.

11The SU(3) structure of the Mott phase with a unit filling of the three-orbital system in the p band is
discussed in details in Sec. 5.3.
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4.3. Properties of the system in the anisotropic lattice

All the properties discussed so far addressed the case of a symmetric lattice, where the or-
bital states are automatically degenerate. In asymmetric or anisotropic lattices, however, the
presence of small asymmetries/anisotropies can be enough to lift this degeneracy, thereby
modifying the picture put forward in the previous section. It is therefore important to inves-
tigate how robust is the physics of the symmetric lattice with respect to such imperfections.
What are the properties of the physics in the anisotropic lattice, and how stable are the
properties of the symmetric lattice with respect to small imperfections?

Anisotropies in the lattice model discussed here can in principle be introduced in two ways:
either with the use of lasers with different wave vectors, i.e., kx 6= ky, or either by manufac-
toring the lattice with different amplitudes. We investigate these issues by considering the
second scenario, of a lattice with Vx 6= Vy. In order to control the ratio between the lattice
depths in the different directions, we define the anisotropy parameter

R =
Vy
Vx
, (4.31)

where it is clear that the case of R = 1 recovers the symmetric lattice discussed previously.

We verified numerically that the main effect of asymmetries is to shift the energy levels and
to lift the degeneracy between the orbital states. In the limit of very deep lattice sites, this
splitting is site independent and does not considerably affects the physics of the system.
Indeed, the splitting energy can be estimated in the harmonic approximation as

∆ = Ey − Ex = 2
√
Vx(
√
R− 1), (4.32)

where Eα =
∫
dr w∗α,j(j)[−∇2 + Vlat(r)]wα,j(j) is the energy of the pα orbital state at the

jth site, and therefore, as long as the splitting energy ∆ is much smaller than the energy
scale set by the interaction terms, EU ∼ U0N |ψx|2, it has only very small effects on the
system.

However, this picture becomes more complex when the potentials become shallower and
correlations between sites become relevant. In this case, the interaction can couple the order
parameters of the different orbital states in a small region δ around R = 1, such that small
perturbation of the lattice parameters can lead to drastic changes in the properties of the
ground state12. This is an important point, because the possibility of accurately controlling
the lattice in a neighbourhood around the degeneracy point opens up a great window of new
possibilities for applications of this system. Of particular interest is the study of phenomena
similar to adiabatic ramping through an avoided crossing13 (as discussed in Ref. [54]).

In this sense, the parameter

Jz =
1

N

∑
j

Jz,j , (4.33)

which computes population imbalance between the different orbital states arises as a natural
candidate for characterizing sensitivity of the system with respect to R. When Jz = −1,

12In the proper sense of changing the symmetry of the ground state.
13It is important to point out, however, that since here the densities of different orbital states are spatially

different, adiabatic driving could lead to macroscopic flow of particles within the trap.
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4. Confined p-orbital bosons

Figure 4.8.: The parameter for measuring population imbalance Jz as a function of the lattice asym-
metry parameter, R, and for different values of the trapping frequency. Here U0N = 1
and Vx = 17. The vertical dashed lines are used to denote the typical sizes δ of the tran-
sition region where atoms coexist in the two orbital states. In particular, smaller values
of ω are associated with smaller values of δ. This means that the transition becomes
sharper as the system’s size increases.

all the particles occupy only py orbital states, and in the same way, when Jz = 1 all the
particles occupy only px orbital states. The case of Jz = 0 recovers the symmetric lattice,
that is characterized by the equal sharing of population among the different orbitals. We
remark, however, that since the trap defines an effective size for the system that is fixed by
ω, the sensitivity under variations of R is expected to depend strongly on the values of the
trap frequency14. This is illustrated in Figure 4.8, where the behavior of Jz around R = 1
is compared for different values of ω. In particular, since the range of δ becomes smaller
for larger systems, this implies that qualitative properties of the ground state are expected
to change more abruptly with increasing systems sizes. We also verified numerically that δ
increases with increasing values of the interaction strength U0N , which confirms the picture
that the orbital order parameters are coupled by interactions.

Therefore, from the study of the asymmetric lattice, we learn that a better tuning of the
(symmetric) lattice parameters is required when studying the p-orbital bosons in the weakly
interacting regime. As interactions become stronger, the properties discussed previously
become more robust to the presence of imperfections. In fact, even a small temperature could
actually contibute to the establishment of phase coherence between the order parameters of
the px and py orbital states in experimental realizations. This is a consequence of the
reduced energy gap between the ground and first excited states around the R = 1 point,
that contributes to the occupation of the first excited state (this is particularly needed for
balancing the population of the two orbitals). We furthermore notice that the transition from
one to the other extreme of Jz is smooth for non-zero ω, and that by controlling the lattice
amplitudes this system could realize a many-body Landau-Zener transition [55], which when
R is tuned externally could form a play-ground of the Kibble-Zurek [56] mechanism. A more
detailed study in this direction is presented in Ref. [57].

14Since the trap frequency also determines the susceptibility of the system to finite size effects, it can transform
energy level crossings into avoided crossings, for example.
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5. Beyond the mean-field approximation:
effective pseudospin Hamiltonians via
exchange interaction

In the previous chapters we investigated the weakly interacting regime of the many-body
bosonic system in the p and d bands. The properties of the order parameters describing
the superfluid phases in both cases were characterized with the use of mean-field techniques,
which among other features revealed the onsite structure of vortices in the different cases.
In this chapter we move away from the weakly interacting territory to explore the physics
in the strongly correlated regime of the Mott insulator phase.

In the approach used here, the dynamics of the Mott insulator phase with a unit filling
(Mott-1) is described by an effective model derived from the perturbative treatment of the
tunneling processes relative to the onsite interaction terms. We study p-orbital systems in
2D and 3D, and the d-orbital system in 2D.

As it was first shown in Paper II, which we explain in details in this text, the case of bosonic
atoms in the p band of a 2D optical lattice can be mapped into the spin-1/2 XYZ quantum
Heisenberg model in an external field. This model is of particular interest in the study of
quantum magnetism [58, 59], and falls into the class of nonintegrable models [60], where
analytical solutions are not known in closed form. We explore the correspondence between
these two systems and use known properties of the XYZ model to understand the physics
in the p band. At the same time, we study the p-orbital system in the context of quantum
simulation [15, 61], where we propose manipulation and detection schemes for experimentally
probing observables that are relevant in the study of quantum magnetism.

The techniques used in the study of the 2D system are further extended and applied to
the 3D three-orbital case. In this case, the Mott phase with a unit filling in the p band is
effectively described by a Hamiltonian with the degrees of freedom that are the generators
of the SU(3) group. This was first shown in Preprint I, which is the basis of this part of the
text. We will investigate both the bosonic and the fermionic cases, and we will show that
the anisotropies in the couplings of the effective models intrinsically depend on the statistics
of the atoms. Manipulation and detection schemes are also discussed for probing the physics
of SU(3) Heisenberg models.

Finally, we use the same approach to characterize the Mott phase of the d-orbital system
in 2D. As discussed in Sec. 3.2, this corresponds to the situation where occupation of the
dxy orbital vanishes for a large range of experimentally relevant system’s parameters, such
that the effective spin model is derived from the corresponding two-orbital description. In
particular, we show that due to the presence of density-assisted processes, the effective spin
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model for bosonic atoms in the d band is of the spin-1/2 XYZ type1 with an external field
even in the 2D isotropic lattice. In addition, breaking the isotropy of the lattice while still
keeping the two orbitals degenerate adds Dzyaloshinskii-Moriya exchange processes (DM).
We discuss qualitative properties of the ground-state phase diagram and the different phases
expected for this system. These studies were reported in Preprint II.

We will start this chapter by presenting the perturbative method for treating a general
system of multi-species that can be used to encode a (pseudo) spin degree of freedom. We
then apply this method to obtain the effective spin models in the p band in Secs. 5.2 and 5.3,
respectively, for the 2- and 3- orbital systems in 2D and 3D. We use Sec. 5.2.3 to discuss
the experimental probes for the p-orbital system and the effects due to imperfections in the
loading process are investigated in Sec. 5.2.4. In Sec. 5.4 we characterize the effective spin
Hamiltonians describing the Mott phase with a unit filling in the d band, and generalizations
of this method are also discussed throughout the text.

5.1. Effective Hamiltonian for describing the Mott phase with
unit filling

As a starting point for the derivations to be presented here, let us assume that Ĥ = ĤK+ĤU

is the Hamiltonian describing a generic many-body system in an optical lattice. ĤK contains
the kinetic part which describes tunneling processes with amplitude proportional to t, and
ĤU contains interaction terms with strength proportional to U . We assume that the system
is deep in the Mott insulator phase, where t � U , and study the dynamics in terms of an
effective Hamiltonian where tunneling processes are treated perturbatively [59, 62].

Since the Mott phase is characterized by a fixed number of particles per site, the derivation
of the effective Hamiltonian can be naturally handled with the use of projection operators
that divide the Hilbert space of the eigenvalue problem in orthogonal subspaces according to
site occupations. Our interest is the Mott phase with a unit filling, and therefore we define
the P̂ and Q̂ operators, P̂ 2 = P̂ , Q̂2 = Q̂ and P̂ + Q̂ = 1, that project, respectively, into
the Hilbert space of singly occupied sites HP , and the states that have at least one site with
double occupation HQ. The eigenvalue problem can be written as

Ĥ(P̂ + Q̂)Ψ→ (ĤK + ĤU )(P̂ + Q̂)Ψ = EΨ, (5.1)

which becomes (
Q̂ĤK P̂ + Q̂ĤKQ̂+ Q̂ĤU P̂ + Q̂ĤU Q̂

)
Ψ = EQ̂Ψ, (5.2)(

P̂ ĤK P̂ + P̂ ĤKQ̂+ P̂ ĤU P̂ + P̂ ĤU Q̂
)

Ψ = EP̂Ψ (5.3)

after operating from the left with the P̂ and Q̂ projectors in Eq. (5.1).

From all contributions, P̂ ĤK P̂ , P̂ ĤU Q̂ and P̂ ĤU P̂ are identically zero. The first two, for
computing overlaps between elements of the basis in disjoint subspaces of the Hilbert space.

1That is, with anisotropic couplings in the interactions of all the spin components.
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The last term, for computing two-body interactions in singly occupied sites. Thus, we are
left with

Q̂Ψ = − 1

Q̂ĤQ̂− E
Q̂ĤK P̂Ψ, (5.4)

which leads to

ĤMott1 = −P̂ ĤKQ̂
1

Q̂ĤQ̂− E
Q̂ĤK P̂ . (5.5)

So far this expression is exact, and it provides the basic framework for the derivation of
the various effective spin Hamiltonians to be discussed here. Now under the assumptions of
the Mott phase, the resolvent K̂ = 1/(Q̂ĤQ̂ − E) can be expanded such that the effective
Hamiltonian contains contributions to second order in t/U [59, 62]. Thus, it readily follows
that the intermediate and final states of the perturbative procedure in the HQ and HP
subspaces, respectively, are connected via tunneling processes. In addition, since E ∼ t2/U ,
K̂ ∼ H−1

Q , and due to the tight-binding approximation, it is possible to restrict the study to
the two-site problem. We describe it in terms of a basis denoted by |site j, site j + 1〉. Now
let us consider an initial situation with a unit filling of the lattice sites. Via action of the
tunneling, the atom at the site j tunnels to the site j + 1, which becomes doubly occupied.
This is the intermediate state in HQ, with an energy cost due to the interaction, that is given

by the processes defined in ĤU . After interaction has taken place, one of the atoms tunnels
back to site j, and the final state is again characterized by unit filling - therefore, in the HP
subspace.

Let us assume that this generic system described by Ĥ is composed of at least two different
atomic species, with corresponding tunneling amplitudes tασ and tβσ in the direction σ, and
write all the different possible states in the HP subspace as

HP → {|α, α〉, |α, β〉}, (5.6)

where α 6= β and α, β should account for all the possible combinations between the compo-
nents, and |α, β〉 = â†α,iâ

†
β,j |0〉.

In the same way, the different states in the basis of the HQ subspace follow

HQ → {|0, 2α〉, |0, αβ〉}, (5.7)

where |0, 2α〉 = 2−1/2â†α,j âα,j |0〉 and |0, αβ〉 = â†α,j â
†
β,j |0〉, with again α and β accounting

for all the possible combinations between the multiple components. Let us furthermore
assume that this system does not include tunneling processes with change of state2, i.e.,
only operators of the type â†α,j âα,i generate non-vanishing contributions. In addition, let us

call Kαβ
αβ = 〈0, αβ|K|0, αβ〉 the elements of K̂ = Ĥ−1 in the basis of the HQ subspace. A list

of all the possible transitions between the different states in this two-species system follow:

The states of the type |αi, αj〉 are connected via tunneling to the three different intermediate
states in the HQ subspace, i.e.,

K̂ â†α,j âα,i|αi, αj〉 =
√

2K̂|0, 2αj〉

=
√

2
(
Kαα
αα |0, 2αj〉+Kαβ

αα |0, αjβj〉+Kββ
αα|0, 2βj〉

)
.

2This assumption is used here only because in the systems to be discussed next, these processes yield
vanishing contributions. We notice, however, that this method can be easily extended to account for other
situations.
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The possible transitions are

(i) To |αi, αj〉 via action of â†α,j âα,i, which contribute to the effective Hamiltonian with
terms of the type

−
∑
〈i,j〉σ

∑
α,β

2 |tασ |2Kαα
αα n̂α,in̂α,j . (5.8)

(ii) To |αi, βj〉 via action of â†α,j âα,i, contributing to the effective Hamiltonian with

−
∑
〈i,j〉σ

∑
α,β

√
2 |tασ |2Kαβ

αα n̂α,iâ
†
β,j âα,j . (5.9)

(iii) To |βi, αj〉 via action of â†β,j âβ,i, contributing to the effective Hamiltonian with

−
∑
〈i,j〉σ

∑
α,β

√
2 tασt

β
σK

βα
αα â

†
β,iâα,in̂α,j . (5.10)

(iv) To |βi, βj〉 via action of â†β,j âβ,i, which contribute to the effective Hamiltonian with
terms of the type

−
∑
〈i,j〉σ

∑
α,β

2 tασt
β
σK

ββ
αα â

†
β,iâα,iâ

†
β,j âα,j . (5.11)

The states of the type |αi, βj〉 are also connected via tunneling to the three intermediate
states in the HQ subpace:

K̂â†α,iâα,j |αi, βj〉 = K̂|0, αjβj〉 =(
Kαα
αβ |0, 2αj〉+Kαβ

αβ |0, αjβj〉+Kββ
αβ |0, 2βj〉

)
.

(5.12)

Here, in addition to the conjugates of Eqs. (5.9) and (5.10), the other possible transitions
are

(v) To |αi, βj〉 via action of â†α,j âα,i, which contribute to the effective Hamiltonian with

−
∑
〈i,j〉σ

∑
α,β

|tασ |2K
αβ
αβ n̂α,in̂β,j . (5.13)

(vi) To |βi, αj〉 via action of â†β,j âβ,i, contributing with

−
∑
〈i,j〉σ

∑
α,β

tασt
β
σK

βα
αβ â

†
β,iâα,iâ

†
α,j âβ,j . (5.14)

In the following sections we apply this method to different systems, with explicit computa-
tions for each case.
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5.2. p-orbital bosonic system in the 2D lattice

We recall the explicit expression of the local part of the Hamiltonian describing the bosonic
system in the p band of a 2D optical lattice,

ĤU =
∑
i

Uxx
2
n̂x,i (n̂x,i − 1) +

∑
i

Uyy
2
n̂y,i (n̂y,i − 1) +

∑
i

2Uxyn̂x,in̂y,i

+
∑
i

Uxy
2

(
â†x,iâ

†
x,iây,iây,i + â†y,iâ

†
y,iâx,iâx,i

) (5.15)

with the parameters given by Eq. (2.48).

For this system, with the px and py orbitals, the basis of states in the HP and HQ subspaces
are given by

HP → |x, x〉, |x, y〉, |y, x〉, |y, y〉 (5.16)

and
HQ → |0, 2x〉, |0, 2y〉, |0, xy〉. (5.17)

With the basis in this order,

ĤQ =

 Uxx Uxy 0
Uxy Uyy 0
0 0 2Uxy

 . (5.18)

Due to the processes that transfer the atoms between the orbital states3, however, ĤQ is not
diagonal in the basis of intermediate states of the perturbative treatment, of doubly occupied
sites. We thus adapt the usual procedure and compute the matrix elements characterizing
the exchange interaction from the inverse K̂ = Ĥ−1

Q . Explicitly,

K̂ =

 Uyy/U
2 −Uxy/U2 0

−Uxy/U2 Uxx/U
2 0

0 0 1/2Uxy,

 (5.19)

where U2 = UxxUyy − U2
xy.

We are now ready to gather all the processes contributing to the effective spin Hamiltonian
from the list of transitions of Sec. 5.1. But first, let us notice the fact that since the Hamil-
tonian in the p band conserves the number of atoms in each of the orbital states modulo
2, the processes of number (ii) and (iii) are excluded. In fact, all the elements Kαα

αβ = 0 in

Eq. (5.19). Using the explicit expressions of the matrix elements of K̂ obtained from (5.19)
in the (i), (iv), (v) and (vi) processes of the above list, we obtain the effective Hamiltonian
describing the Mott-1 phase of bosons in the p band

ĤMott1 = −
∑
σ,α6=β

∑
〈i,j〉σ

(
2
|tασ |2Uββ
U2

n̂α,in̂α,j +
|tασ |2

2Uxy
n̂α,in̂β,j

−2
tασt

β
σUαβ
U2

â†α,iâβ,iâ
†
α,iâβ,j +

tασt
β
σ

2Uαβ
â†α,iâβ,iâ

†
β,j âα,j

)
.

(5.20)

3See the last line in Eq. (5.15).
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We now use the orbital states to define the Schwinger spin operators [48, 59]

Ŝzi = 1
2

(
â†x,iâx,i − â

†
y,iây,i

)
Ŝ+
i = Ŝxi + iŜyi = â†x,iây,i

Ŝ−i = Ŝxi − iŜ
y
i = â†y,iâx,i,

(5.21)

and together with the constraint of a unit filling of the lattice sites in the first Mott lobe,
n̂x,i + n̂y,i = 1, we re-write Eq. (5.20) as

ĤMott1 = −
∑
σ

∑
〈i,j〉σ

(
JzzŜzi Ŝ

z
j + JxxŜxi Ŝ

x
j + JyyŜyi Ŝ

y
j

)
+
∑
i

JzŜzi , (5.22)

where the various couplings depend intrinsically on the lattice configuration and are given
by

Jxx = 2
txσt

y
σ

Uxy

(
1− 4

U2
xy

U2

)
, (5.23)

Jyy = 2
txσt

y
σ

Uxy

(
1 + 4

U2
xy

U2

)
, (5.24)

Jzz = 4
|txσ|2Uyy
U2

+ 4
|tyσ|2Uxx
U2

− |t
x
σ|2

Uxy
− |t

y
σ|2

Uxy
, (5.25)

and

Jz =
∑
σ

(
2
|txσ|2Uyy
U2

− 2
|tyσ|2Uxx
U2

)
+
(
Eos
x − Eos

y

)
. (5.26)

This is one of the main results of this thesis. It shows that the Mott insulator phase with
a unit filling of bosonic atoms in the p band of a 2D optical lattice is effectively described
by the XYZ Heisenberg model. In turn, this is one of the paradigm models in the study
of quantum magnetism, making it possible to use known properties of the XYZ model to
understand the physics in the p band. At the same time, as we argue here, it also makes the
system of p-orbital bosons a useful tool in the context of quantum simulation [61].

The first property to notice in Eq. (5.22) is that contrary to the effective spin Hamiltonians
obtained from Bose-Hubbard models in the ground-band of optical lattices4 [63], the effective
spin model describing the first Mott lobe in the p band is fully anisotropic in its couplings.
This is a consequence of the Z2 symmetry of the orbital-changing processes, that break
the U(1) symmetry typical of the (density-density) interactions of multi-species systems in
the ground band5. In the XYZ model, this symmetry corresponds to the invariance of the

4Due to the continuous symmetry in the interaction terms of the many-body Hamiltonian of this case, these
systems typically yield Heisenberg models of the XXZ or XY types.

5As already stated in Sec. 2.4.1, spinor condensates have an interaction term describing processes similar to
the orbital-changing interaction in the p band, but with a relative coupling constant that is small enough
to be neglected. This follows from the fact that the scattering lengths of the different Zeeman levels are
typically very similar.
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5. Beyond the mean-field approximation: effective pseudospin Hamiltonians via exchange interaction

Hamiltonian (5.22) with respect to the transformation

Ŝx → −Ŝx

Ŝy → −Ŝy

Ŝz → Ŝz.

(5.27)

Next, we notice that since the tunneling in the p band satisfies txσt
y
σ < 0, the coupling

constants for interaction between nearest neighbours in the x and y components of the spin,
Jxx and Jyy, are negative, and therefore favor primarily anti-ferromagnetic order. This is
an interesting result for a bosonic system, because exchange interactions preserve the sign
of the wave-function in the bosonic case, making it more natural for the bosonic system to
favor ferromagnetic order at neighbouring sites. This is not the case here, however, and only
because of the particular tunneling in the p band.

In the 2D isotropic lattice, we notice in addition that Jz = 0. In fact, since here tx‖ = ty‖
and tx⊥ = ty⊥, the vanishing external field is a direct consequence of the invariance under the
parity transformation discussed in Eq. (2.51). However, whenever this symmetry is broken,
the XYZ model has the additional external field in the spin z-component, as we discuss next
in the realization of an effective 1D system.

Many-body quantum systems in one dimension are extremely attractive from both
theoretical and experimental viewpoints. On the theoretical side, one of their striking
features is the requirement of a description in terms of the collective rather than the indi-
vidual behavior of their many constituent parts [64]. To give an example, let us consider
the description of a system of spinless bosons with repulsive interactions in one dimen-
sion. The most general property one could guess, is that this system is characterized by
a symmetric wave-function, as should be the case since bosonic particles are symmetric
under exchange. Now let us consider the limit of infinitely repulsive interactions, called
the Tonks-Girardeau limit. Here a very reasonable assumption is that the amplitude of
the wave-function should decrease in the neighborhood of any of the bosonic particles,
and vanish completely at the exact values where the probability of finding any of them
is maximum, as shown in Fig. 5.1.

Now via reflection to the negative axis, this symmetric wave-function can be used
to construct an alternative anti-symmetric wave-function that reproduces the nodes of
the symmetric case. At the level of the wave-functions, the description provided by
the symmetric and anti-symmetric wave-functions will be very different. In fact, col-
lective anti-symmetric wave-functions describe systems of non-interacting fermions, not
of bosons. But this anti-symmetric wave-function can be constructed, for example, in
such a way that its absolute value reproduces the absolute value of the symmetric one.
In this case, even though the wave-functions are describing different systems or even
more, systems with particles of different statistics, the properties of the bosonic system
at the level of densities, as e.g. density-density correlation functions, can be completely
inferred from the properties of a system of non-interacting fermions. This process is
usually referred to as the fermionization of bosons [65]. It illustrates here one of the
many peculiarities of many-body systems in 1D.

5.2.1. Properties of the ground-state: the phase diagram of the XYZ model

Very little is known about the XYZ Heisenberg model in 2D. In addition to not having
known analytical solutions, numerical treatment of this problem becomes very hard due to
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Figure 5.1.: 1D system of infinitely repulsive bosonic particles. The position of the bosons are the
black dots in the x axis and the red and blue wave-functions correspond, respectively,
to the symmetric and anti-symmetric descriptions discussed above. This figure is taken
from Ref. [65] with permission of the author.

the exponential growth of the Hilbert space that makes it intractable already for a system
as small as a 6 × 6 lattice in 2D. Therefore, as we already stated, Eq. (5.22) puts forward
the p-orbital system as an obvious candidate for simulating the XYZ model.

We will illustrate that this is indeed the case, by considering a lattice with very deep wells in
the y direction, such that the dynamics is restricted to happen in the x axis. The idea is to
obtain an effective 1D system out of the asymmetric 2D lattice, that is appropriately tuned
to still keep the (quasi) degeneracy between the orbitals. In this setup, the Z2 symmetry
of Eq. (2.51) is broken and the system has the additional term describing the external
field. In the presence of the field the XYZ model is non-integrable - and therefore the need
for quantum simulation, but properties of the ground-state can still be extracted with a
combination of different techniques. As we show here, this system has a rich phase diagram
with different phases separated by different types of phase transitions. We will explore these
in the context of p-band physics.

In 1D, the study of the XYZ model has a long history. It was first shown by Sutherland
in 1970 [60, 66] that the transfer matrix of any eight-vertex model commutes with the
Hamiltonian of the XYZ Heisenberg model. Baxter showed in 1971 and 1972 that the
minimum eigenvalue of the XY Z model with no external field can be obtained for any
values of the couplings, because this Hamiltonian is effectively a logarithmic derivative
of an eight-vertex transfer matrix [60, 66]. Baxter studied the ground-state properties of
the XY Z model by generalizing the Bethe ansatz [60] and in 1973 Baxter’s results were
generalized by other authors for computing the energy of excitations.

Before proceeding, let us first we re-write Eq. (5.22) in the standard notation

ĤMott1 =
∑
〈i,j〉

J

[
(1 + γ)Ŝxi Ŝ

x
j + (1− γ)Ŝyi Ŝ

y
j +

∆

J
Ŝzi Ŝ

z
j

]
+
∑
i

hŜzi , (5.28)

and in 1D, where J = −2txty/Uxy, ∆ = −Jzz, γ = −4U2
xy/U

2 and h = Jz with σ = x (see
Eq. (5.26)). We re-write it once more with the use of the Jordan-Wigner transformation

Ŝ−i = eiπ
∑i−1
j=1 ĉ

†
j ĉj ĉi

Ŝ+
i = ĉ†je

iπ
∑i−1
j=1 ĉ

†
j ĉj ,

(5.29)

in terms of the fermionic operators ĉj satisfying {ĉi, ĉj} = {ĉ†i , ĉ
†
j} = 0 and {ĉi, ĉ†j} = δij .

This yields the fermionic Hamiltonian

ĤKitaev/J =
∑
n

[
(ĉ†nĉn+1 + ĉ†n+1ĉn) + γ(ĉ†nĉ

†
n+1 + ĉn+1ĉn)

+∆
J (ĉ†nĉn − 1

2)(ĉ†n+1c
†
n+1 − 1

2) + h
J (ĉ†nĉn − 1

2)
]
,

(5.30)
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that contains a pairing term proportional to the anisotropy parameter γ. The presence of
a pairing term typically opens a gap in the energy spectrum, and accordingly, we expect
the spectrum to be gapped whenever γ 6= 0. This should indeed be the case, because the
anisotropy on the couplings is generated by the orbital-changing interactions, that reduce
the otherwise U(1) continuous symmetry of the density-density interactions to a Z2 discrete
symmetry. In addition, we notice furthermore that the limit of ∆→ 0 is a realization of the
Kitaev chain [67].

Now in 1D, the ground-state of the XYZ Heisenberg model in an external field described by
Eq. (5.28) is characterized by four different phases as one varies the system’s parameters [68].
A schematic phase diagram is illustrated in Fig. 5.2. At zero field, the XYZ model is
integrable and with known analytical expressions for the eigenvalues and eigenvectors [66].
At large and positive values of ∆/J the system has anti-ferromagnetic order in the z spin
component. For small values of ∆/J , the system is in the so called spin-flop phase [68],
that is characterized by Nèel order in the x or y spin component6. For large and negative
values of ∆/J and h = 0, the z component of the spin is in a Z2-parity symmetry broken
ferromagnetic state, and regardless of the sign of the couplings, the limit of very large
external field is characterized by a highly magnetized state that is referred to as polarized
phase. These three phases also characterize the phase diagram of the XXZ model in a
longitudinal field7. For non-zero anisotropy γ, however, the system has an additional phase
between the anti-ferromagnetic and spin-flop phases that is called the floating phase. This
is a gapless phase characterized by algebraic decay of correlations8 [58], which is is rather
unexpected from the viewpoint of the fermionic chain. In fact, since the pairing term in the
Hamiltonian (5.30) is proportional to γ, we would expect the entire phase diagram to be
gapped.

All these phases are separated by different types of phase transitions [68]. The transition from
the anti-ferromagnetic to the floating phase is of the commensurate-to-incomensurate (C-IC)
type, whereas the transition from the floating phase to the spin-flop phase is a Berezinski-
Kosterlitz-Thouless (BKT) transition. For ∆ < −(1 + |γ|), at h = 0, the transition between
the two magnetized phases9 of positive and negative total magnetization is first order, and
finally, between the spin-flop and the polarized phases there is an Ising transition.

In what follows we give a brief overview on the different phases and phase transitions
discussed above. For illustrative purposes, magnetization properties are considered here
in the context of an Ising-like Hamiltonian given by

HIsing = −J
∑
〈i,j〉

ŜiŜj + h
∑
i

Ŝi.

• Nèel order: Nèel order is the term generally used to describe a state with broken
symmetry and for which

〈Ŝi〉 6= 0

6It depends on the largest coupling. For the value of γ considered here the ordering occurs in the y component
of the spin.

7Notice, however, that the spin-flop phase is called the XY phase in the phase diagram of the XXZ model.
The difference between these two phases is the gapless vs. gapped character of the excitations in the XXZ
vs. XYZ models, respectively.

8In terms of bosonization and renormalization group arguments [68, 69], the floating phase is characterized
by irrelevant Umklapp terms and accordingly described by the Luttinger liquid theory. Upon entering the
XY phase these terms are no longer irrelevant and the phase becomes gapped [68].

9The highly magnetized phase is also referred to as polarized phase.

64



5. Beyond the mean-field approximation: effective pseudospin Hamiltonians via exchange interaction

Figure 5.2.: Schematic phase diagram of the XYZ chain. AFM denotes the anti-ferromagnetic phase,
FP the floating phase, SF the spin-flop phase and PP the polarized phase. The properties
of these phases and different types of phase transitions are discussed in the text.

for all the spins [70]. Although this is most commonly used to refer to the bipartite
lattice of the (Nèel) anti-ferromagnet, with alternating orientation of neighbouring
spins [70], we notice the existence of more complex patterns that also correspond
to a Nèel state [70].

• Anti-ferromagnetic phase (J < 0): as stated above, the anti-ferromagnetic phase is
characterized by Nèel order with alternating neighboring spins. States of this type
are characterized by staggered magnetization [70], and therefore with vanishing net
magnetization:

M =
∑
i

〈Ŝi〉 = 0.

• Floating phase (J < 0): this is a gapless phase without a local order parameter,
and for which the correlations decay algebraically [71].

• Spin-flop phase (J < 0): this corresponds to a gapped phase with Nèel order in the
x and y components of the spin, with exponential decay of the correlations.

• Highly magnetized state or polarized phase (J < 0): for sufficiently large h, the
phase diagram of spin models subjected to external fields will always display a
highly magnetized state, where the spins align in the direction of the field. This
corresponds to an “imposed” ordering, in the sense that it does not involve sym-
metry breaking and the spins are uncorrelated.

• Ferromagnetic phase (J > 0): all the spins align in the same direction, building a
state of saturate magnetization. The ordering process involves symmetry breaking
with an order parameter similar to that of the anti-ferromagnetic phase [70].

We now briefly discuss the properties of the different types of phase transitions that
appear in the phase diagram of the infinite system, Fig. 5.2:

• Ising transition: the transition between the polarized and the spin flop phases be-
longs to the universality class of the 2D Ising model. It is classified as a continuous
or second order phase transition, and therefore the discontinuities appear at the
level of the order parameter (or second derivatives of the energy). In the Ising
transition, the critical exponent related to the divergence of the correlation length
goes as ξ ∝ (distance from the transition)−1 as one approaches the critical point,
and in addition, the dynamical critical exponent10 (z) is also equal to one [73, 74].

10The dynamical critical exponent is the exponent defined to characterize the behavior of the correlation time
near the critical point. In the same way as it works for the correlation length, the correlation time also
diverges in the vicinity of the phase transition. The divergence of the correlation time implies that the
fluctuations become incredibly slow, a phenomenon that is known as the critical slowing down [72, 73].
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• Berezinski-Kosterlitz-Thouless transition (BKT): BKT transitions also belong to
the class of continuous phase transitions. They are rather special, however, be-
cause all the derivatives are continuous (they are sometimes referred to as infinite
order phase transitions), and there is no local order parameter [75]. In fact, BKT
transitions do not involve symmetry breaking and are not described by the Landau
theory.

• Commensurate to incommensurate transition (C-IC): the C-IC transition happens
due to the interplay of competing length scales in the system. In a periodic system,
for example, the collective excitations can develop a periodic structure that has
different period from the “natural period of the system”. These structures could
appear in the form of kinks, walls or solitons11 [76].

• First order phase transition: in thermodynamic systems, first order phase tran-
sitions are defined as transitions that involve coexistence of phases, latent heat,
and the discontinuities appear in the first derivative of the free energy [73]. In the
same way, in quantum phase transitions12, the discontinuities appear in the first
derivative of the ground state energy as one of the Hamiltonian’s parameters is
varied.

Finite size effects

As we stated before, the rich phase diagram of the XYZ model in an external field makes
the system of bosons in the p band an attractive tool for quantum simulation. In fact, in
a controllable environment this would open up for the possibility of probing properties of
different phases in the vicinity of different types of phase transitions. However, the outcomes
of any experiments of such systems should be analyzed with additional considerations to
account the effects of finite size due to the harmonic confinement inevitably required in
experiments with cold atoms. It is therefore important to reproduce the theoretical study in
systems with finite size. We notice, first, that if the trap is smooth enough in the confined
system, the couplings of the spin model are only renormalized to acquire a spatial dependence.
If the size of the orbitals is very small compared to the length scale imposed by the trap,
then this spatial dependence is not relevant for the physics and can be safely neglected.

We therefore restrict the study of finite size effects to the open chain13 with constant cou-
plings, where we perform exact diagonalization for systems with up to 18 spins. We focus
on the behavior of the total magnetization of the ground state

M =
∑
i

〈Ŝzi 〉 (5.31)

for different values of h/J and ∆. γ is assumed to be fixed. The result for the case of 18
spins is presented in Fig. 5.3, that clearly shows the well defined values of total magneti-
zation M expected for the anti-ferromagnetic and polarized phases. In between, however,
we observe various plateaus that mark the different values of M due to modulation of the
anti-ferromagnetic Nèel state with increasing values of h, building a devil’s staircase struc-
ture of spin-density waves (SDW) [71, 78]. This also suggests that in terms of the total
magnetization M , the Ising transition between the polarized and the spin flop phase is the

11A very good review on the subject is given in Ref. [71].
12Here there is no concept of temperature, i.e., quantum phase transitions happen at T = 0 and due to

competition between non-commuting terms in the Hamiltonian of the system [77].
13That is, with open boundary conditions.
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Figure 5.3.: Finite size phase diagram obtained from exact diagonalization of a system with 18 spins
and with the anisotropy parameter γ = 0.2. It displays the total magnetization M (as
defined in the text) which is characterized by an incomplete devil’s staircase of SDW
between the AFM and the PP phases.

one for which we expect a better quantitative estimate. While it is not clear whether the
C-IC transition can be captured with this order parameter14, the BKT transition is most
likely overshadowed due to the sharp transitions between the different spin density waves. In
the thermodynamic limit this staircase becomes complete and one then recovers the phase
diagram displayed in Fig. 5.215. These transitions between the different SDW are more pro-
nounced for moderate system sizes and we estimate approximately 15 different SDW between
the anti-ferromagnetic and polarized phases of a system with 50 spins16.

5.2.2. Experimental probes, measurements & manipulations

“All theory, dear friend, is gray, but the golden tree of
life springs ever green.”’

—From Faust, Johann Wolfgang von Goethe.

The entire derivation of the effective spin model presented so far is based on the fact that
the spins are encoded in spatial degrees of freedom rather than in internal atomic states.
Accordingly, experimental manipulation/detection in this system requires the ability of con-
trolling the spatial states of the atoms at single sites. As we argue here, a possible protocol
for the experimental probes can be implemented with the use of trapped-ion techniques [81]
combined with single-site addressing [9, 82].

Indeed, in the region of parameters relevant for the physics deep in the Mott insulator phase,
the sites of the optical lattice can be accurately approximated by a harmonic potential with
frequency ωα =

√
2Vαk2

α/m (recall that kα are the wave vectors of the optical lattice laser
in the direction α) [29]. In this potential, different vibrational levels, that correspond to the

14Notice, however, that this is not excluding the possibility of having different order parameters with more
accurate predictions for the phases in between the polarized and the anti-ferromagnetic ones.

15In fact, it has been conjectured [79] that using similar heuristics for going up and down the steps of a
complete devil’s staircase, Chuck Norris counted to infinity - twice [80].

16We consider here that the chain with 50 spins is supposed to provide a very good experimental picture of
the system that we would like to realize.
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Figure 5.4.: Schematic couplings between the different orbital states. While the carrier transition
does not change the vibrational state of the atom, red and blue sideband transitions can
be used to lower and to raise the vibrational states of the atom, which therefore couples
different orbital states.

different bands in the context of optical lattices, can then be coupled via stimulated Raman
transitions performed in a two-level atom [17]. As we mentioned in Sec. 2.5 this technique
has been successfully employed in Ref. [17] for promoting atoms from the s to p bands, in the
Mott phase, of 1D, 2D and 3D lattices. However, since that study focused on the properties
of coherence of the superfluid phase, further manipulation of the orbital degrees of freedom
in the Mott phase have not been discussed. We therefore extend the method and propose
an experimental scheme to account for this case. Before this, we revise the key concepts
involved in the experimental procedure.

Consider thus a Raman coupling between the |1〉 = |F = 1〉 and |2〉 = |F = 2〉 atomic
electronic states of 87Rb. These are two-photon processes where the two levels are coupled
with an intermediate virtual state, far detuned from all the other states of the system [17].
Because of this intermediate coupling, implementation of Raman transitions require the use
of two different lasers, whose corresponding wave vectors are denoted here by kL1 and kL2 .
The matrix element characterizing this transition is given by

Ω1Ω∗2
δ
〈2|ei(kL1

−kL2
)·x|1〉, (5.32)

where Ωi are the Rabi frequencies between the |i〉 states, i = 1, 2 with another far detuned
auxiliary state of this system, say |aux〉, and δ is the detuning between |aux〉 and the virtual
intermediate state.

After adiabatic elimination of the auxiliary state, the interaction between the atom in the
harmonic potential with the lasers driving the Raman coupling is given by [29]

H =
∑
α

ωαâ
†a−

∑
α

[
∆α

2
σz +

1

2
Ω
(
σ+e

iηα(â+â†) +H.c.
)]
, (5.33)

where the first term accounts for the center of mass motion of the atom in the harmonic
potential, and the second and third terms describe the driven two-level system in the rotating-
wave approximation [29]. In this notation Ω = Ω1Ω∗2/δ is the effective Rabi frequency,
σ+ = (σ−)† = |2〉〈1|, σz = |2〉〈2| − |1〉〈1|, ∆α = ωα − ω12 are the detunings of the lasers
with respect to the atomic transition, of frequency ω12, and ηα = ∆kL,α

√
~/2mωα is the

Lamb-Dicke parameter, with ∆kL,α = kL1,α − kL2,α.
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In the Lamb-Dicke regime, when ηα � 1, the expansion of the exponential can be truncated
to eiηα(â+â†) ≈ 1 + ηα(â+ â†) [29], and the corresponding Hamiltonian describes a two-level
system coupled to the phonon excitations of the harmonic oscillator with bare Hamiltonian
given by H0 = â†a − 1

2∆ασz. The eigenstates of this system can be denoted by |1, n〉 and
|2, n〉, with n labeling the vibrational level. By carefully choosing the driver frequency, three
possible transitions can be implemented [29]:

(i) The carrier transition, when ∆α = 0,

Hcar =
~
2

Ω [σ+ +H.c.] , (5.34)

which couples the orbital states but has no effect in the vibrational state.

(ii) The red sideband transitions, when ∆α = −ωα,

Hrsb =
~
2

Ωηα

[
â(σ−)† + â†σ−

]
, (5.35)

that decrease the vibrational state n by one quanta, when the atom swaps from |1〉 to
|2〉.

(iii) The blue sideband transitions, when ∆α = ωα

Hbsb =
~
2

Ωηα

[
â†(σ−)† + âσ−

]
, (5.36)

that increase the vibrational level n by one for the same atomic transition as above.

These transitions are schematically shown in Fig. 5.4.

In addition to selective transitions, it is also possible to selectively address the different
orbital states [9]. px orbitals, for example, can be addressed by choosing driver lasers with
no component in the y and z directions, i.e., kL1 − kL2 = kLx . Analogous relations hold for
manipulations of py orbitals only.

Now in order to show that these techniques provide full control of the system, we discuss

implementation of arbitrary rotations R̂β(φ) = eŜ
βφ, where β = {x, y, z} and φ is an effective

angle of rotation. The simplest case, of rotations around the z component of the spin, can be
performed by noticing that Ŝz = Ŝ+Ŝ− − 1. Therefore, it is enough to realize the operation
Ŝ+Ŝ−, which phase shifts one of the orbitals. This is nothing but a Stark shift of one of the
orbitals17, which can be implemented via driving the carrier transition off-resonantly for one
of the two-orbitals.

The R̂x(φ) operation can be implemented by simultaneously driving off-resonantly the red
sidebands of the two orbitals. Due to the large detuning, the s-band will never become
populated but the transition between the two orbitals can be made resonant. This operation
involves the three states that we denote here as {|x, 0, 0〉, |0, y, 0〉 and |0, 0, s〉}, where the last
entry of the ket refers to the state in the s band. The p orbitals are coupled to the s orbital

17Recall that the driving occurs in the largely detuned case.
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in a V -configuration [83], that in the rotating wave approximation is described by [83, 84]

ĤV =

 0 0 Ω1

0 0 Ω2

Ω1 Ω2 δ

 , (5.37)

where Ω1 and Ω2 are taken to be real and spatially dependent. For δ � Ω1, Ω2 the Hamil-
tonian that generates a rotation with the x component of the spin, R̂x(φ) [83],

Ĥx =

[
0 Ω
Ω 0

]
= ΩŜx, (5.38)

is then obtained after adiabatic elimination of the state |0, 0, s〉. Note, however, that if the
Raman transition between the two orbitals is not resonant, then this process will perform a
combination of rotations with the x and z spin components. Finally, the rotations with the
y component of the spin can be performed in two ways, either by adjusting the phases of the
lasers, or by noticing that R̂y(φ) = R̂z(π/4)R̂x(φ)R̂z(−π/4).

This method allows thus for any manipulation of single spins at a given site. To measure
the state of the spin in a given direction, one then combines the rotations with single site
resolved fluorescence (which measures Ŝzi ) [85]. More precisely, since the drive laser can
couple to the two orbitals individually, one of the orbitals will be transparent to the laser
while the other one will show fluorescence. In other words, this is equivalent to measuring
Ŝzi on a single site. The other components of the spin can also be measured in this way, but
after the correct rotation to the spin state has been previously implemented. Furthermore,
with the help of coincident detection [86], it is possible to extract correlators of the type

〈Ŝαi Ŝ
β
j 〉, α, β = {x, y} [87].

External tuning of the couplings

The spin mapping carried out in Sec. 5.2 provides a route for obtaining the Hamiltonian
that effectively describes the physics of Mott-1 phase of p-orbital bosons. In that procedure,
all the couplings in the spin model are shown to depend initially on the parameters of the
bosonic system, and therefore also on the configuration of the optical potential.

In order to gain some intuition on the character of the couplings and to locate the system
in the phase diagram of Fig 5.2, we compute the couplings of the spin model with use of the
analytical expressions of the parameters of the bosonic system in the harmonic approximation
(see Appendix A). Introducing σα to denote the widths of the orbital wave functions for the
spatial directions α ={x, y, z}18, we obtain

Uxx = Uyy = 3Uxy =
u0

σxσyσz
, (5.39)

where u0 is the effective strength of the interactions, proportional to the s-wave scattering
length. Now by noticing that |tx|2 � |ty|2, from Eq. (5.25),

∆ ≈ −|tx|2
(

4
Uyy

UxxUyy − U2
xy

− 1

Uxy

)
, (5.40)

18Notice that the two-orbital system is obtained from the 3D lattice with the dynamics suppressed in z
direction and without preserving the degeneracy of the third orbital.
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which corresponds to

∆ = −|tx|2 3σxσyσz
2u0

< 0. (5.41)

Since this estimate yields ∆ < 0, the exchange interactions in the z spin component fa-
vor primarily ferromagnetic order. Similar computation yields γ = 1/2, which according
to Eqs. (5.23) and (5.24) yield interactions favouring anti-ferromagnetic ordering in the x
and y spin components. Although this is quantitatively different from the result obtained
from numerical computation with use of the lattice Wannier functions, the qualitative pic-
ture provided by the estimate with the couplings in the harmonic approximation is correct.
Namely, numerical computation always yields ∆ < 0 and therefore puts the system in the
ferromagnetic side of the phase diagram. For the p-band system, this means that the or-
bitals are “ferromagnetically” aligned in the direction of the node, while anti-aligned in the
perpendicular direction.

However, the schematic phase diagram of Fig. 5.2 shows that a great deal of interesting
physics is found in the region of anti-ferromagnetic type of interactions in the z component
of the spin. Now is it possible to drive the p-orbital system into the anti-ferromagnetic part
of the phase diagram?

Fortunately, the experimental techniques discussed in the previous section can be used to
selectively reshape the orbital states in such a way to control the relative magnitude of the
parameters of the many-body system. This can be experimentally implemented by driving
the carrier transition of either of the two orbitals dispersively, with a spatially dependent
field19. If the shape of the drive is chosen in such a way that the resulting Stark shift is
weaker in the center of the sites, then this procedure will narrow the orbital in one of the
directions and we say that the orbital is squeezed. Let us assume that the squeezing is
implemented here in the y direction. Then the only requirement is that the spatial profile
of the field driving the carrier transition changes in the length scale of the lattice spacing in
this direction. The tunneling rates tx and ty will not be affected by the squeezing but both
Uyy and Uxy and therefore also the coupling constants, will.

To be more specific, let us assume that the ratio σ of the harmonic length scales of the px and
the py orbitals is tuned (in the y direction). A straightforward calculation using harmonic
oscillator functions yields

α ≡ Uxx
Uxy

= 2−3/23
(1 + σ2)3/2

σ
(5.42)

and
β ≡ Uyy/Uyx = 2−3/23(1 + σ2)3/2, (5.43)

from where we can write the dependence of the coupling constants on the width σ by

∆/J = 2tx(ty)−1 β

(αβ − 1)
= 2ty(tx)−1 α

(αβ − 1)
− tx(ty)−1 + ty(tx)−1

2
(5.44)

and

γ = − 4

(αβ − 1)
. (5.45)

19This is nothing but a potential that reshapes the lattice sites in different ways for the different orbitals,
and that can be implemented as a change in the σy widths of the different Wannier functions (wx(r) and
wy(r)) of the orbitals, while the widths σx are kept unaltered.
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This allows for experimentation with different types of XYZ chains. Indeed, while the
interactions of Ŝy always favor antiferromagnetic order, the interactions in Ŝx and Ŝz can
happen with couplings that support both ferro and anti-ferromagnetic ordering as shown in
Fig. 5.5. Therefore, the p-orbital system is a tunable quantum simulator for different types
of XYZ Heisenberg models.

Figure 5.5.: Different types of models that are achieved by varying the relative tunneling strength
and the relative orbital squeezing. The three different parameter regions are: (I) anti-
ferromagnetic couplings in all the components of the spin with ∆ > J (1 + |γ|), (II)
ferromagnetic or anti-ferromagnetic couplings in the z component of the spin and anti-
ferromagnetic in the y component with J (1 + |γ|) > ∆, and (III) the same as in (II)
but with |∆| > J (1 + |γ|). The inset shows one example of the spin parameters where
ty/tx = −0.1, and Jxx = (1 + γ), Jyy = (1− γ) and Jzz = ∆/J . In the notation of
Paper II, and therefore also in this figure, Jαα = Jαα, and tα = tα as used in this thesis.

5.2.3. Experimental realization

As discussed in Sec. 2.5, the lifetimes in experimental realizations with bosonic atoms in the p
band are surprisingly long. In fact, in the study of Ref. [17], the atoms could tunnel hundreds
of times before decaying to the s band in a 1D realization with mean occupation of two
atoms per site. Since the main decay mechanism stems from atom-atom collisions [18, 17],
the lifetimes are expected to increase considerably when the lattice is prepared with a unit
filling20.

We can estimate the typical values for the tunneling times from the overlap integrals of
neighboring Wannier functions (see Eq. (2.47)). Considering 87Rb atoms, for example, and
λlat = 843nm to be the wavelength (in the y-direction) which sets the recoil energy ER, we
obtain J/ER ∼ 0.01 and the characteristic tunneling time τ = ~/J ∼ 5ms for the system
with Vx = 30ER, Vy = 50ER and Vz = 60ER. This corresponds to a few dozens of times
smaller than the expected lifetimes [17], which should allow for experimental explorations of
the systems proposed here. In addition, it is possible to use the external driving discussed
above to increase the lifetimes even further.

As a last remark we notice that the temperatures required for observation of the spin cor-
relations are of the order of kBT . J ∼ t2/U [63]. Although it might be experimentally

20In fact, Ref. [17] estimates an increase of up to a factor of 5 in the lifetimes for the situation with unit
filling of the lattice sites.
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challenging to reach such low temperatures in the laboratory at the moment, the rapid de-
velopment in the field of cold atoms gives an optimistic prospect for explorations of this type
of physics in the near future [88].

5.2.4. Effective model including imperfections due to s-orbital atoms

In addition to the low temperatures required for the implementation of effective spin models
with systems of cold atoms, another experimental challenge for the system in the p band
is related to experimental imperfections on the process of loading. The techniques used in
Ref. [17], based on stimulated Raman transitions reported 80% fidelity in the process of
promoting the atoms from the Mott phase in the s to the p band. Therefore, it is important
to understand how the presence of residual s-orbital atoms affects the physics discussed so
far.

Let us start by considering

Uspα = U0

∫
dr|ws,j(r)|2|wα,j(r)|2, (5.46)

which characterize the strength of repulsive interactions between an s- and a pα-orbital atom
at the site j. Since the pα-orbital wave-functions are spatially broader than the s-orbital
ones, Uspα > Uαβ, and accordingly, the repulsive interaction between s-orbital and p-orbital
atoms is larger than the repulsive interaction when both atoms are in the p band.

Now to the list of Sec. 5.1, two additional processes should be added in the effective model.
The first one, which includes tunneling of s-orbital atoms, can be safely neglected due to
the reduced rate of tunneling in the s band and the larger value of the coupling constant for
repulsive interaction Usp. The second process, which involves tunneling of pα-orbital atoms,
will contribute to the Hamiltonian with the following term

−|t
α
σ |2

Usp
â†α,iâ

†
s,j âα,iâs,j = −|t

α
σ |2

Usp
n̂α,i, (5.47)

where âs,j (â†s,j) annihilates (creates) an s-orbital atom at the site j and where we used
that n̂s,j = 1. The presence of residual s-orbital atoms is therefore associated with local
fluctuations of the external fields, that is described by the additional term

Ĥdis
i =

1

2Usp

(
|txσ|2 − |tyσ|2

)
δ1,nsi

Ŝzi = hzi Ŝ
z
i . (5.48)

The result is the Hamiltonian of the XYZ model in a random external field,

Ĥ
(dis)
Mott1

= −
∑
〈i,j〉σ

(
JzzŜzi Ŝ

z
j + JxxŜxi Ŝ

x
j + JyyŜyi Ŝ

y
j

)
−
∑
i

Jzi Ŝ
z
i , (5.49)

where
Jzi → Jz + hzi . (5.50)

Since the loading of atoms to the p band is implemented globally, a coherent loading will
prepare translationally invariant states with a fraction of the population in the s band.
However, whenever the loading is not perfectly coherent, we may envision situations where
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decoherence process lock the s-band atoms at fixed sites. In such cases, the collapse of the
state describing these residual atoms, induced by decoherence, will break the translational
symmetry and the overall effect of the s-band atoms will be that of a static disorder in the
fields as in Eq. (5.49). In light of the Imry-Ma argument [89], which establishes a criteria
for the stability of ordered phases in the presence of disorder, we expect the phase diagram
of the 1D system (see Fig. 5.2) to be robust against a small number of s-orbital atoms. As
the fraction of impurity atoms increases, and as such, the number of sites with a disordered
external field, we expect the disorder to become relevant, and the qualitative picture to
change. However, the study of the random-field XYZ chain is out of the scope of the present
thesis and is left for the future.

Figure 5.6.: Schematic plot of three random experimental realizations of the insulating state. Here the
yellow balls represent an s-orbital atom, while the blue ones represent p-orbital atoms.

Let us consider the effect of random-field disorder in the classical Ising model21 de-
scribed by

H = −J
∑
〈i,j〉

SiSj −
∑
i

hiSi, (5.51)

where 〈hi〉 = 0 ensures that global symmetries of the clean system remains untouched,
and 〈hihi〉 = Wδij .

In the limit where W � J2, the ground state is a random paramagnet, where each Si
aligns with the local fields hi. In the other limit, where W � J2, the ground state is a
state with most of the spins aligned with the neighbors. Now the question behind the
Imry-Ma argument is: “is it still possible to have ferromagnetic order in the presence of
a weak random field?”. Here it is important to understand whether it is favorable for the
system to form domains. According to Imry and Ma, the relevant energetic balance lies
on the tradeoff between the energy loss due to the formation of domain walls with the
energy gain due to the random field. Therefore in d dimensions, one needs to compute
the energy cost for creating the domain wall with respect to its size, and the uniform
state is stable if the random field energy ERF is smaller than the domain wall energy
EDW , √

WLd/2 < JLd−1, or
√
W < JLd/2−1. (5.52)

Since for weak disorder
√
W � J , if d > 2 the ordered state is stable and the ferromag-

netic state is possible to be attained, whereas if d ≤ 2 the ordered state is unstable and
it is more favorable for the system to form domains if L is large enough. This also means
that if d ≤ 2, arbitrarily weak disorder can destroy ferromagnetic order in a classical
model22.

21This discussion is based on Ref. [73].
22Due to the classical to quantum correspondence via partition function in imaginary time, a quantum system

in d dimensions is usually equivalent to a classical system in d+ 1 dimensions.
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The rigorous proof of this result, the Aizenman-Wehr theorem, states that the pres-
ence of a random field is capable of destroying long range order if the system has an
order parameter with discrete symmetry for all d ≤ 2, while if the order parameter has
continuous symmetry23, random fields destroy long-range order for all d ≤ 4.

5.3. 3D system and simulation of Heisenberg models beyond
spin-1/2

The analysis of the two-orbital system in the p band revealed an interesting correspondence
between this and the XYZ Heisenberg model, that furthermore, due to the particular dy-
namics in the p band, extends the realizations of spin systems with cold atoms in optical
lattices to the Hamiltonian of the fully anisotropic Heisenberg model. Now how to describe
the three-orbital system in terms of an effective pseudospin Hamiltonian and what are the
properties of the corresponding model?

From the mean-field analysis of Sec. 3.1.2 we have seen that in 3D lattices, the three-orbital
system has a plethora of interesting properties that are absent in the 2D model, as for
example the possibility of frustrated configurations for the phase of the order parameter.
But what happens in the Mott insulating phase?

In this section, we study the physics of the first Mott lobe of the three-orbital system in
the p band of 3D optical lattices. We will show that this system is effectively described
by a Hamiltonian with nearest neighbors interactions, where the degrees of freedom are the
generators of the SU(3) group. We will extend the method used in the previous sections to
account for the third orbital, and we discuss properties of both the bosonic and the fermionic
many-body systems, starting next with the bosonic case.

5.3.1. The bosonic case

Let us recall the explicit expression of the local part of the Hamiltonian of the three-orbital
system in the p band,

Ĥb
U =

∑
i

[
Uxx
2
n̂x,i (n̂x,i − 1) +

Uyy
2
n̂y,i (n̂y,i − 1) +

Uzz
2
n̂z,i (n̂z,i − 1)

]

+
∑
i

(2Uxyn̂x,in̂y,i + 2Uxzn̂x,in̂z,i + 2Uyxn̂y,in̂z,i)

+
∑
i

[
Uxy
2

(
â†x,iâ

†
x,iây,iây,i

)
+
Uxz
2

(
â†x,iâ

†
x,iâz,iâz,i

)
+
Uyz
2

(
â†y,iâ

†
y,iâz,iâz,i

)
+H.c.

]
(5.53)

and define the basis in the HP and HQ subspaces by (see Sec. 5.1)

HP =
{
|x, x〉, |x, y〉, |x, z〉, |y, x〉, |y, y〉, |y, z〉, |z, x〉, |z, y〉, |z, z〉

}
, (5.54)

23The energy of domain walls in systems with continuous symmetries scales as EDW ∼ Ld−2.
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and
HQ = {|0, 2x〉, |0, 2y〉, |0, 2z〉, |0, xy〉, |0, xz〉, |0, yz〉}. (5.55)

With the basis of HQ ordered according to (5.55), the projected Hamiltonian24 ĤQ can be
written in block diagonal form of 3× 3 matrices as

HQ =

(
HQ1 0

0 HQ2

)
, (5.56)

where the first block captures the action of ĤU in the states of the type |0, 2α〉, while the
second block accounts for the effects of ĤU in the |0, αβ〉 states for α, β = {x, y, z}. The
explicit expressions follow,

HQ1 =

 Uxx Uxy Uxz
Uxy Uyy Uyz
Uxz Uyz Uzz

 (5.57)

and

HQ2 =

 2Uxy 0 0
0 2Uxz 0
0 0 2Uyz

 , (5.58)

from where K̂ = Ĥ−1
Q is easily computed. In the first block, the elements of K̂(1) = Ĥ−1

Q1
can

be written as
K

(1)
αα = 1

2Λ

∑
βγ

(
εαβγ

)2 (
UββUγγ − U2

βγ

)
,

K
(1)
αβ = 1

Λ

∑
γ

(
εαβγ

)2
(UαβUβγ − UαβUγγ)

(5.59)

where εαβγ is the Levi-Civita symbol and {α, β, γ} = (1, 2, 3) whenever {α, β, γ} = (x, y, z),
and

Λ =
(
UxxUyyUzz − U2

xzUyy − U2
yzUxx − U2

xyUzz + 2UxyUxzUyz
)
. (5.60)

For simplicity, the elements of K(2) = Ĥ−1
Q2

, in the second block, are denoted by

K
(2)
αβ =

1

2Uαβ
, (5.61)

and in the same way, {α, β} = (1, 2, 3), whenever {α, β} = (x, y, z).

According to the list of processes in Sec. 5.1 and the symmetries of the Hamiltonian of
the bosonic case with three-orbitals, Eq. (2.42), the processes contributing to the effective
Hamiltonian of the Mott-1 phase are (i), (iv), (v) and (vi). In the same way as for the
two-orbital system, the transitions that break the conservation of number modulo 2 in each
of the orbital states yield non-vanishing contributions, as should indeed be the case since
such processes are absent in Eq. (5.53).

Now gathering the different contributions with the explicit expressions of the non-vanishing
matrix elements for the different transitions, the effective Hamiltonian describing the Mott-1

24Recall the derivation of Sec. 5.1 if necessary.
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phase of bosons in the p band of the three orbital system is given by

Hb
M1

= −
∑
σ

∑
〈i,j〉σ

∑
α,β,γ

[
|tασ |2

Λ

(
εαβγ

)2 (
UββUγγ − U2

βγ

)
n̂α,in̂α,j +

|tασ |2

Uαβ
n̂α,in̂α,j

+2
tασt

β
σ

Λ

(
εαβγ

)2
(UαβUβγ − UαβUγγ) â†β,iâα,iâ

†
β,j âα,j +

tασt
β
σ

Uαβ
â†β,iâα,iâ

†
α,j âβ,j

]
.

(5.62)

We now use the generators of the SU(3) group to encode the pseudospins of the three-orbital
system. Although individually the orbital states have the structure of angular momentum,
the generators of the SU(2) group fail to give a description of the effective dynamics of the
many-body system with three orbitals in the p band. The reason is that the dynamical
processes in the p band treat any combination of different orbital states at the same footing,
and as a consequence, the ladder operators act as in the Lie algebra of the SU(3) group (see
Fig. 5.7).

The SU(3) group has 8 generators, that are considered here in the representation defined by
the Gell-Mann matrices [42]

λ1 =

 0 1 0
1 0 0
0 0 0

, λ2 =

 0 −i 0
i 0 0
0 0 0

, λ4 =

 0 0 1
0 0 0
1 0 0

, λ5 =

 0 0 −i
0 0 0
i 0 0

,

λ6 =

 0 0 0
0 0 1
0 1 0

, λ7 =

 0 0 0
0 0 −i
0 i 0

, λ3 =

 1 0 0
0 −1 0
0 0 0

, λ8 =
1√
3

 1 0 0
0 1 0
0 0 −2

.
(5.63)

The Lie algebra of SU(3) is given by [λi, λj ] = 2ifijkλk, where i, j = 1, .., 8 fijk =
−fjik = −fikj .. are totally antisymmetric structure constants. The values for the dif-
ferent combinations of indices follow f123 = 1, f147 = −f156 = f246 = f257 = f345 =

−f367 = 1
2 and f458 = f678 =

√
3
2 . In addition, the two Casimir operators of the SU(3)

group are given by [42]

C1(λi) = 1
4

∑
i λ

2
i and

C2(λi) = 1
8

∑
ijk dijkλiλjλk,

where d118 = d228 = d338 = −d888 = 1√
3
, d146 = d157 = d344 = d355 = −d366 = −d377 =

1
2 , and d448 = d558 = d668 = d778 = − 1

2
√
3
.

Now using the condition that n̂x,i+n̂y,i+n̂z,i = 1 in the Mott-1 phase, the diagonal elements
λ3 and λ8 can be written as

n̂x,i = 1
3 + 1

2λ3,i +
√

3
6 λ8,i,

n̂y,i = 1
3 −

1
2λ3,i +

√
3

6 λ8,i,

n̂z,i = 1
3 −

√
3

6 λ8,i.

(5.64)
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Figure 5.7.: Dynamical processes relating the different orbital states in the many-body bosonic system
(as discussed in Eq. (2.54), the fermionic case contains only the density-density interac-
tions part). Due to the symmetric coupling among the three orbital states, pairs of atoms
in different orbitals scatter with equal amplitude for all the combinations of states, and
a correct description requires the use of the generators of the SU(3) group. In fact, in
the language of p orbitals, rather than the triangular scheme displayed above, the ladder
operators of a three-state system with SU(2) symmetry act as pα 
 pβ 
 pγ .

The SU(3) ladder operators are defined in terms of the non-diagonal Gell-Mann matrices.
In terms of the orbital states,

T̂±i
2 = â†x,iây,i = λ1

z,i ± iλ2
z,i,

V̂ ±i
2 = â†x,iâz,i = λ1

y,i ± iλ2
y,i,

Û±i
2 = â†z,iây,i = λ1

x,i ± iλ2
x,i,

(5.65)

where we simplified notation by relabelling the Gell-Mann matrices with the index of the
symmetry axis of rotation of the corresponding SU(2) sub-algebra. In the usual setting
λ1
z = λ1, λ2

z = λ2, λ1
y = λ4, λ2

z = λ5, λ1
x = λ6 and λ2

x = λ7.

This allows the Hamiltonian (5.62) to be written in a more compact form as,

Ĥb
M1

= −
∑
σ

∑
〈i,j〉σ

[
Jb3,σλ3,iλ3,j + Jb8,σλ8,iλ8,j + Jb38,σ (λ3,iλ8,j + λ8,iλ3,j)

+
∑
γ

J1
γ,σλ

1
γ,iλ

1
γ,j + J2

γ,σλ
2
γ,iλ

2
γ,j

]
−
∑
i

(
hb3λ3,i + hb8λ8,i

)
.

(5.66)

Since the explicit expressions of the coupling constants are not very informative at first
sight, we leave them to Appendix B and we proceed by analyzing the properties of the
system in the isotropic lattice, where much of the physics can be understood from symmetry
arguments. For reference, Figs. 5.8 to 5.10 display the strength of the couplings of the spin
model, computed with use of the lattice Wannier functions25 for Vσ = V0 and σ = {x, y, z}.
All the energies are scaled with ER.

The first notable difference, as compared to other systems of cold atoms used to mimic SU(3)

25The Wannier functions are obtained from diagonalization of the Mathieu equation of a free particle in a
sinusoidal lattice in 3D as discussed in Sec. 2.2.
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Figure 5.8.: Left panel: Effective fields for the bosonic system. The indices labeling different directions
are used here to illustrate the contribution of external field terms in asymmetric lattices,
i.e., where effective 1D and 2D systems are obtained by suppressing the tunneling in 1
or 2 directions. In particular, due to the symmetries of the dynamics in the cubic lattice,
the term associated to hb3 vanishes in this case. Right panel: Effective couplings for the
nearest neighbors interactions (λ8,iλ3,i + λ3,iλ8,i). In the same way as for the external
fields shown in Fig. 5.8, the relative sign for the couplings of the dynamics in the x and
y directions follow directly from the symmetries in the p band of isotropic cubic lattices
(see details in the text). In addition, these processes vanish in the case of isotropic cubic
lattices.

Figure 5.9.: Left panel: Effective couplings of the bosonic many-body system for λ3,iλ3,j interactions
in the different directions. Right panel: Effective couplings of the bosonic many-body
system for λ8,iλ8,j interactions in the different directions.

Heisenberg models26, is that due to the tunneling anisotropy in the p band, the values of
the couplings depend on the dynamics direction. This system contains two external fields,
associated to the diagonal λ3 and λ8 matrices. These are, respectively, the isospin and
hypercharge operators in the study of strong interactions in QCD, whose eigenvalues are
used to label the states of the SU(3) multiplet [42]. In the context of p-band physics, the
external fields are related to the onsite population imbalance of the different orbital states,
and due to the parity symmetries discussed in Eq. (2.51), they yield vanishing contributions
in the isotropic cubic lattice. However, whenever these symmetries are broken, as e.g. by
engineering effective 2D or 1D lattices, the contributions of the external fields are restored.

The second one is seen from a quick inspection of Eq. (5.66), which reveals that in the
same way as for the effective dynamics of the two-orbital system in the p band [22], nearest
neighbors interactions derived from the ladder operators yield XYZ-like anisotropies in the

26They are mainly based on implementations of the pseudospin degree of freedom with use of internal atomic
states. See, e.g., Refs. [90] and [91].
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Figure 5.10.: Effective couplings for nearest neighbors interactions obtained from the ladder operators.
Notice, in particular, that the couplings associated to the λ1γ,iλ

1
γ,j interactions are not

the same as the couplings of λ2γ,iλ
2
γ,j . This is a XYZ-like anisotropy, which is typical

for the bosonic system in the p band [22]. In fact, this is a direct consequence from the
combination of anisotropic tunneling with orbital-changing interaction terms.

couplings of λ1
γ and λ2

γ , J1
γ,σ and J2

γ,σ. Due to the tunneling anisotropies and the differ-

ent types of interactions in the many-body system, J
{1,2}
γ,‖ 6= J

{1,2}
γ,⊥ , but as long as we are

considering the isotropic case J
{1,2}
γ,‖ and J

{1,2}
γ,⊥ are the same for all γ = {x, y, x} (recall

that γ labels the different SU(2) sub-algebras). This should indeed be the case, since this
anisotropy stems from the orbital-changing processes, that have identical couplings in the
cubic lattice regardless of the states involved.

Now the leading couplings in this pseudospin Hamiltonian stem from contributions of density-
density interactions in the many-body system, that are both between atoms in the same
and in different orbital states. They also give rise to Dzyaloshinskii-Moriya exchange, that
vanish in the cubic lattice due to the parity symmetry, but are again restored whenever
this symmetry is broken. This provides an interesting framework for quantum simulation,
because ferromagnetic SU(3) models with Dzyaloshinskii-Moriya interactions in 1D and 2D
are expected to have ground states with spiral spin textures [92], and the appearance of such
terms in effective 1D and 2D lattices is very natural for this system. Indeed, the spiral spin
textures would be manifest here as a rotation (or change in the relative angle of the onsite
orbital orientations) of one of the orbital states at each lattice site. Moreover, we expect
that in the same way as for the superfluid phase in 3D, discussed in Sec. 3.1.2, the Mott-1
phase of the three-orbital system in the p band has a degeneracy stemming from frustrated
configurations of the orbitals in the lattice. A further step, however left for the future, is the
study of this system with use of flavor-wave theory27. The aim is to identify the possibility
of an order-by-disorder mechanism [93, 94], where quantum fluctuations help stabilizing the
classical ground state between the various possibilities in this degenerate manifold.

5.3.2. The fermionic case

The derivation of the effective Hamiltonian describing the Mott-1 phase of fermions in the
p band of 3D lattices is simplified due to the absence of interactions involving two atoms in

27The flavor-wave theory is a generalization of the spin-wave theory for systems with three components (see
Refs. [93, 94]).
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5. Beyond the mean-field approximation: effective pseudospin Hamiltonians via exchange interaction

Figure 5.11.: Left panel: Effective fields of the effective model with fermionic atoms in isotropic cubic
lattices. The situation is again similar to what is discussed for the bosonic case in
Fig. 5.8. This should be the case, since the external fields account for single particle
contributions and therefore are independent from the statistics of the atoms. In the
p-band system, in particular, the external fields encode the degree of imbalance in the
occupation of the different orbital states. Right panel: Coefficients of (λ3,iλ8,j + λ8,iλ,j)
for the fermionic case. In the same way as discussed in the bosonic case, these terms
yield no contribution to the energy in the isotropic cubic lattice.

the same orbital state. Indeed, in this case

Ĥf
U =

∑
i

(2Uxyn̂x,in̂y,i + 2Uxzn̂x,in̂z,i + 2Uyxn̂y,in̂z,i), (5.67)

and although the basis spanning the HP subspace is the same as the one defined for the
bosonic case in (5.16), the basis in the HQ has only the â†α,iâ

†
β,i|0〉 states with α 6= β =

{x, y, z}.

Here, ĤQ is diagonal in the basis of intermediate states of the perturbative calculation, and
has the same expression of Eq. (5.58) discussed together with the bosonic case. The only
processes with non-vanishing matrix elements are described by items (v) and (vi) in the
list of Sec. 5.1, and therefore, gathering the corresponding contributions with the explicit

expressions of the K
(2)
αβ defined in (5.61), the effective Hamiltonian describing the Mott phase

with a unit filling of the fermionic system in the p band is given by

Ĥf
M1

= −
∑
〈i,j〉

∑
α,β 6=α

[
2|tασ |2

1

2Uαβ
n̂α,in̂β,j + 2tασt

β
σ

1

2Uαβ
â†β,iâα,iâ

†
α,j âβ,j

]
. (5.68)

Furthermore, this is given in terms of the Gell-Mann matrices (see Eqs. (5.64) and (5.65))
by

Ĥf
M1

= −
∑
σ

∑
〈i,j〉σ

[
Jf3,σλ3,iλ3,j + Jf8,σλ8,iλ8,j + Jf38,σ (λ3,iλ8,j + λ8,iλ3,j)

+
∑
γ

Jfγ,σ
(
λ1
γ,iλ

1
γ,j + λ2

γ,iλ
2
γ,j

) ]
−
∑
i

(
hf3λ3,i + hf8λ8,i

)
.

(5.69)

The strength of the various couplings is shown in Figs. 5.12 to 5.13. In the same way as
for the bosonic case, the leading terms stem from contributions due to the density-density
interactions that are accordingly described by the diagonal Gell-Mann matrices. In the
fermionic case, however, the density-density interactions happen only between atoms in
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5. Beyond the mean-field approximation: effective pseudospin Hamiltonians via exchange interaction

Figure 5.12.: Left panel: Jf8 for the fermionic case. Notice here that the λ8,iλ8,j term contributes
very little for the dynamics in the x and y directions, while it is very significant for the
dynamics in the z direction. Right panel: Coefficients of λ3,iλ3,j for interactions in the
fermionic case in the different directions and as a function of the lattice depth.

Figure 5.13.: Coefficients of the interaction stemming from the ladder operators in the fermionic case.
Notice, in particular, the XXZ-like type of couplings, which differ from the XYZ-like
couplings obtained for the same terms in the bosonic case (see Fig. 5.10).
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5. Beyond the mean-field approximation: effective pseudospin Hamiltonians via exchange interaction

different orbital states. For the same reason as already discussed in the study of the bosonic
case, the vanishing of the external fields and of the Dzyaloshinskii-Moriya interactions in the
isotropic cubic lattice is a consequence of the parity symmetry. These terms, are nevertheless
restored whenever this symmetry is broken, as again, for example, in effective 1D or 2D
realizations.

The fermionic case differs from the bosonic one in two main aspects: First, that instead
of ferromagnetic, the couplings of the pseudospin model favor anti-ferromagnetic ordering.
Second, that due to the absence of orbital changing interactions in Eq. (5.53), the exchange
terms deriving from ladder operators have the same couplings for both the λ1

γ,iλ
1
γ,j and

λ2
γ,iλ

2
γ,j processes. Therefore, the fermionic version of the SU(3) model has a structure of

couplings that is similar to that of the XXZ Heisenberg model for spin 1/2 systems.

The study of anti-ferromagnetic SU(3) Heisenberg models has a long history [95], and owing
to the complexity of the ground states, they constitute very attractive systems for quan-
tum simulation. In 1D, the case with (fully) isotropic couplings admits a Bethe ansatz
solution [93], the spectrum of excitations is known to be gapless [93] and correlations de-
cay algebraically [93]. Much less is known for this system in higher dimensions [93, 94].
In fact, studies of both the triangular and the square lattices in 2D and the cubic lattice
in 3D have been carried out numerically rather recently [93, 94], and complement an im-
portant previous analysis based on applications of flavor-wave theory [95]. These studies
confirm the prediction of a highly degenerate manifold of ground states with both 2- and
3-sublattice ordering for the square and cubic lattices, whose degeneracy is lifted by a mech-
anism of order-by-disorder [93, 94]. More specifically, while the low energy states favor the
2-sublattice structure, the ground state at zero temperature is expected to have a 3-sublattice
ordering both in 2D and 3D. Therefore, lowering the temperature drives the system through
a phase transition from a state with 2- to a state with 3-sublattice structure. In 2D, this
is expected to be a thermal transition. The mechanism of this transition in 3D is not fully
known. However, it is possible that the 3-sublattice state is formed from the 2-sublattice
one due to quantum fluctuations, or else, directly from a paramagnetic state associated to a
first-order phase transition [93].

The above are some examples of the physics that can be encountered in the SU(3) models
described here. More precisely, by monitoring the system as the temperature decreases, we
expect different sublattice structures to be detected28. However, the properties discussed
above characterize the SU(3) model with fully isotropic couplings. Although this is not the
same case as in Eq. (5.67), in analogy with SU(2) spin systems we expect the anisotropic case
to have a rich phase diagram, both in the limit of very low energies and at zero temperature.
Furthermore we also notice that effective 1D and 2D realizations can be engineered with
external fields and Dzyaloshiskii-Moriya interactions, leading to rather unexplored models
of magnetism. As well as for the bosonic case, the flavor-wave analysis of these cases, both
in 2D and 3D, is also an interesting future direction.

28We discuss detection schemes/measurements in the next subsection.
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5. Beyond the mean-field approximation: effective pseudospin Hamiltonians via exchange interaction

Extension of the manipulation/detection schemes for the SU(3) case

Detection and manipulation of the systems discussed here are based on the same ideas
presented in Sec. 5.2.2 for the spin-1/2 case. Since the pseudospins are encoded in the
different orbital states, we are required to operate on the vibrational levels of the lattice.
Here, however, those techniques must be extended to account for the third orbital, and
arbitrary rotations are performed with the generators of the SU(3) group.

Let us start then by noticing that the carrier, the red and the blue sideband transitions are
implemented in the same way as for the spin-1/2 case, but now with a laser with the wave
vector having all three components. The px orbital can be selectively addressed by choosing
driver lasers with no component in the y and z directions, i.e., kL1 − kL2 = kLx , where kLi
with i = 1, 2 refer to the wave vectors of the two lasers used in the Raman transition29.
Analogous relations hold for manipulations of only the py and/or the pz orbitals.

Now rotations with the generators of the SU(3) group are given by R̂β(φ) = e−λβφ/2, where
β = 1, ..., 8 and φ is the effective angle. To implement such operations we make use of
the three SU(2) subgroups. The simplest case, of rotations with λ8, can be achieved via
Stark shift of the pz orbital without any disturbance of px and py orbitals. R̂3(φ) rotations
are also implemented via Stark shift, but now with a dispersive coupling between both px
and py orbitals which already renders the shift with correct (opposite) sign. R̂1(φ), R̂4(φ)
and R̂6(φ) rotations are implemented by driving red sideband transitions off-resonantly, for
two orbitals. The first case will involve the px and py orbitals, while in the second and
third, px and pz, and py and pz orbitals, respectively. The other three rotations, around λ2,
λ5 and λ7 can be achieved by noticing that R̂2(φ) = R̂3(π/2)R̂1(φ)R̂3(−π/2), R̂5(φ) =
R̂3(π)R̂8(−

√
3π)R4(φ)R̂3(−π)R̂8(

√
3π), and R̂7(φ) = R̂3(π/2)R̂8(

√
3π/2)R6(φ)R̂3(−π/2)

R̂8(−
√

3π/2).

To resolve the SU(3) pseudospins, we borrow again the scheme discussed for SU(2) case.
Namely, the px and py states are resolved via single-site fluorescence after measurement of
λ3, and the pz orbital after measurement of λ8. Likewise, 〈λαλβ〉 correlation functions can
be obtained by using the same techniques, but now combined with coincident measurement
of the fluorescent photons. Finally, since temperature considerations are exactly the same
discussed for the spin-1/2 case, we refer to Sec. 5.2.3.

Imperfections due to the presence of residual s atoms

In the three-orbital case, the random field due to the presence of residual s-band atoms is
given by (see Sec. 5.2.4)

Hdis =

[ √
3

6Usp
λ8,i

(
|txσ|2 + |tyσ|2 − 2|tzσ|2

)
+

λ3,i

2Usp

(
|txσ|2 − |tyσ|2

)]
δ1,nsi

(5.70)

for both the bosonic and fermionic cases. Based on the Imry-Ma argument, we notice that
even though the ground-state properties of the fermionic model might be affected by the

29Recall the matrix elements Ω1Ω∗2/δ〈2|ei(kL1
−kL2

)|1〉, where Ωi are the Rabi frequencies and the notation
is the same used in Sec. 5.2.3.
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5. Beyond the mean-field approximation: effective pseudospin Hamiltonians via exchange interaction

random field in 1D and 2D, the discrete symmetry of the bosonic model helps stabilizing
the phases of the clean system even in low dimensions. In higher dimensions, however, both
cases are expected to be robust when the disorder is not too strong.

5.4. The d-band system in 2D lattices

The last system which will have the Mott phase investigated from the perspective of a
pseudospin model is described by Eq. (2.55), of bosons in the d band. Recall that throughout
this thesis we consider it in the 2D isotropic lattice.

This system is interesting for different reasons: First, due to the presence of density-assisted
processes (see Eqs. (2.67) and (2.68)), it lacks the Z2-parity symmetry30 characteristic of
the system in the p band. Second, according to the Gutzwiller study of Sec. 3.2, this is a
two-orbital system for a large region of experimentally relevant parameters. Therefore, let
us consider the dynamics involving only the dα2 orbitals31 and write

Ĥd
U =

∑
i

{
Uxx
2
n̂x2,i(n̂x2,i−1)+

Uyy
2
n̂y2,i(n̂y2,i−1) +2Uxyn̂x2,in̂y2,i

+
Uxy
2

[(
d̂†
x2,i

d̂†
x2,i

d̂y2,id̂y2,i + d̂†
y2,i

d̂†
y2,i

d̂x2,id̂x2,i

)]
+Unxxy

(
d̂†
x2,i

n̂x2,id̂y2,i + d̂†
y2,i

n̂x2,id̂x2,i

)

+Unyxy

(
d̂†
x2,i

n̂y2,id̂y2,i + d̂†
y2,i

n̂y2,id̂x2,i

)}
(5.71)

Using the same basis of Eqs. (5.16) to span HP , and the basis in the HQ subspace in the
order {|0, 2x〉, |0, xy〉, |0, 2y〉}, we obtain

Ĥd
Q =

 Uxx
√

2Unxxy Uxy√
2Unxxy 2Uxy

√
2Unyxy

Uxy
√

2Unyxy Uyy

 (5.72)

and

K̂d =
(
Ĥd
Q

)−1

= Λ

 2
(
UxyUyy − U2

nxxy

) √
2(UxyUnyxy − UnxxyUyy) 2

(
UnxxyUnyxy − U2

xy

)
√

2(UxyUnyxy − UnxxyUyy) UxxUyy − U2
xy

√
2(UxyUnxxy − UnyxyUxx)

2
(
UnxxyUnyxy − U2

xy

) √
2(UxyUnxxy − UnyxyUxx) 2

(
UxyUxx − U2

nxxy

)
 ,

(5.73)
with

Λ =
(

2U3
xy + 4UnxxyUxyUnyxy − 2UxxU

2
nyxy − 2UnxxyUyy + 2UxxUxyUyy

)−1
. (5.74)

30Related to conservation of particles modulo 2 in each of the orbital states.
31Recall that here α = {x, y} and that in the isotropic lattice Uxx = Uyy and Unxxy = Unyxy (see (2.69)).
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To determine the final form of the effective Hamiltonian, we notice that all the processes
listed in Sec. 5.1 have non-vanishing matrix elements such that

Ĥn0=1 = −Λ
∑
αβ

∑
〈i,j〉σ

{
8 |tασ |2

(
UαβUββ − U2

nβαβ

)
n̂α,in̂α,j

+2
(
|tασ |2 + |tβσ|

) (
UααUββ − U2

αβ

)
(n̂α,in̂β,j + n̂β,in̂α,j)

+8 tασt
β
σ

(
UnααβUnβαβ − U

2
αβ

) (
d̂†β,id̂α,i d̂

†
β,j d̂α,j + d̂†α,id̂β,i d̂

†
α,j d̂β,j

)
+2 tασt

β
σ

(
UαβUββ − U2

nβαβ

)(
d̂†β,id̂α,i d̂

†
α,j d̂β,j + d̂†α,id̂β,i d̂

†
β,j d̂α,j

)
+2
(
|tασ |2 + tασt

β
σ

) (
UnβαβUαβ − UnααβUββ

) [
n̂α,i

(
d̂†β,j d̂α,j + d̂†α,j d̂β,j

)
+ n̂α,i

(
d̂†β,j d̂α,j + d̂†α,j d̂β,j

)]}
.

(5.75)
By further employing the Schwinger angular momentum representation [48, 59]

Ŝzi = 1
2

(
n̂x2,i − n̂y2,i

)
Ŝ+
i = Ŝxi + iŜyi = d̂†

x2,i
d̂y2,i

Ŝ−i = Ŝxi − iŜ
y
i = d̂†

y2,i
d̂x2,i

(5.76)

together with the constraint of unit filling, i.e., n̂i = n̂x,i + n̂y,i = 1, Eq. (5.75) can be
mapped into a spin-1/2 XYZ model with DM interactions [96, 97] and external fields

ĤXYZ = −
∑
〈i,j〉σ

J
[
(1 + γ)Sxi S

x
j + (1− γ)Syi S

y
j

]

−
∑
〈i,j〉σ

[
∆SziS

z
j + δ

(
Sxi S

z
j + SziS

x
j

)]
+
∑
i

(ΓSxi + hSzi ).

(5.77)

Here J = −txσt
y
σU2/Λ, with U2 = 4(UxxUyy−U2

xy) and Λ given by Eq. (5.74), the anisotropy
parameter γ = 16

(
UnxxyUnyxy − U2

xy

)
/U2,

∆ = 8|txσ|2
(
UxyUyy − U2

nyxy

)
+ 8|tyσ|2

(
UxyUxx − U2

nxxy

)
−2
(
|txσ|2 + |tyσ|2

) (
UxxUyy − U2

xy

)
,

δ = 4
(
UnyxyUxy − UnxxyUyy

) (
|txσ|2 + txσt

y
σ

)
− 4

(
UnyxyUxy − UnyxyUxx

) (
|tyσ|2 + txσt

y
σ

)
,

Γ = 2
(
UnyxyUxy − UnxxyUyy

) (
|txσ|2 + txσt

y
σ

)
+ 2

(
UnyxyUxy − UnyxyUxx

) (
|tyσ|2 + txσt

y
σ

)
,

and
h = 8|txσ|2

(
UxyUyy − U2

nyxy

)
− 8|tyσ|2

(
UxyUxx − U2

nxxy

)
.

In the isotropic lattice, however, the external field h and the DM interactions vanish due to
the parity symmetry of Eq. (2.51)32, and are accordingly restored whenever the symmetry

32This symmetry is translated in the spin language by Ŝxi → Ŝxi , Ŝyi → −Ŝ
y
i , and Ŝzi → −Ŝzi .
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is broken, i.e., when tx‖ 6= ty‖ and tx⊥ 6= ty⊥, such that δ 6= 0.

We notice that in the same way as for the system of bosons in the p band, d-orbital bosons
can provide an alternative realization of the XYZ model, albeit here in the presence of an ex-
ternal field even in the isotropic case. This is a consequence of the density-assisted processes
breaking the Z2 symmetry of the orbital-changing interactions such that only the total num-
ber of particles is now conserved. Indeed, the external field contains a Ŝx-dependent term,
and moreover, the presence of Ŝx in the DM interactions derives also from density-assisted
processes33. In the limit of vanishing density-assisted interactions, the effective spin Hamil-
tonian becomes identical to the corresponding one for the system in the p band discussed in
Sec. 5.2, as should indeed be the case since the γ anisotropy is due to orbital changing pro-
cesses. These two systems are different, however in the character of the interactions, since
the tα‖ t

β
⊥ < 0 property of the tunneling in the p band naturally yields anti-ferromagnetic

exchange for some of the spin components, while in the d band tα‖ t
β
⊥ > 0, and all interactions

are primarily ferromagnetic.

To the best of our knowledge, the phase diagram of this model is not fully known in 2D
even for the simplest case of the isotropic lattice, where δ = 0. However, due to the parity
symmetry of Eq. (2.51) we expect a rich phase diagram with the possibility of symmetry
broken phases. For example, the limit of Γ/J � ∆/J (|γ| < 1) should be characterized
by a highly magnetized state in the x component of the spin, while in the opposite limit
the system is in a ferromagnetic state (noting that ∆ > 0) with broken symmetry in the z
component. If the relative strength of Γ/J and ∆/J is much larger than the other couplings
in the model, this system is a natural realization of the transverse Ising model. In fact,
the techniques discussed in Sec. 5.2.2 could be used to engineer such a situation. When
J ∼ γ,∆, the ground state could be in another symmetry broken ferromagnetic state in the
xy plane or else, in a gapless floating phase as discussed for the 1D XYZ model in Sec. 5.2.1.
Furthermore we notice that effective 1D realizations are also interesting, since the XYZ
model with DM interactions has been recently reported to have a rich phase diagram, with
both ferromagnetic and Luttinger liquid phases [98].

Finally we remark that if occupation of the d̂xy orbital becomes non-negligible, then the
pseudospins must be described by the generators of the SU(3). In addition, the corresponding
spin model will feature DM interactions in all the components.

33Notice here the difference with the SU(3) case, where the DM interactions still conserve the orbital-
changing Z2 symmetry and accordingly, depend only on the diagonal Gell-Mann matrices (see Eqs. (5.62)
and (5.66)).
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B. Coupling constants of the SU(3)
pseudospin Hamiltonians

The expressions of the various coupling constants used in the text are given below for both
the bosonic and fermionic many-body systems.

B.1. Bosonic case

In the notation below we use σ to denote 〈i, j〉σ. This defines the values of the tunneling
amplitudes, which are different for various orbital states in the different directions.

Jb8,σ = K
(1)
xx
3 |t

x
σ|2 +

K
(1)
yy

3 |t
y
σ|2 + 4

3K
(1)
zz |tzσ|2 +

K
(2)
xy

6

(
|txσ|2 + |tyσ|2

)
− 2

9K
(2)
xz

(
|txσ|2 + |tzσ|2

)
−2

9K
(2)
yz

(
|tyσ|2 + |tzσ|2

)
(B.1)

Jb38,σ =

√
3

3
K(1)
xx |txσ|2 −

√
3

3
K(1)
yy |tyσ|2 −

√
3
K

(2)
xz

6

(
|txσ|2 + |tzσ|2

)
+
√

3
K

(2)
yz

6

(
|tyσ|2 + |tzσ|2

)
(B.2)

hb8,σ = 4
√

3
9 K

(1)
xx |txσ|2 + 4

√
3

9 K
(1)
yy |tyσ|2 − 8

√
3

9 K
(1)
zz |tzσ|2 −

√
3

9 K
(2)
xy

(
|txσ|2 + |tyσ|2

)
−
√

3
9 K

(2)
yz

(
|tyσ|2 + |tzσ|2

) (B.3)

hb3,σ =
4

3
K(1)
xx |txσ|2 −

4

3
K(1)
yy |tyσ|2 +

K
(2)
xz

3

(
|txσ|2 + |tzσ|2

)
− K

(2)
yz

3

(
|tyσ|2 + |tzσ|2

)
(B.4)

Jb3,σ = K(1)
xx |txσ|2 +K(1)

yy |tyσ|2 −
K

(2)
xy

2

(
|txσ|2 + |tyσ|2

)
(B.5)

J1
γ,σ = K

(1)
αβ t

α
σt
β
σ + 2K

(2)
αβ t

α
σt
β
σ (B.6)

J2
γ,σ = K

(1)
αβ t

α
σt
β
σ − 2K

(2)
αβ t

α
σt
β
σ (B.7)

B.2. Fermionic case

In the same way as for the bosonic case discussed above, σ is used below to define the value
of the tunneling amplitudes.

Jf8,σ =
K

(2)
xy

6

(
|txσ|2 + |tyσ|2

)
− 2

K
(2)
xz

9

(
|txσ|2 + |tzσ|2

)
− 2

K
(2)
yz

9

(
|tyσ|2 + |tzσ|2

)
(B.8)
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Jf3,σ = −K
(2)
xy

2

(
|txσ|2 + |tyσ|2

)
(B.9)

Jf38,σ = −
√

3
K

(2)
xz

6

(
|txσ|2 + |tzσ|2

)
+
√

3
K

(2)
yz

6

(
|tyσ|2 + |tzσ|2

)
(B.10)

hf8,σ = 2

√
3

9
K(2)
xy

(
|txσ|2 + |tyσ|2

)
−
√

3

9
K(2)
xz

(
|txσ|2 + |tzσ|2

)
−
√

3

9
K(2)
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(
|tyσ|2 + |tzσ|2

)
(B.11)

hf3,σ =
K

(2)
xz

3

(
|txσ|2 + |tzσ|2

)
− K

(2)
yz

3

(
|tyσ|2 + |tzσ|2

)
(B.12)

Jfγ,σ = tασt
β
σK

(2)
αβ (B.13)
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6. Effects of disorder in multi-species systems

In the previous Chapter we came across an example where experimental imperfections may
give rise to disorder. Effects of disorder can affect qualitative properties of the physics, and
serve as an interesting area of research on its own [99, 100, 101]. In the context of cold atoms,
for example, it is possible to fabricate systems where the properties of the disorder can be
externally controlled [102, 103, 104]. Motivated by these observations, in this chapter we
study not multi-orbital, but multi-species systems in the presence of disorder. The reason
for this shift is simply because the type of couplings considered here are easy to realize
experimentally with multi-species atoms.

Effects of disorder in condensed matter systems have been intensely investigated since its
formal appearance in the literature1 in 1958. By studying a system of noninteracting elec-
trons tunneling in a 3D lattice (tight-binding model) in a random energy landscape, Phillip
Anderson showed that the presence of impurities can affect transport properties of quantum
mechanical systems in a dramatic way [99], due to the existence of localized states.

After Anderson’s seminal work, much effort was directed in understanding the role of dimen-
sionality in the phenomenon of Anderson localization. In 1D, for example, all the eigenstates
of this problem were shown to be localized2, even for arbitrarily weak disorder [105]. From
analysis based on scaling arguments, 2D systems are also generically considered to have lo-
calized eigenstates in the entire spectrum3. This situation is different in 3D systems, where
localized and extended eigenstates are separated by a mobility edge [107]. These studies
played a central role for the theory of metal-insulator transitions [100, 108], and nowadays,
much of the current research in this area is focused on the properties of systems with inter-
actions, in the phenomenon called many-body localization [109].

In this Chapter we study effects of disorder in bosonic multi-species systems that are coupled
via a disordered potential. This is the material of Preprint III. We will start by presenting
the different models under investigation in Sec. 6.1 and we follow with the study of the
symmetries in different cases in Secs. 6.2 and 6.3. These different cases belong the different
chiral orthogonal, chiral unitary, Wigner-Dyson orthogonal and Wigner-Dyson unitary sym-
metry classes. We characterize the spectral properties in Sec. 6.4. In particular, we show
that when compared to the chiral classes, the onset of localization in terms of the disorder
strength is delayed in the Wigner-Dyson classes, and we explain this result in terms of an
effective model obtained after integrating out the fastest modes in the system, in Sec. 6.5
Finally, in Sec. 6.6, we briefly discuss the experimental relevance of the systems studied here.
Far from being a survey on the theory of disordered systems, our aim is to report a series

1According to [100], studies of disordered systems in condensed matter were very scarce and lacked a
systematic framework before Anderson’s work [99].

2That is, to decay exponentially from a center in real space.
3Exceptions to the scaling argument in 2D include chiral systems [106], some of which will be discussed in

this chapter.
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of results obtained in the latest year, and to illustrate the very rich physics appearing in
systems of coupled multi-species. However, despite the non-introductory character of these
discussions, we present it in a self-contained fashion. For reviews on the theory of Anderson
localization and of disordered quantum systems we refer to [100, 108].

6.1. Meet the Hamiltonians

“One Hamiltonian to understand them all..”

—Adapted from another famous book.

Let us consider the Hamiltonian describing a system of two non-interacting species that are
tunneling in a 2D lattice and that are randomly coupled at each site

Ĥ = −
∑
〈i,j〉σ

(
â†iâj + b̂†i b̂j

)
+ g

∑
i

(
hib̂
†
i âi + h∗i â

†
i b̂i

)
+
∑
i

(
µan̂ai + µbn̂bi

)
. (6.1)

〈i, j〉σ denotes the nearest neighbors in the direction σ = {x, y}, âi (â†i) and b̂i (b̂†i) destroy
(create) a particle of the type a and b, respectively, at the site i, g > 0 is a coupling constant
and hi is a complex valued random field with 〈< (hi)〉 = 〈= (hi)〉 = 0, 〈|hi|2〉 = ξ, and 〈...〉
denotes the disorder averaging. Such multi-species systems are typically implemented with
use of two different Zeeman levels of an atom [110], and the random coupling with the use
of Raman pulses [111].

We are interested in the spectral properties of this system for the four different cases: (i) of
µa = µb = 0 and real-valued hi; (ii) of µa = µb = 0 and complex-valued hi; (iii) of µa, µb 6= 0
and real-valued hi; and (iv) of µa, µb 6= 0 and complex-valued hi.

6.2. Symmetries of the real-valued random-field case

Let us start by considering the symmetries of Eq. (6.1) for the case of real-valued hi. Without
loss of generality4, let us assume that µa = −µb = µ, and re-write (6.1) as

ĤR = −t
∑
〈i,j〉σ

[
â†i â†j

]
1

[
âi
âj

]
+−t

∑
〈i,j〉σ

[
b̂†i b̂†j

]
1

[
b̂i
b̂j

]
+
∑

i

[
â†i b̂†i

]
(g hiσ

x + µσz)

[
âi
b̂i

]
,

(6.2)

where σα, α = {x, y, z} are the Pauli matrices. The above expression is clearly invariant
under multiplication of a global phase âi → eiφâi and b̂i → eiφb̂i, which is related to con-
servation of total number of particles in the system. In addition, ĤR is real and symmetric,
and therefore it is invariant under time-reversal transformations. Therefore, in spite of the
intrinsic spin structure of Eq. (6.2), the presence of σz does not play the role of a magnetic
field in this pseudo-spin picture.

4Defining the chemical potential in this way is equivalent to adding a constant to the Hamiltonian.
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The situation of µ = 0 is of particular interest. In this case, the Hamiltonian is also invari-
ant under âi → b̂i transformations, and in addition, since it is possible to find a unitary
transformation that anti-commutes with the Hamiltonian,

U †Ĥ
(µ=0)
R U = −Ĥ(µ=0)

R , (6.3)

with

U = diag

1,−1, 1,−1...︸ ︷︷ ︸
N

| −1, 1,−1, 1...︸ ︷︷ ︸
N

, (6.4)

and N the number of sites, the Hamiltonian has chiral symmetry [112]. This means that
there exists a basis for which this Hamiltonian has a manifestly off-diagonal block form5, that
for each eigenvalue ε that is a solution of the characteristic equation, −ε is also a solution,
and as a consequence, the spectrum is symmetric around the zero energy. It also means that
the states with ε and −ε energies are related by a chiral transformation [112, 113].

The study of this system lead to an interesting observation about the properties of
certain banded matrices with random entries as we show here. Consider the M1 and M2

matrices defined below, where hi ans µ are real numbers.

M1 =



µ J 0 ... ... h1 0 0 ... ...
J µ J 0 ... 0 h2 0 0 ...
0 J µ J 0 0 0 h3 0 0
...

. . .
...

. . .

h1 0 0 ... ... −µ J 0 ... ...
0 h2 0 0 ... J −µ J 0 ...
0 0 h3 0 0 0 J −µ J ...
...

. . .
...

. . .


(6.5)

and

M2 =



h1 J 0 ... ... µ 0 0 ... ...
J h2 J 0 ... 0 µ 0 0 ...
0 J h3 J 0 0 0 µ 0 0
...

. . .
...

. . .

µ 0 0 ... ... −h1 J 0 ... ...
0 µ 0 0 ... J −h2 J 0 ...
0 0 µ 0 0 0 J −h3 J ...
...

. . .
...

. . .


. (6.6)

The claim is that M1 and M2 have exactly the same eigenvalues.

We can show that this statement is true by noticing that M1 and M2 are the Hamil-
tonians of two tight-binding problems that can be mapped into each other by a linear
transformation. Explicitly, consider the following Hamiltonians:

Ĥ1 = J
∑
〈i,j〉

(â†i âj + b̂†i b̂j +H.c.) +
∑
i

hi(â
†
i b̂i + b̂†i âi) + µ

∑
i

(â†i âi − b̂
†
i b̂i), (6.7)

5Here a reordination of the basis as

(a11,b12, a13, b14, ..., a1(n−1), b1n, b21, a22, b23, a24, ...b2(n−1), a2n︸ ︷︷ ︸
Block 1

| b11, a12, b13, a14, ..., b1(n−1), a1n, a21, b22, a23, b24, ..., a2(n−1), b2n︸ ︷︷ ︸
Block 2

),

for example, where aij and bij are the amplitudes of the wave-functions of particles a and b at the site
(i, j), would rewrite the Hamiltonian in the desired off-diagonal shape.
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describing a two-species system of non-interacting atoms that are randomly coupled, and

Ĥ2 = J
∑
〈i,j〉

(ĉ†i ĉj + d̂†i d̂j +H.c.) + µ
∑
i

(ĉ†i d̂i + d̂†i ĉi) +
∑
i

hi(ĉ
†
i ĉi − d̂

†
i d̂i), (6.8)

describing a coupled system of non-interacting two-species that are tunneling in a ran-
dom energy landscape. Since the transformation ĉi → (âi + b̂i)/2 and d̂i → (âi − b̂i)/2
maps Ĥ1 → Ĥ2, and M1 and M2 are the matrix forms for representing the correspond-
ing Hamiltonians, these systems must have identical eigenvalues. This accounts for a
Hadamard transformation of the Pauli matrices,

σ̂x → ÛH σ̂xÛ
−1
H = σ̂z,

σ̂z → ÛH σ̂zÛ
−1
H = σ̂x,

σ̂y → ÛH σ̂yÛ
−1
H = −σ̂y,

which is nothing but a π rotation in xz-plane. Since ÛH is independent of the site index,
the Hadamard transformation does not depend on the disorder realization. Furthermore,
this is a canonical transformation and accordingly, it preserves the bosonic commutation
relations [ĉi, ĉ

†
j ] = δij , [d̂i, d̂

†
j ] = δij and [ĉi, d̂

†
j ] = 0. In addition, we notice that this

property extends6 to tight-binding Hamiltonians in 2D and 3D, and also for the case of
a random chemical potential where µ→ µi

7.

It would be interesting, therefore, to find different systems in other areas of physics8

that are described by the same type of matrix as (6.5) or (6.6). Such analogies not
only allow for the use of technology developed in the context of tight-binding models
for exploring the physics of these other models, but it could also establish a valuable
connection between the corresponding systems and the systems of cold atoms we discuss
here9.

With the above observation, we have shown, in addition, that for µ = 0 this system of
randomly coupled species can be mapped into two independent Anderson problems, one
for each type of atom, that are tunneling in a random energy landscape with the same
magnitude but with opposite signs. Therefore, this provides an alternative setup for ex-
perimental studies of Anderson localization. Furthermore, we also notice that although the
chiral symmetry and the corresponding off-diagonal block representation of the Hamiltonian
are usually associated to the presence of only non-vanishing bonds in off-diagonal elements

of the Hamiltonian10 [112, 113], we explore the muti-species character in Ĥ
(µ=0)
R to obtain a

chiral model with onsite disorder11.

6The main difference with the 2D and 3D cases is that the tunneling part will be described by block matrices,
in the same way as we discussed in Sec. 4.1 for the ideal gas in the p band.

7We could also think of situations where µi and hi are taken from different distributions and so on.
8As for example in statistical mechanics of complex systems.
9The author also finds it extremely interesting to think of a cold atom system as a realization os a generic

matrix.
10As would be the case, for example in a tight-binding Hamiltonian with random nearest-neighbors hopping.
11Notice that the presence of an onsite term in a usual tight-binding type of model necessarily destroys the

chiral symmetry.
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6.3. Symmetries of the complex-valued random field case

Following the discussion of the real-valued field case, Eq. (6.2) can be written as

ĤC = −t
∑
〈i,j〉σ

[
â†i â†j

]
1

[
âi
âj

]
+−t

∑
〈i,j〉σ

[
b̂†i b̂†j

]
1

[
b̂i
b̂j

]
+
∑

i

[
â†i b̂†i

]
(|hi| cos θiσ

x + |hi| sin θiσy + µσz)

[
âi
b̂i

]
,

(6.9)

where we used that hi = |hi|eiθi . In this case the Hamiltonian is a Hermitian matrix, and
therefore time-reversal symmetry is absent even for the situation in which µ = 0. In fact,
this system is only invariant under multiplication of a global phase, which again reflects the
conservation of total number of particles in the system.

When µ = 0, however, Ĥ
(µ=0)
C is a chiral Hamiltonian, and can be written in block off-

diagonal form with the basis ordered in the same way as discussed for the real-valued field
case (see footnote 3 of Sec. 6.2). The spectral properties discussed in that case are also valid
here: the spectrum is symmetric around the zero energy and the eigenstates of positive and
negative eigenvalues ε and −ε are connected via the chiral transformation [112, 113]. The
difference, however, as compared to that case, is the lack of time-reversal symmetry.

Let us now proceed with the study of (6.9), and for the chiral case with µ = 0 by considering
the following transformation of the operators:

α̂†i = e−iθi â†i
β̂i = e−iθi b̂i,

(6.10)

in such a way that

Ĥrf = −t
∑
〈i,j〉σ

(
e−i(θi−θj)α̂†iα̂i + ei(θi−θj)β̂†i β̂i +H.c.

)
+
∑
i

|hi|
(
α̂†iβ̂i + β̂†i α̂i

)
. (6.11)

It describes the coupled system where the α and β species acquire a random phase as they
tunnel around in the lattice, and are randomly converted into each other by a random
real-valued field. Due to the chiral symmetry, this system is closely related to the so called
random flux model12 [112] and therefore provides a controlable environment for experimental
realizations of such system.

6.4. Spectral properties

Before presenting the results of numerical studies, let us discuss qualitative properties of the
spectrum by considering limiting situations. We start with the limit of vanishingly small
disorder, ξ → 0. Here, when the chemical potential is also zero, the matrix of Eq. (6.1)

12Although the random flux model does not have an onsite term, the chiral symmetry of Eq. (6.11) allows
it to be re-written as H̃rf =

∑
〈i,j〉 e

iϕi â†i âj +H.c., where eϕi is a random phase. We also note that the
term “flux” derives from the fact that for charged particles hopping on a lattice, a random magnetic field,
i.e., flux, becomes manifested on the phases.
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becomes essentially block diagonal, and the system approximately corresponds to two inde-
pendent copies of a tight-binding model. Accordingly, all the energy levels are degenerate
because all the eigenvalues appear once in each block. When µ 6= 0, the two tight-binding
copies become coupled at each site, and thereby the degeneracy is lifted.

By increasing the strength of the disorder ξ, and in particular, by increasing the coupling
between the two species via varying g, the energies of the excitations are lowered, leading to
avoided crossings of the energy levels. This is shown in Figs. 6.1 and 6.2. We have checked
that these avoided crossings are smoothened out after averaging over different realizations.

Properties of the ground state and low lying excitations

Localization in the eigenstates is characterized with the inverse participation ratio (IPR)
given by

IPR =

∑
i |φi|4∑
i |φi|2

, (6.12)

where φi = 〈xi|Ψ〉 are the coefficients of the eigenstates of the Hamiltonian in the space
representation. In the limit of IPR→ 0, the states are extended over the entire lattice13, and
larger values of the IPR signal the occurrence of localization14. As shown in Figs. 6.1 and 6.2,
the regions of avoided crossings in single realizations of the disorder are also associated to
jumps in the IPR. This can be understood from the fact that typically, localized states that
are close in energy, are localized in different regions of space [114].

All the cases studied here displayed localized eigenstates for strong enough disorder, but as
shown in Figs. 6.1 and 6.2, the states of the non-chiral classes are more robust against the
disorder and become localized for larger values of g. This will be characterized further in
the next section, were we study these systems in terms of an effective model that accounts
only for the dominant particles with the smaller value of µ15. Localization in the excited
states is also characterized with use of the IPR. Except for the states in the middle of the
spectrum of the chiral Hamiltonians, which are known to be extended [106], all the different
cases studied here show localized eigenstates for g/t > 1.

Let us now consider the region of parameters for which the coupling with the disorder is
not strong enough to completely localize the states. In the presence of disorder, what are
the properties of the phase of the eigenstates of these systems? Is there any possibility of
long-range phase coherence in the wave-functions of the a and b particles16, or else, is it
possible for the relative phase of the a and b particles, due to the coupling with the disorder,
to exhibit any type of phase locking?

Fig. 6.3, displays the ground-state wave-functions of the a and b particles for a single realiza-
tion of the non-chiral case with real-valued random field and with µa/t = −µb/t = 0.4. The
different values of g/t for which we show the phases of Ψa and Ψb correspond to the values

13For finite lattices the IPR → 1/N , where N is the number of sites.
14The extreme where IPR → 1 would correspond to having a particle localized in one site.
15By dominant we mean that the amplitude of the wave-functions of the particles with lowest chemical

potential are the largest ones.
16In the sense of phase coherence of the order parameter.
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Figure 6.1.: Ten first energy levels (of a single realization) of the real-valued random field cases on
a 40 × 40 lattice and the IPR for the three first states for the system with t = 1 and
ξ = 0.4. In the non-chiral case µ = 0.4. Since in the wave-functions for the a and b
particles are identical in the chiral case (see text), we do not distinguish the IPRs of the
a and b eigenstates in the left panel. In the right panel the a and b labels refer to the
IPR of the corresponding type of state. Notice here that the regions of discontinuity in
the IPR are associated to the avoided crossings in the energy spectrum.

of g where the states are still extended17, and it is clear that Ψb has phase coherence along
the lattice. Interestingly, this is not what happens for Ψa, whose sign oscillates between
the different sites. It is also very interesting that the density of the dominant b particles is
very smooth and extended, while the non-dominant a particles have a density with a large
number of different peaks. This is not what happens in the chiral case, for which |Ψa| = |Ψb|.
Here both wave-functions have phase coherence over the lattice, and therefore also relative
phase coherence. We attribute this property to the fact that as opposed to the real-valued
random field case, where the phase of the random field couples to the relative phase of the
a and b wave-functions with discrete values, i.e., with a zero or π phase at each site, the
relative phase of the a and b wave-functions couple to all the possible values between [0, π]
of the random phase in the complex-valued random field case.

The ground-state wave-function of the non-chiral case with complex-valued random field
with µa/t = −µb/t = 0.4 is shown in Fig. 6.4. The properties of the density are similar to
what was discussed above for the real-valued random field case, but with the difference that

17In the sense of a large localization length.
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Figure 6.2.: Ten first energy levels (of a single realization) of the complex-valued random field cases
on a 40× 40 lattice and the IPR for the three first states for the system with t = 1 and
ξ = 0.4. In the non-chiral case we use again µ = 0.4. In the same way as in Fig. 6.1, the
a and b labels denote the IPR of the a and b particles in the left panel. The regions of
discontinuity in the IPR are also associated here to the avoided crossings in the energy
spectrum.

no phase coherence is present in the wave-function of the dominating b particles. In the same
way, the chiral case with complex-valued field is also characterized by |Ψa| = |Ψb|. Contrary
to the chiral real-valued field case, however, this case does not present any phase coherence
in any of the wave-functions of the a and b particles, and accordingly, no relative phase is
established.

The excited states of these systems also display a very interesting profile. In the non-
chiral cases, the densities of the dominant and non-dominant particles follow the same trend
already discussed for the ground-state: the dominant particles have extended and smooth
wave-functions, while the amplitudes of the non-dominant ones are highly oscillating in the
lattice. The phase behavior is also similar to that already seen in the ground-state, and thus
these plots are not repeated here. Now the main property of the excitations of these systems
is that the phase of the dominant wave-function Ψb is characterized by the appearance
of domain walls in the real-valued random field case (see Figs. 6.5 and 6.6), while in the
complex-valued random field case, the phase of Ψb features pairs of vortices/anti-vortices18

18The number of vortices/anti-vortices is larger for higher excited states, but there does not seem to be a
general rule which relates the number of vortex/anti-vortex pairs with the corresponding n-th excitation

97



6. Effects of disorder in multi-species systems

Figure 6.3.: Ground state amplitude and phase for different values of the coupling with the disorder g
for the non-chiral Hamiltonian with a real-valued random field whose spectral properties
are shown in the left pannel of Fig. 6.1. Notice that despite the disorder, the wave-
functions of the dominant b mode does not change sign in the lattice. It thus becomes
clear that the system chooses to minimize the kinetic energy of the dominant particles
via fixing the phase, while the less populated species carries a large kinetic energy.
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Figure 6.4.: Ground state amplitude and phase for different values of the coupling with the disorder g
for the non-chiral Hamiltonian with a complex-valued random field. This is for the same
system whose spectrum is shown in Fig. 6.2 and therefore t = 1 and ξ = 0.4.
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(see Figs. 6.7 and 6.8). These properties are the same in the chiral cases, with the difference
that the densities of a and b particles are exactly the same. For real-valued random field, Ψa

and Ψb exhibit phase coherence along the lattice, and therefore also relative phase coherence.
Whether this relative phase coherence is a consequence of the no-node theorem [115] or a
manifestation of the phenomenon known by the name of random-field induced order (see
below) is still a matter of investigation. In the complex-valued random field case, Ψa and
Ψb don’t exhibit any type of phase coherence.

The phenomenon of random-field induced order [111, 116] refers to the ability
that certain systems have of establishing order only in the presence of disor-
der. The reasoning is as follows: suppose we are studying a clean system in 1D
or 2D, with a continuous symmetry, and that satisfies the assumptions of the
Hohenberg-Mermin-Wagner theorem [40, 41]. Accordingly, this system is pro-
hibited of having long-range order with an order parameter of the magnetization
type [40, 41]. Now let us assume that it is possible to add a random field to this
system in such a way to break the continuous symmetry. Because the system now
has discrete rather than continous symmetry, it does not fulfil the assumptions
of the Mermin-Wagner theorem and therefore there is nothing prohibiting global
ordering in the strict sense [111, 117]. Although counterintuitive, this mechanism
seems to be related to the possibility of order in graphene quantum Hall ferromag-
nets [118]. In interacting Bose-Einstein condensates that are randomly coupled
via Raman pulses, for example, random-field induced order appears in the form
of a fixed phase, of π/2, in the order parameters of the two condensates [111].
In addition, a rigorous mathematical proof has been recently given for the oc-
currence of random-field induced order in the classical XY model [116] and it is
argued that this phenomenon should also occur in the quantum case [117].

6.5. Effective model for the non-chiral systems

The numerical study of Sec. 6.4 revealed that by breaking the degeneracy of the onsite wave-
functions with the additional species-dependent chemical potential and for not too strong
values of ξ, the wave-functions of one of the species become essentially insensitive to the
presence of disorder. This behavior can be understood from the construction of a simple
effective model, obtained from tracing out the species with the fastest oscillating modes. In
order to obtain this effective model, let us consider the coherent state representation of the
partition function for the system of Eq. (6.1). We consider here the functional integral in
the frequency representation such that

Z =

∫
D[ψ∗a, ψa, ψ

∗
b , ψb]e

−S[ψ∗a,ψa,ψ
∗
b ,ψb], (6.13)

where ψα, α = a, b are coherent states, D[ψ∗a, ψa, ψ
∗
b , ψb] = Πnd[ψ∗a,n, ψa,n, ψ

∗
b,n, ψb,n] defines

the measure with n the label of the n-th mode and the Matsubara frequencies at temperature

number.

100



6. Effects of disorder in multi-species systems

T are given by ωn = 2nπT . In this framework the action takes the form

S[ψ∗a, ψa, ψ
∗
b , ψb] =

∑
n

∑
〈i,j〉σ ψ

∗
an,i [(−iωn − µa)δij − 1]︸ ︷︷ ︸

Aij

ψan,j

+
∑

n

∑
〈i,j〉σ ψ

∗
bn,i

[
(−iωn − µb)δij − 1

]
︸ ︷︷ ︸

Bij

ψbn,j

+
∑

n

∑
i

(
ψ∗an,ihi ψbn,i + ψ∗bn,ih

∗
i ψan,i

)
.

(6.14)

Now let us assume the species-dependent chemical potential to satisfy µa > µb, such that
the fastest modes are associated to the dynamics of ψa. The effective action describing the
dynamics of the species b can then be obtained after a partial trace over the degrees of
freedom of the a species as

Zb =
∫
dψ∗b,ndψb,n e

∑
n Ψ∗bnBΨbn

∫
dψ∗a,ndψa,n e

[
∑
n Ψ∗anAΨan+Ψ∗anCΨbn+Ψ∗bnC

∗Ψan]

= det [A]−1 ∫ dψ∗b,ndψb,n exp
[∑

n Ψ∗bn
(
B − C∗A−1C

)︸ ︷︷ ︸
Hb
eff

Ψbn

]
,

(6.15)

where we use the matrix notation with Ψαn = (ψαn,1, ..., ψαn,N )T , with N the number of
sites, and Hb

eff is the effective Hamiltonian describing the b species. This expression makes it
clear that the characteristic energy of the degrees of freedom that were integrated out enters
the disorder, in such a way that the coupling with the disorder has different magnitudes in
the effective modes describing the a and b particles. The elements of the A and B matrices
are given above, and C is the matrix with the (random field) couplings between the a and
b species. These are also the matrices obtained after expressing Eq. (6.1) in a block form

H =

(
A C

C∗ B

)
, (6.16)

although we notice that in this form the A and B blocks in Eq. (6.1) do not contain the
frequency dependence embedded in (6.15). In particular, it is interesting to notice the
structure of Hb

eff , which is determined by the Green function of a tight-binding model19.
Indeed, the presence of a particles induces an effective long-range hopping for the dominating
b particles, such that this long-range hopping counteracts localization. Since it does not have
an exponential fall off, the states are not extended in the strict sense, but display a larger
localization length, as seen in the results of the numerical study of Figs. 6.1 and 6.2.

6.6. Experimental realizations of disordered systems

As discussed in this chapter, the different possibilities for the choice of the Raman coupling
and chemical potential in Eq. (6.1) make the system of randomly coupled Bose-Einstein
condensates an alternative candidate for the study of quantum systems in the presence of
disorder20. At zero chemical potential, for example, the real-valued random field case can

19That is, the A−1 part.
20Anderson localization has been study in systems of cold atoms with the disorder created by laser speckels

(see [103] and references therein).
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6. Effects of disorder in multi-species systems

Case hi µ Class Classification scheme

(i) real-valued zero chiral orthogonal BDI
(ii) complex-valued zero chiral unitary AIII
(iii) real-valued non-zero Wigner-Dyson orthogonal AI
(iv) complex-valued non-zero Wigner-Dyson unitary A

Table 6.1.: Classification of Eq. (6.1) for different choices of hi and µ (see text for details).

be mapped into the Anderson model, whereas the case with a complex-valued random field
is related to the random flux model. The fact that (6.1) is a quadratic Hamiltonian allows
the use of the classification scheme of disordered systems. In this scheme, the real-valued
random field cases belong to orthogonal classes, whereas the Hamiltonians with complex-
valued random field belong to unitary classes. The symmetries of each case subdivide the
orthogonal and unitary classes even further [119, 26], as we show in Tab. 6.1.

The orthogonal class contains the matrices that are real and symmetric, which yield the
models discussed in Sec. 6.2, with time-reversal symmetry [114, 26]. At zero chemical po-
tential, the system has the additional chiral symmetry and belongs to the chiral orthogonal
class. When µ 6= 0, the Hamiltonian belongs to the orthogonal Wigner-Dyson one [114, 26].
The cases with a complex-valued random field belong to the unitary classes [114, 26]. At zero
chemical potential the system is in the chiral unitary class, whereas it is in the Wigner-Dyson
unitary one otherwise [114, 26].

As a final remark, we notice that these different cases can also be connected to the classi-
fication scheme of topological insulators [26]. This is particularly useful for characterizing
Anderson localization as well as universal properties of these systems. The different possi-
bilities are also listed in Tab. 6.1. In addition, these different classes allow for the existence
of a topological insulator in different dimensions [26]. This means that a term of topological
origin can be added to the non-linear-σ-model description of the system at the (d − 1)-
dimensional boundary which prevents Anderson localization [26]. From the cases discussed
above, the BDI class admits a Z2 in 0D and a Z term in 1D, the AIII class admits a Z term
in 3D, the AI class admits a Z term in 0D, and last but not least, the A class admits a Z
term in 2D [26]. Accordingly, these systems of randomly coupled Bose-Einstein condensates
could also be relevant for experiments in this direction.

Beware! Too much disorder might localize your thoughts.
— (Not so) Common knowledge.
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6. Effects of disorder in multi-species systems

Figure 6.5.: Amplitudes and phases for different values of the coupling with the disorder g for the
first excited state of the non-chiral Hamiltonian with a real-valued random field. The
phase of the wave-function describing particles of the a type behaves in a very similar
way to what is shown in Fig. 6.3 and therefore is not shown here. In contrast, notice the
appearance of domain walls in the phase of the wave-function of particles of the b type.

103



6. Effects of disorder in multi-species systems

Figure 6.6.: In the same way as for Fig. 6.5, we show the amplitudes and phases for the second
excited state of the non-chiral Hamiltonian with a real-valued random field. We again
draw attention to the presence of domain walls in the phase of the wave-function of the
b particles.
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6. Effects of disorder in multi-species systems

Figure 6.7.: Amplitudes and phases for different values of the coupling with the disorder g for the first
excited state of the non-chiral Hamiltonian with a complex-valued random field. Since
the phase of the wave-function describing the a particles is very similar to what is shown
in Fig. 6.4, we present only the phase of the wave-function of particles of the b type. In
particular, notice the appearance on vortices/anti-vortices pairs, as discussed in the text.
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6. Effects of disorder in multi-species systems

Figure 6.8.: Amplitudes and phases for different values of the coupling with the disorder g for the
second excited state of the non-chiral Hamiltonian with a complex-valued random field.
In the same way as for Fig. 6.7, we show only the phase of the b particles, which feature
vortices/anti-vortices pairs.
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7. Conclusions

In this thesis we presented different aspects of the physics of multi-species systems in optical
lattices. Although the focus was mainly on orbital physics, we also discussed the properties
of a simple two-species system in the presence of disorder.

We reserved final remarks to the Conclusions section, and in particular we will focus here
on possible interesting directions for future research:

• Among the systems presented in Chapter 3, it would be interesting to study the d-
band case further, from a perspective that goes beyond the tight-binding and single-
band approximations. In the p band, for example, it has been argued that an ad-
ditional nearest-neighbours interaction, if strong enough, could give rise to supersolid
phases [120]. Since the Wannier functions in the d band are even broader than the ones
in the p band, a study about the possibility of finding such phases in the d band sys-
tem could be of relevance for experiments. Different lattice geometries provide another
interesting continuation, specially since upcoming experiments on the d band consider
non-separable lattices [121];

• Several interesting directions have the starting point on the systems discussed in Chap-
ter 5:

For the p band system in 1D, for example, one interesting problem is the study of the
XYZ chain in an external random field with DMRG techniques. This is of experimental
relevance, since implementation of such a setup can take advantage of the presence of
residual s band atoms;

A throughout characterization of both the bosonic and fermionic SU(3) models via
flavor-wave analysis would be of interest. In fact, together with the methods presented
in Sec. 5.3.2, this would allow for experimental investigation of frustrated phases and
of phenomena emerging from the mechanism of order-by-disorder;

Still regarding the studies of orbital physics in the Mott phase of excited bands, another
interesting direction corresponds to the spin mapping of the Hamiltonian describing
the fermionic system in the d band. Since in this case it is possible to have the coupling
between the different dx2 and dy2 orbitals via the dxy one, the corresponding spin system
would loose the continuous symmetry, as opposed to the case of fermionic atoms in
the p band. In addition, the situation of a multi-orbital system with an internal spin
degree of freedom could also lead to the appearance of novel properties.

• The results presented in the last Chapter are still part of ongoing research. However,
the main question to be adressed in the future is related to the possibility of using
that system to investigate, experimentally, the phenomenon of random-field-induced
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7. Conclusions

order. In particular, it would be important to understand how this phenomenon is
related to the localization of the excitations in the systems where it occurs, or with
the localization of spin waves.

Disclaimer notice: No cursor was harmed in the production of this thesis..
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