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Abstract

In this thesis we explore the physics of bosonic atoms in the first excited band of an
optical lattice - the p band. As is discussed here, due to the additional orbital degree
of freedom, the physics in the p band is qualitatively different from the physics of the
well characterised systems in the ground band. We first define the orbital states and
discuss properties at the single particle level, from where we construct the framework
for studying the many-body system. This serves as the basis for the mean-field analy-
sis that is carried out in the sequence. The main body of this work covers the studies
developed in Papers I and II. In Paper I we discuss properties of confined �-orbital
bosons, that include condensation of the ideal gas of bosons in the � band, the ideal
gas at finite temperatures and zero temperature studies of the interacting system for
both the symmetric and asymmetric lattices. We continue with the studies of Paper II,
in which �-orbital bosons are considered in the strongly correlated regime. In particu-
lar, we show that the effective Hamiltonian describing �-orbital bosons in the the Mott
phase with a unit filling of the lattice sites can be mapped into the spin-1/2 quantum
XYZ Heisenberg model in external field. Here the system is considered in the context
of quantum simulators and we complement the study by proposing detection and manip-
ulation schemes for experimentally probing the physics discussed. Finally, we present
some work in progress that suggests the possibility of using systems of bosons in the �
band for experimentally exploring the physics of spin chains beyond spin-1/2.
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1. Introduction

After the experimental realization of the optical lattices in the lab and the subsequent ob-
servation in 2003 [1, 2] of the previously predicted Mott-insulator to superfluid transition,
cold atom systems became a primary candidate for understanding many-body quantum
phenomena [3, 4]. The degree of control and manipulation in these systems is so great,
that nowadays it is possible to engineer lattices with all sorts of different configura-
tions that allow for the study of many-body quantum physics in the strongly correlated
regime [3, 4]. Put in other words, cold atoms in optical lattices provide highly controllable
laboratories for testing models of solid state and condensed matter physics.

This is because similar to the behavior of electrons that is described by the celebrated
Hubbard model [5], the many-body dynamics in the optical lattice is dominated by the
two basic ingredients consisting of hopping and atom-atom repulsive interactions [6].
This is usually described in most simple terms by the Bose-Hubbard Hamiltonian in
the tight-binding limit,

ĤBH = −�
�

�����
(�̂†

� �̂� + �̂†
� �̂�) + U

2
�

�
�̂�(�̂� − 1)� �� U > 0� (1.1)

where
�

����� runs over the nearest neighbors and �̂� and �̂†
� are the bosonic operators

that annihilate and create an atom in a site-localized state in the �-th site. The first term
describes nearest neighbors hopping, which happens with amplitude � , and the second
term describes the onsite two-body interactions, characterized by a matrix element with
magnitude proportional to U . The reason why nothing is said about the band struc-
ture – which results from the periodic structure superimposed on the system – is the
truncation scheme adopted in the expansion of the many-body Hamiltonian. In fact, the
majority of studies consider a single-band description of such systems, in terms of a
basis constructed with the use of site-localized states of the first band only. This is not
the case in this thesis. Instead, we would like to understand what happens, for example,
if we also allow for the atoms to occupy states of higher bands of the optical lattice?
How would this affect the properties of the Mott-insulator to superfluid transition? And
what happens if the atoms are restricted to occupy only these higher-bands?

These issues are already interesting as they involve generalization of the Bose-Hubbard
Hamiltonian [7, 8, 9]; and even though they might seem, at a first glance, nothing more
than mere academic problems, recent studies and experimental work [10, 11] warrant
answering these and other questions related to many-body quantum phenomena in ex-
cited bands of optical lattices. It has been argued, for example, that under the presence
of (strong) repulsive interactions, the atomic population can migrate from the ground
to the excited bands [12], thereby affecting the properties of the ground-state expected
for the system. The interaction-induced broadening of the onsite wave-functions was
also observed experimentally via microwave spectroscopy [13]. Furthermore, through

1



1. Introduction

the mapping of collapse-revival structures in the atomic density of non-equilibrium con-
figurations, it was possible to verify signatures of higher bands physics [14, 15]. As a
result following this initial motivation, a large body of experimental research is nowa-
days focusing directly on the physics of cold atoms in the first excited (the �) and higher
bands.

The physics of bosons in the � band is qualitatively different from the physics of the
usual Bose-Hubbard model (Eq. (1.1)) where the atoms are restricted to the lowest (the
�) band. The reason for this can be most easily understood from analysing the square
and cubic lattices. In these cases, due to the lattice symmetry, the � band becomes
doubly (square lattice) and triply (cubic lattice) degenerate [7, 16]. This degeneracy
introduces the concept of orbitals that are associated to the site-localized states in the
lattice, and that are characterized by a node in each of the spatial directions. These
are called the � orbitals and are usually described in terms of the lattice Wannier
functions. The Wannier functions, in turn, are broader in the direction of the node, and
since their shapes determine the ease of tunneling between sites, this directly influences
the dynamical properties of the system. Now, because the tunneling properties of �-
orbital bosons considerably differ from the tunneling properties of bosons in the �
band, various types of novel quantum phases [17, 18, 19, 20, 21] can appear. In fact,
due to the anomalous dispersions, mean-field analysis of the system reveals that the
condensed state of bosons in the � band is characterized by macroscopic occupation of
nonzero momentum states [22].

The manner in which �-orbital atoms interact also differs significantly from interactions
in the �-band. Again, this is a consequence of the orbital degeneracy. For the case
of bosons, for example, in addition to the density-density interactions (as described by
Eq. (1.1)), the system also contains multi-species (different orbital states) density-density
interactions and interactions that move the atoms between the different orbital states.
This gives rise to novel phenomena which include the formation of structures in the
order parameter of the condensed phase [7, 16, 19].

The purpose of this thesis is to provide an introduction to the physics of cold atoms in the
first excited bands of optical lattices, the � band, and to report a number of studies that
we have performed on this subject in the past years. We focus on the case of separable
lattices1 and mainly in the two-dimensional case. We start by defining and characterizing
the orbital states in Chapter 2, where we also discuss the construction of the many-body
Hamiltonian. In Chapter 3, properties of �-orbital bosons in isotropic square and cubic
lattices are considered from the viewpoint of mean-field analysis. We then investigate
how inclusion of the harmonic trap affects the physics of the two dimensional case
in Chapter 4. This chapter is based on the study of Paper I and presents details of
calculations that were omitted in the original work.

Moving away from the mean-field territory, we present properties of the �-orbital bosons
in the strongly correlated regime in Chapter 5. The system is discussed here in the
context of quantum simulators [23, 24] for studying critical properties of spin models
relevant for the study of quantum magnetism. This chapter is based in the study of
Paper II and also includes more details than what is presented in the original work.
It also contains additional discussions on extensions of this work that are still work

1See definition in Sec. 2.1
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1. Introduction

in progress. Nevertheless it displays a different aspect of the physics of multi-orbital
Hubbard systems that hints at an interesting direction for future research. We reserve
final remarks to the Conclusion section.

3



2. �-orbital bosons: nice to meet you!

“To P or not to P? (bands!)”
William Shakespeare1

In this chapter we characterize the system of �-orbital bosons. We start with a quick
note in Sec. 2.1 on the energy and length scales adopted here to define dimensionless
variables, and follow with discussions on the general properties of single particle physics
in periodic potentials in Sec. 2.2. In Sec. 2.3.1 we define the orbital states and discuss their
properties. The many-body Hamiltonian for �-orbital bosons is derived in Sec. 2.4 and
in Sec. 2.4.1 we briefly discuss symmetry properties of the many-body Hamiltonian.

2.1. Disclaimer notice

All the problems discussed in this thesis are concerned with the physics of cold atoms
in optical lattices. Optical lattices are spatially periodic potentials, created from the
superposition of counter-propagating laser beams, that can be used to trap atoms via
Stark effect [2, 6]. Unless stated otherwise, we assume here that the lattices are sinusoidal
and separable2, as e.g.

V����(�� �) = V� sin2(���) + V� sin2(���) (2.1)

in 2D, where Vα is the amplitude of the laser light with wavelength λα in the direction
α = {�� �} and �α is the corresponding wave vector. In this context, any of the inverse
wave vectors, �α = 2π/λα provides a natural choice for parametrizing the length scale,
and any of the recoil energies Eα

� = ~2�α/2� (for an atom of mass �), provides a natural
choice for fixing the energy scale.

Here whenever we use the word ’dimensionless’ referring to any position, this means
that the positions are scaled in terms of one of the �α, and whenever we use it referring
to any energy, it means that the energies are scaled in terms of one of the Eα

� . The
direction α will be explicitly determined.

1Adapted from the tragedy of Hamlet.
2More explicitly, by separable lattice we mean that the eigenvalue problem for the given lattice potential

admits solutions that can be factorized in the different directions.

4



2. �-orbital bosons: nice to meet you!

2.2. General properties of one particle subjected to periodic potentials

Two main properties characterize the problem of a quantum particle interacting with a
periodic potential [25]: (a) that the energy spectrum displays structure of bands where
regions with allowed energies are separated from each other, and (b) that the solutions
of the eigenvalue equation are given by Bloch functions. This is formulated in one
dimension3 as

ĤΨ(�) = EΨ(�)� where Ĥ = −~2

2�
�

�� + V (�) (2.2)

with � the mass of the particle and V (�) = V (�+�) the periodic potential with periodicity
�. The expression for the Bloch functions can be obtained from the Bloch theorem [26]
and follows as

Ψν�(�) = �����ν�(�)� (2.3)

where �ν� is a periodic function satisfying �ν�(�) = �ν�(� + �) and � and ν are the
good quantum numbers labeling, respectively, quasi-momentum and band index. The
fact that we are using the band index ν implicitly assumes the reduced scheme, where
quasi-momentum varies along the first Brillouin zone [26]. To each of the values of
ν and � there is an associated energy, and in general the relation between the free
particle momentum of E = ~2�2/2� and the quasi-momentum � appears in the form of
a complicated (transcendental) equation. The eigenstates of Eq. (2.2) correspond thus to
plane waves delocalized in the lattice and that experience a modulation due to the lattice
periodicity.

An alternative basis for describing particles subjected to periodic potentials is given
by the so called Wannier functions [25]. They are constructed in terms of the Bloch
functions according to the prescription

�ν� (�) =
�

�
�−��R� ψν�(�)� (2.4)

where R� labels the coordinates of the � ’th site and we sum over the quasi-momenta in
the first Brillouin zone. The Wannier basis differs from the Bloch basis in two main
aspects: First, at each site each of the energy bands is endowed only one Wannier
function. Second, this is a site localized basis labeled by the position in the lattice. The
Wannier functions at different sites satisfy the following orthonormality condition

�
���ν� (�)�ν� �(�) = δνν� δ�� � (2.5)

Let us now briefly illustrate this discussion by starting with Fig. 2.1, where the band
structure for a system with periodic potential given by V (�) = V0 sin2(���) is shown for
different values of the lattice amplitude V0, and as a function of the quasi-momentum �.
The general picture following is that for increasing values of the lattice amplitude, V0,
the widths of the bands experience a narrowing at the same time that the energy gaps
between the bands become larger.

3Extensions for 2D and 3D systems are straightforward. We use the 1D case here just for illustrative
purposes.
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2. �-orbital bosons: nice to meet you!

Figure 2.1.: Band structure of a system with V0 = 0�5E� (blue), V0 = 5E� (red) and V0 = 17E�
(green). As discussed in the text, the widths of the bands are larger for smaller
values of the lattice amplitude. In addition, the energy gaps between the different
bands increase for increasing values of V0.

Figure 2.2.: Real part of the Bloch functions of the first (in (a)) and second (in (b)) bands for
different values of quasi-momentum � and for V0 = 5E� . Notice here that the Bloch
function of the 2nd band is strictly imaginary if � = 0.

We continue by showing samples of the real and imaginary parts of the Bloch functions
in Figs. 2.2 and 2.3, where we particularly raise attention to the delocalized character of
the Bloch functions. This is clearly not the case for the Wannier functions, as illustrated
in Fig. 2.4, which shows the Wannier functions of the first and second bands, and for
different values of the lattice amplitude. In this picture, larger values of V0 have corre-
sponding Wannier functions that are more and more localized around the minimum of
the potential well. For completeness, we show the probability density associated to each
of these Wannier functions in Fig. 2.5 (a) and (b).

6



2. �-orbital bosons: nice to meet you!

Figure 2.3.: Imaginary part of the Bloch functions of the first (in (a)) and second (in (b)) bands
for different values of quasi-momentum � and for V0 = 5E� . In contrast to the result
of Fig. 2.2, here we notice that the 1st band Bloch function with � = 0 is strictly
real. We point out that there is an arbitrary phase to be fixed in the definition of the
Bloch functions. Once this phase is fixed, however, and say the Bloch function of
the first band with � = 0 is purely real, then the Bloch function in the second band
with � = 0 will be purely imaginary.

Figure 2.4.: Wannier functions of the first and second bands for systems with V0 = 0�5E� (green),
V0 = 5E� (red) and V0 = 17E� (blue).

Figure 2.5.: Probability density of the first and second bands Wannier functions for systems with
V0 = 0�5E� (green), V0 = 5E� (red) and V0 = 17E� (blue).

7



2. �-orbital bosons: nice to meet you!

2.3. What are the �-orbitals?

�-orbitals are the site-localized states of the first excited energy band, the � band [7].
For isotropic square/cubic optical lattices in two or three dimensions, the first excited
band is respectively two- and three-fold degenerate. This, in turn, renders a corre-
sponding degeneracy for the site-localized states or �-orbitals. In particular, � orbitals
are anisotropic in magnitude and odd in parity [16], features of which are discussed in
this section.

2.3.1. �-orbital bosons in the harmonic approximation

In order to get familiar with the physics in the � band, we consider the system in the har-
monic approximation, where analytical solutions are easily obtained and simple enough
to expose properties of the physics in analytical terms. This consists in approximating
each well of the sinusoidal potential with a harmonic potential, i.e., V (�) = sin2(���) ≈
�2

��2. Although the use of the harmonic approximation is limited [9, 27] and justified
only in very particular cases4, it is still a good starting point for building an intuitive
picture about the objects used in the representation of the orbital states.

Let us then consider a two dimensional separable lattice with decoupled �- and �-
directions, for which the expression of the lattice potential is given by V (�� �) = V� sin2(���)
+V� sin2(���), where Vα and �α, α ={�� �} correspond to the potential amplitude and
wave number, respectively, in the direction α. The Schrödinger equation for a particle
under action of this potential assumes the form of the Mathieu equation:

ĤΨ =
�

− ~2

2�
�2

��2 + V� sin2(���) − ~2

2�
�2

��2 + V� sin2(���)
�

Ψ = EΨ� (2.6)

We now use dimensionless variables as ��� � �� and ��� � �� such that �−1
� sets the

length scale at the lattice, and expand the potential around its minimum keeping only
first order contributions, i.e.

ĤΨ =
�

−~2�2
�

2�
�2

���2 + V� sin2(��
��

��) − ~2��
2�

�2

���2 + V� sin2(��)
�

Ψ

ĤΨ =
�

−~2�2
�

2�
�2

���2 + V�
�2

�
�2

�
��2 − ~2�2

�
2�

�2

���2 + V���2
�

Ψ�
(2.7)

which implies

Ĥ
E�

�
Ψ =

�
− �2

���2 + ( 2�
~2�2

�
)V�

�2
�

�2
�
��2 − �2

���2 + ( 2�
~2�2

�
)V���2

�
Ψ

Ĥ
E�

�
Ψ =

�
− �2

���2 + Ṽ�
�2

�
�2

�
��2 − �2

���2 + Ṽ���2
�

Ψ�
(2.8)

In the last step we introduced Ṽα = Vα/E�
� , where E�

� = ~2�2
�/2� is the recoil energy in

the �-direction. This step sets the energy scale.
4The limit of very deep potential wells is required.

8



2. �-orbital bosons: nice to meet you!

When dealing with a separable lattice like in the example above, it is possible to find
the solutions in the �- and �-directions by solving the corresponding equations indepen-
dently. We solve first for �� (dimensionless �-direction):

�
− �2

���2 + Ṽ���2
�

Ψ(��) = ���Ψ(��) (2.9)

where ��� is the energy scaled in recoil energies of the lattice in the �-direction. We
identify the characteristic length of the oscillator as �−4

0 = Ṽ� and therefore the ground
and first excited states, with energies �0

�� and �1
�� , are given by

φ0(��) = 1
π1/4�1/2

0
�−��2/2�2

0 =
�

Ṽ1/8
�

π1/4

�
�−

√
Ṽ���2/2 (2.10)

and

φ1(��) =
� √

2
π1/4�3/2

0

�
�� �−��2/2�2

0 =
�√

2Ṽ3/8
�

π1/4

�
�� �−

√
Ṽ���2/2 (2.11)

Equations for �� (dimensionless �-direction) are solved in the same way
�

− �2

���2 + Ṽ�
�2

�
�2

�
��2

�
Ψ(��) = ���Ψ(��) (2.12)

and ��� is again the energy scaled in units of E�
� . The characteristic length of the

oscillator is identified here as �−4
0 = Ṽ��2

�/�2
� , and the ground and first excited states,

with corresponding energies �0
�� and �1

�� , are given by

φ0(��) = 1
π1/4�1/2

0
�−��2/2�2

0 = 1
π1/4

�
Ṽ��2

�
�2

�

�1/8

�−
√

Ṽ���
�� ��2/2 (2.13)

and

φ1(��) =
� √

2
π1/4�3/2

0

�
�� �−��2/2�2

0 =
√

2
π1/4

�
Ṽ��2

�
�2

�

�3/8

�� �−
√

Ṽ���
�� ��2/2 (2.14)

With the expressions of the eigenfunctions in hand, we can now describe the energy
levels and eigenstates of the 2 dimensional system in the harmonic approximation. For
simplicity we consider here an isotropic lattice for which Ṽ� = Ṽ� and �� = �� . The true
ground state within this approximation has energy E0 = (�0

�� + �0
��) and its eigenfunction

has a Gaussian profile in both �- and �-directions:

Ψ0(��� ��) = 1
π1/2�1/2

0 �1/2
0

�−��2/2�2
0−��2/2�2

0 � (2.15)

The first excited state is doubly degenerate. It has energy given by E1 = (�1
�� + �0

��) =
(�0

�� + �1
��) and the corresponding eigenfunctions are given, respectively, by

Ψ�(��� ��) =
� √

2
π1/4�3/2

0

�
�� �−��2/2�2

0

�
1

π1/4�1/2
0

�
�−��2/2�2

0 (2.16)
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2. �-orbital bosons: nice to meet you!

Figure 2.6.: Comparison between the numerically obtained Wannier functions and the Wannier
functions in the harmonic approximation, Eqs. (2.10) and (2.11) for a 1D system with
V0 = 17E� (see discussion in the text).

and

Ψ�(��� ��) =
�

1
π1/4�1/2

0

�
�−��2/2�2

0

� √
2

π1/4�3/2
0

�
���−��2/2�2

0 � (2.17)

that are precisely the ��- and ��-orbital states in the harmonic approximation. As can
be verified, the spatial profile of the two orbitals have different parities in the different
directions, i.e., it is odd in the direction which introduces the node in the wave-function
and even otherwise. In particular, the name of the orbital state is coined after the
direction in which the wave-function is odd.

We compare in Fig. 2.6 the ground and first excited Wannier functions obtained from
numerical diagonalization of the Mathieu equation with the ground and first excited
states obtained in the harmonic approximation. It illustrates the situation where V0 =
17 E� , of deep wells, where the harmonic approximation is expected to give a good
qualitative picture of the system. While the harmonic oscillator eigenfunctions will
never assume negative values, the negativity of the Wannier functions is an important
property for the orthonormality condition (2.5). In addition, it is important to keep in
mind that as opposed the picture provided by the harmonic limit, the energy difference
between different bands in the sinusoidal potential is not constant. In fact, due to the
anharmonicity of the sinusoidal potential, the bands are usually not equally spaced in
the optical lattices.

2.4. From the one-body to the many-body problem

The dynamics of a gas of N atoms of mass � under action of an external potential can
be represented, in general terms, by a Hamiltonian of the type

H =
N�

�=1

�
�2

�
2� + V���(���)

�
+ V���(���� ��� )� (2.18)

where the first two terms account for single-particle effects, while the last term describes
interactions between the atoms, and therefore accounts for effects of collective nature.

10



2. �-orbital bosons: nice to meet you!

In the ideal scenario V��� should include all interactions in the system, i.e., the result
of two-body collisions, three-body collisions and so on5. In real life, however, exact
solutions for problems involving interacting many-body quantum particles are known
only in very few or particular cases. The way out, of course, starts with the use of
approximations that are capable of describing not all, but all the relevant interactions
that warrant a good picture of the experimental reality.

We mentioned before that the interest here is in the physics of (many and also a few)
interacting �-orbital bosons. We aim, therefore, at describing systems of very cold and
dilute bosonic gases, where the atoms occupy the orbital states discussed in Sec. 2.2, of
the � band of an optical lattice. By ’very cold’ we mean that the temperatures considered
are close to the absolute zero6. In the same way, by ’very dilute’ we mean that the distance
between any two atoms fixed by � = N/V - where N is the total number of particles and
V the volume of the system - is very large. In the lab, for example, these systems are
produced with densities of the order of 10−5 atoms per cm3 (∼ 10−27g/cm3)7, and under
these circumstances, it is reasonable to truncate the interaction term in the two-body
part [28, 29].

As a consequence from the characteristic low densities, the distances between the par-
ticles are always large enough to justify the use of the asymptotic expression of the
wave function of the relative motion [28]. In addition, as a consequence from the low
temperatures T , the relative momentum corresponding to kinetic energies �BT , where
�B is the Boltzmann constant, justifies that the collisions are effectively described by
�-wave scattering processes, that are completely characterized by the corresponding
phase shift [30]. At very low temperatures, however, the phase shift is not the best
parameter for characterizing the cross section of the scattering processes.

This can be illustrated8, for example, by considering the cross section of two
particles in a state with relative momentum �� and energy ~2�2/2µ, where µ is the
reduced mass

�σ
�Ω = sin2(δ0(�))

�2
��0−−� �2 (2.19)

where � has dimensions of length. At very low temperatures, i.e., in the lim � � 0,
the presence of �2 in the denominator of Eq. (2.19) would require that sin(δ0(�))
vanishes linearly for any value of the cross section [30].

The trick here is to use instead the scattering length � defined as

lim
��0

�
sin(δ0(�)) ≡ − 1

�� (2.20)

that is, up to the choice of a sign, exactly the same length parameter of Eq. (2.19). Now
this is a good quantity for parametrizing the low energy scattering cross section, for it
can also be further interpreted as the first term of the expansion in powers of � of the

5’Ambition is the last refugee of failure.’ - Oscar Wilde
6Or much less than the bandwidth. The temperature is typically of the order of ∼ 1 �K.
7For comparison, the density of the air at room temperature (notice however that the definition of room

temperature might vary in countries like Sweden or Finland) is ∼ 1�25 × 10−3g/cm3, the density of the
water is 1g/cm3 and the density of a white dwarf can be estimated as 1�3 × 106g/cm3.

8This discussion is based on the discussion presented in Ref. [30].
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2. �-orbital bosons: nice to meet you!

effective range expansion [30],

� cot(δ0(�)) ≡ − 1
� + �0

2 �2 + ���� (2.21)

where �0 is the so called effective range of the potential. In these terms, low energy
scattering processes can be characterized by only two parameters, � and �0, and regard-
less of their underlying forms or expressions, any two potentials that are characterized
by the same �-wave scattering length � and effective range �0, will give rise to the same
effective interaction [30].

The values of � are determined with the use of the standard scattering theory. Now
assuming that � is a known quantity, our goal is to implement in the Hamiltonian (2.18)
an effective interaction that captures the physics seen in the lab. The usual process
consists in considering the real interaction potential V���(���� ��� ) as a contact interaction
V��� = λδ(��� − ��� ) with coupling constant given by λ = 2π~2�/µ, where µ is the reduced
mass of the two particles [31]. Accordingly, the effective potential for two identical
particles of mass � follows as

V���(���� ��� ) = 4π~2�
� δ(��� − ��� )� (2.22)

In the language of second quantization, this can be further re-written with the use of
the bosonic field operators Ψ(���) and Ψ†(���), that annihilate and create a bosonic particle
of mass � at position ��� as

V̂��� = 4π~2�
�

�
�������Ψ†(��)Ψ†(��)δ(�� − ���)Ψ(��)Ψ(���) = 4π~2�

�

�
����Ψ†(���)Ψ†(���)Ψ(���)Ψ(���)�

(2.23)
These operators satisfy the bosonic commutation relations [Ψ(����)� Ψ(���)] = δ(���� −���). The
full expression of the Hamiltonian describing a weakly interacting Bose gas is given,
therefore, by

Ĥ =
�

����
�

Ψ̂†(���)
�
−~2∇2

2� + V (���)
�

Ψ̂(���) + Ũ0
2 Ψ̂†(���)Ψ̂†(���)Ψ̂(���)Ψ̂(���)

�
� (2.24)

where V (���) accounts for effects of external potentials superimposed to the system and
Ũ0 = 4π~2�/� is the coupling constant in units of the recoil energies, as defined in
Sec. 2.1.

In the usual procedure the field operators are then expanded with the use of a convenient
basis, which in our case will be constructed in terms of the orbital states of the � band of
the optical lattice9. But before proceeding with the expansion, let us restrict the external
potentials acting in this system V (��) (in Eq. (2.18)) to account only for the optical potential.
In the cubic lattice this follows as

V (��) = V����(���) = Ṽ� sin2(���) + Ṽ� sin2(���) + V� sin2(���)� (2.25)

where again the lattice amplitudes and wave vectors are given, respectively by Ṽα,
α ={�� �� �} and � = 2π/λ, with λ being the wavelength of the applied lasers. As before

9Since in this step we restrict the atoms to live in the � band of the optical lattice, this also means that we
are considering what is called the single band approximation.
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2. �-orbital bosons: nice to meet you!

we define dimensionless parameters by taking the recoil energy E� = ~2�2/2� as the
energy scale and the inverse wave vector as the typical length scale � = λ/2π10. In these
terms, the expression for the field operators then follows as

Ψ†(��) =
�

αj

�∗
αj

(��)�̂†
αj

(��)

Ψ(��) =
�

αj

�αj

(��)�̂αj

(��)
(2.26)

where �̂†
αj

and �̂αj

create and annihilate an atom in the α ={�� �� �} orbital state and in
the �-th site of the lattice (j = (��� ��� ��)� ��� ��� �� ∈ �).

Notice here that the orbital states in the � band are not eigenstates of the single-
particle Hamiltonian. They are constructed in terms of the site-localized Wannier
functions11 �νj

(��), ν = 1� 212 with the prescription13

��j

(��) = �2�� (�)�1�� (�)�1�� (�)

��j

(��) = �1�� (�)�2�� (�)�1�� (�)

��j

(��) = �1�� (�)�1�� (�)�2�� (�)�

(2.27)

which according to Eq. (2.4), relate with the Bloch functions (the eigenstates of the
single-particle Hamiltonian) as

�νR

j

(��) =
�

q

�−�q�R
jφνq

(��)�

where we use R

j

= (�
j

� �
j

� �
j

) = (π��� π��� π��) and q = (��� ��� ��) is the index which
labels the quasi-momentum.

Now before arriving to the final expression of the second quantized version of the
Hamiltonian describing bosonic atoms in the � band, we assume, in addition, the tight-
binding regime. In this approximation, the range of the tunneling is restricted to the
first nearest neighbors, and the interactions to happen only onsite. The final result then
follows as

Ĥ = Ĥ0 + Ĥ�� + ĤFD� (2.28)

The first term here corresponds to the kinetic part of the Hamiltonian and is given by

Ĥ0 = −
�

α�β

�

�ij�β

�αβ�̂†
αi

�̂αj

(2.29)

with
�

�ij�β
the nearest neighbor sum in the direction β. The second and third terms

account for different types of interactions:

Ĥ�� =
�

α

�

j

�̂αj

(�̂αj

− 1) +
�

αβ�α �=β

�

j

Uαβ�̂αj

�̂βj

� (2.30)

10These units are used in all derivations from here on, which also makes the resulting equations dimen-
sionless.

11Which themselves are also not eigenstates of the single particle-Hamiltonian.
12Remember here that ν is the index which labels the energy band of the corresponding Wannier function.
13Remember that we are considering the case where the equations describing the lattice are separable in

the different directions.
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2. �-orbital bosons: nice to meet you!

describes various types of density-density interactions, where �̂αj

is the atom number
operator for particles in the �α-orbital, and

ĤFD =
�

αβ�α �=β

�

j

Uαβ
4

�
�̂†

αj

�̂†
αj

�̂βj

�̂βj

+ �̂†
βj

�̂†
βj

�̂αj

�̂αj

�
� (2.31)

describes interactions which move atomic population between the different orbital states.

To complement we write the expressions for the various coupling parameters. They
are given in terms of the orbital states as

Uαβ = U0

�
���|�αj

(��)|2|�βj

(��)|2� (2.32)

where U0 = Ũ0�3/E� is the dimensionless interparticle strength, and

�αβ = −
�

����∗
αj

(��)[−∇2 + V (��)]�αj+1β(��)� (2.33)

with V (��) is the external potential of Eq. (2.25).

Substitution of Eq. (2.27) in the above Eq. (2.33) shows that the tunneling coefficients
in the directions perpendicular to the node depend uniquely on the properties of the
Wannier functions in the ground band (i.e., ν = 1), while in the direction parallel to
the node, it depends solely on the Wannier functions of the second band of the lattice
(ν = 2)14. This is the basis of the tunneling anisotropy in the � band, and explicitly
shows why an atom in the the �α-orbital state has larger probability of tunneling in the
α direction than in the transverse ones15.

2.4.1. Brief discussion on the symmetries of the model

Because each term in Eq. (2.28) has the same number of operators and Hermitian con-
jugates, the Hamiltonian describing bosonic particles in the � band is clearly invariant
under global U(1) transformations. This reflects the overall conservation of particle
number in the system, and therefore

[Ĥ�
�

j

(�̂�
j

+ �̂�
j

+ �̂�
j

)] = 0� (2.34)

In addition to the overall number conservation, the number of particles modulo 2 in
each of the orbital states is also conserved. This follows from the properties of the
terms describing transfer of population between the different orbitals, Eq. (2.31), which
introduce a set of Z2 symmetries under which the full Hamiltonian is invariant. In fact,
in isotropic lattices16, any permutations of the type

�̂�j

� ±�̂�j

� �̂�j

� ±�̂�j

� �̂�j

� ±�̂�j

(2.35)
14Notice here that these bands refer to the band in the 1D lattice from where one considers the quasi-

momentum of the Bloch functions used in the construction of the localized states.
15Remember that the �α orbital state has a broader spatial profile in the α direction
16Where all the �αα for different orbitals are equal, as well as all the �αβ , and U�� = U�� = U�� with again

all the Uαβ equal for different α and β.
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2. �-orbital bosons: nice to meet you!

leave the Hamiltonian invariant.

Let us take a closer look on the symmetries of the two-dimensional case. We start with
the isotropic square lattice, where U�� = U�� , U�� = U�� , ��� = ��� and ��� = ��� . In this
case, transformations of the type




�̂�
�j

�̂�
�j


 �




cos θ − sin θ

sin θ cos θ








�̂�j

�̂�j



 (2.36)

leave the Hamiltonian invariant for different values of θ = (0� π/2� π) ± �π , where � ∈ Z.
This is not the case for an asymmetric lattice. Here, even though the lattice can be
tuned in such a way to preserve the degeneracy between the orbitals, the coupling
constants U�� �= U�� and �αα �= �ββ , �αβ �= �βα, which means that transformations of the
type �̂�j

� �̂�j

� �̂�j

� �̂�j

will not leave the Hamiltonian invariant. There is a particular
case, however, for which even in asymmetric lattices the system is characterized by an
additional SO(2) symmetry [32]. This corresponds to the harmonic approximation in the
limit of vanishing tunneling17, where Uαα = 3Uαβ = U . As pointed out in Ref. [32], this
special case is better studied with the use of the angular-momentum like annihilation
operators �̂±j

= (�̂�j

± ��̂�j

)/
√

2, in terms of which the local part of the Hamiltonian can
be written as [32]

Ĥ = U
2

�
�̂

j

�
�̂

j

− 2
3
�

− 1
3
�

+
�
(�̂

j

− 1)(L̂+j

+ L̂−j

)
�

+λ
�

1
4 L̂2

�j

− 3(L̂+j

− L̂2
−j

)2 − �̂
j

� (2.37)

where U = (U�� + U��)/2, δ = (U�� − U��)/2 and λ = U�� − U/3. The density operator
can be expressed as �̂

j

= �̂†
+j

�̂+j

+ �̂†
−j

�̂−j

, and the angular momentum operators are
L̂�j

= �̂†
+j

�̂+j

− �̂†
−j

�̂−j

and L̂± = �̂†
±j

�̂∓j

/2. Now it follows from the properties of the
harmonic oscillator eigenstates that in the harmonic approximation λ = δ = 0 for
any lattice configuration, and therefore [Ĥ

j

� L̂�j

] = 0 [32]. This is not the case for real
optical lattices, for there λ� δ �= 0, which destroys the axial symmetry, and consequently
[Ĥ

j

� L̂�j

] �= 0 [32]. It is important to point out here that this additional SO(2) symmetry is
not of geometric character. Instead, this is a dynamical symmetry [33], which appears
as a consequence of the specific form that the eigenvalue problem assumes when the
harmonic approximation is used.

17This is only valid in the case of separable lattices.
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A. Hamiltonian parameters in the harmonic
approximation

We briefly compute here the various coupling constants in the harmonic approximation.
As discussed before, under this assumption the Wannier functions are approximated by
harmonic oscillator eigenfunctions, and therefore (2.32) and (2.33) can be obtained from
computation of simple Gaussian integrals. Here

U�� = U0
�

��
� √

2
π1/4�3/2

0

�4
�4 �−2�2/�2

0
�

��
�

1
π1/4�1/2

0

�4
�−2�2/�2

0

= U0

� √
2

π1/4�3/2
0

�4
3
4

√
π

25/2 �5
0

�
1

π1/4�1/2
0

�4 �π
2 �0 = U0

�
3

8π
1

�0�0

� (A.1)

Analogous calculation yields U�� = U0
�

3
8π

1
�0�0

�
.

We now compute U�� :

U�� = U0
�

��
� √

2
π1/4�3/2

0

�2
�2 �−�2/�2

0

�
1

π1/4�1/2
0

�2
�−�2/�2

0 ×

�
��

� √
2

π1/4�3/2
0

�2
�2 �−�2/�2

0

�
1

π1/4�1/2
0

�2
�−�2/�2

0

= U0
�

��
� √

2
π1/2�2

0

�2
�2�−2�2/�2

0
�

��
� √

2
π1/2�2

0

�2
�2�−2�2/�2

0

= U0
�

1
8π

1
�0�0

�
�

(A.2)

and thus we verify that in the harmonic approximation U�� = U�� = 3U�� . In particular,
notice that Uαα/Uαβ = 3 is always valid in the harmonic approximation regardless of
the wave vectors of the lattice, �� and �� . In addition, it is very surprising that in
this limit the coupling constants don’t even depend on the values of the lattice vector,
but only on the lattice amplitudes V� and V� [32]. This is again another feature of the
harmonic approximation, which is not valid when the lattice Wannier functions are used
for computation of the Hamiltonian parameters.

Now according to Eq. (2.33), the tunneling coefficients are computed in the harmonic
approximation (see Eqs. (2.16) and (2.17)) as

−��� =
� √

2
π1/4�3/2

0

�2 �
�� �(� + �) sin2 � �−�2/2�2

0 �−(�+�)2/2�2
0

+
� √

2
π1/4�3/2

0

�2 �
�� �

�� (��−�2/2�2
0 ) �

��

�
(� + �)�(�+�)2/2�2

0
� (A.3)
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A. Hamiltonian parameters in the harmonic approximation

Figure A.1.: Comparison between the values of the couplings obtained from analytical and nu-
merical computations as a function of V . It is shown in (a) that the harmonic ap-
proximation fails to reproduce the results obtained numerically for the tunneling
coefficients when tunneling occurs in the direction of the node. In (b) we show the
results for the interaction coefficients. In particular the estimates obtained from the
harmonic approximation are always larger than the values of the couplings com-
puted numerically.

Figure A.2.: Ratio U��/U�� for different values of the amplitude of the optical potential. Notice
here that U��/U�� is always larger than 3 for numerical computations with the lattice
Wannier functions.

where � is used here as the lattice constant and where we already used that the integral
in the �-direction yields 1. In the same way,

−��� =
�

1
π1/4�1/2

0

�2 �
�� sin2 � �−�2/2�2

0 +
�

1
π1/4�1/2

0

�2 �
�� �

�� �−�2/2�2
0 �

�� �−(�+�)2/2�2
0

(A.4)
but now it is the integral in the �-direction that yields 1, and therefore we only write the
part that contributes to the tunneling coefficient. The expressions for ��� and ��� are
obtained by making � � � and � � � with �0 � �0 and �0 � �0.
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3. �-orbital bosons in the mean-field
approximation

In this chapter1 we focus on the mean-field description of �-orbital bosons in isotropic
square and cubic lattices. After presenting details of the formalism in Sec. 3.1, we char-
acterize general properties of the order parameters of the two and three dimensional
cases in Secs. 3.1.1 and 3.1.2.

3.1. The mean-field Hamiltonian

At the mean-field level, the system is characterized in terms of order parameters which
acquire a finite value in the phases with broken symmetry [34]. This is usually related
to the appearance of a long-wavelength collective mode, and description in such terms
neglects details of microscopic nature of the corresponding model [35]. This is there-
fore not a good approach for studying properties of more correlated regimes. For cold
atoms in optical lattices, for example, mean field analysis is not suitable for describing
properties of the Mott phase. On the other hand, if the system is deep in the super-
fluid phase, a mean-field treatment is still capable of revealing qualitative aspects of the
underlying physics [29].

In order to give a mean-field description and to study the superfluid phase2 of the system
described by Eq. (2.28) we start by replacing the operators �̂α�j with the complex numbers
ψαj

. If the Hamiltonian is normally ordered3, then this corresponds to attributing a
coherent state at each site, |Ψ� = ⊗

j

|ψ�
j

= ⊗
j

|ψ�j

� ψ�j

� ψ�j

� such that �̂αj

|Ψ� = ψαj

|Ψ�.
Now since this has the form of a product state, it does not contain information about
quantum correlations between sites. Nevertheless, as we anticipate here, this ansatz is
used with self-consistent equations and therefore provides a self-consistent solution for
our problem.

In terms of the Fock basis, the single site many-body wave function is given thus by

|Ψ�
j

= exp
�

− |ψ�j

|2 + |ψ�j

|2 + |ψ�j

|2
2

� �

�����

ψ��
�j

ψ��
�j

ψ��
�j�

��!��!��!
|n�

j

� (3.1)

from where |n�
j

= |��� ��� ���
j

represents the state with �� ��-orbital atoms, �� ��-
orbital atoms, and �� ��-orbital atoms at the site j. In this language the order parameter

1This chapter describes the study developed in Paper I.
2This is a phase where the U(1) symmetry related to conservation of particle number is broken.
3Notice here that since the Hamiltonian in Eq. (2.28) is not in the normal form, it is necessary to normally

order it before taking the expectation values for proceeding with the mean-field analysis.
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3. �-orbital bosons in the mean-field approximation

of site j and orbital α is given by ψαj

= �Ψ|�̂αj

|Ψ�, and for being a coherent state it has
number fluctuations which obey Poissonian statistics [36]. In addition, this is also part
of what we call the full onsite order parameter, defined as the expectation value of the
annihilation operator in Eq. (2.26)

ψ
j

(��) ≡ �Ψ̂
j

(��)� =
�

α
�αj

(��)��̂αj

�� (3.2)

We can now derive the equations of motion for the order parameter ψα from the Euler-
Lagrange equations:

∂L
∂ψ∗

αj

− �
��

�
∂L

∂ψ̇∗
αj

�
= 0� (3.3)

where the Lagrangian is given by

L =
�

α

�

j

�
2

�
ψ∗

αj

�
�� ψαj

− ψαj

�
�� ψ∗

αj

�
− HMF � (3.4)

with the mean-field Hamiltonian

HMF = −
�

α
�

�i�j�β
�αβψ∗

αi

ψαj

+
�

α
�

j

Uαα
2 �αj

�αj

+
�

αβ�α �=β
�

j

Uαβ�αj

�βj

+
�

αβ�α �=β
�

j

Uαβ
4

�
ψ∗

αj

ψ∗
αj

ψβj

ψβj

+ ψ∗
βj

ψ∗
βj

ψαj

ψαj

�
�

(3.5)

and where computation of the coherent-state expectation value is carried out with the
normally order version of the Hamiltonian (2.28). The density of the �α-orbital state is
given by �αj

= |ψαj

|2 and normalization was imposed in the whole lattice as

N = N� + N� + N� =
�

j

|ψ�j

|2 +
�

j

|ψ�j

|2 +
�

j

|ψ�j

|2� (3.6)

with N the total number of atoms.

The Euler-Lagrange equations lead to a set of coupled (discrete) Gross-Pitaevskii equa-
tions, one for each of the orbital states at each site j:

−� ∂ψ�j

∂� = −
�

β∈{�����} ��β(ψ�j+iβ − 2ψ�j

+ ψ�j−1β )

+(U��|ψ�j

|2 + (U�� + U��)|ψ�j

|2 + (U�� + U��)|ψ�j

|2)ψ�j

+
�

U��+U��
2

�
ψ2

�j

ψ∗
�j

+
�

U��+U��
2

�
ψ2

�j

ψ∗
�j

−� ∂ψ�j

∂� = −
�

β∈{�����} ��β(ψ�j+iβ − 2ψ�j

+ ψ�j−1β )

+(U�� |ψ�j

|2 + (U�� + U��)|ψ�j

|2 + (U�� + U��)|ψ�j

|2)ψ�j

+
�

U��+U��
2

�
ψ2

�j

ψ∗
�j

+
�

U��+U��
2

�
ψ2

�j

ψ∗
�j

(3.7)
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−� ∂ψ�j

∂� = −
�

β∈{�����} ��β(ψ�j+iβ − 2ψ�j

+ ψ�j−1β )

+(U��|ψ�j

|2 + (U�� + U��)|ψ�j

|2 + (U�� + U��)|ψ�j

|2)ψ�j

+
�

U��+U��
2

�
ψ2

�j

ψ∗
�j

+
�

U��+U��
2

�
ψ2

�j

ψ∗
�j

�

Moreover, using the fact that the order parameters in the Hamiltonian (3.5) are complex
numbers, say

ψαj

= ��θαj |ψαj

|� (3.8)

further properties at the level of the mean-field analysis can be additionally inferred
from the conditions that lead to minimum energy4.

We start this analysis by first considering the non-interacting part of the mean-field
Hamiltonian

H0
MF = −

�

α�β

�

�����β

�αβψ∗
αi

ψαj

= −2
�

αβ

�

�i�j�
�αβ|ψαi

||ψαj

| cos(θαj

− θαi

)� (3.9)

Here the role of the tunneling becomes clear: it connects the phases of the order param-
eters between neighboring sites, establishing phase coherence within the corresponding
orbital state. In particular, since the tunneling coefficients are �� < 0 in the direction
parallel to the node and �⊥ > 0 in the perpendicular direction, intersite phase coherence
is implemented in the form of a stripped pattern. In fact, taking as an example the
��-orbital state, the phase of the corresponding order parameter can be expressed as
θαj

= θ�(��� ��� ��) − π mod (��� 2). Analogous relations hold for the ��- and ��-orbitals.
It follows, therefore, from the properties of tunneling in the � band, that neighboring
sites will always maintain the same phase relation in the directions perpendicular to the
node, while in the parallel direction the phase alternates with π difference.

We consider now the interacting part of the mean-field Hamiltonian. Substituting Eq. (3.8)
in the term that describes density-density interactions

H (j)
�� = U��

2 |ψ�j

|4 + U��
2 |ψ�j

|4 + U��
2 |ψ�j

|4

+2U�� |ψ�j

|2|ψ�j

|2 + 2U��|ψ�j

|2|ψ�j

|2 + 2U��|ψ�j

|2|ψ�j

|2�
(3.10)

no information regarding phase relation can be extracted. But this was already expected,
for this term in Eq. (2.30) depends only on number operators. This is not the case,
however, in the term describing transfer of population between different orbitals,

H (j)
FD = U�� |ψ�j

|2|ψ�j

|2 cos(2(θ�j

− θ�j

)) + U��|ψ�j

|2|ψ�j

|2 cos(2(θ�j

− θ�j

))

= U��|ψ�j

|2|ψ�j

|2 cos(2(θ�j

− θ�j

))�
(3.11)

and therefore the configuration which minimizes energy will impose a corresponding
specific onsite phase locking for the different orbital states order parameters. In what
follows we discuss the cases of two and three dimensional lattices separately.

4This discussion follows Refs. [9] and Paper I.
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3. �-orbital bosons in the mean-field approximation

Figure 3.1.: Here we illustrate the phase ordering established in the different orbital states order
parameters. Black arrows in the left pannel describe θ�j

while the red arrows are
used to describe θ�j

. Notice that θ�j

and θ�j

always keep a π/2 phase difference as
required by Eq. (3.12) for minimizing the ground-state energy. In the right pannel
we illustrate the vortex/anti-vortex structure in the different lattice sites.

3.1.1. The two-dimensional la�ice

In the two-dimensional case, the phases between the ��- and ��-orbitals are locked with
a π/2 phase difference. This can be easily noticed from the fact that

H (j)
FD 2D

= U�� |ψ�j

|2|ψ�j

|2 cos(2(θ�j

− θ�j

)) (3.12)

is at a minimum value for θ�j

− θ�j

= ±π/2 (U�� > 0). When this is combined with
the stripped pattern required for minimizing contributions of the tunneling terms, the
phases of the order parameters become constrained. This is illustrated in the left pannel
of Fig. 3.1 where the directions of the arrows define an angle.

Now in terms of the orbital states, the expression of the full onsite order parameter
defined in Eq. (3.2) is given in the position representation as [27]

ψ
j

(��) = ψ�j

��j

(��) + ψ�j

��j

(��)� (3.13)

which can be further re-written as

ψ
j

(��) = |ψ�j

|��j

(��) ± �|ψ�j

|��j

(��)� (3.14)

after use is made of the specific phase relations that minimize the energy. In particular,
the ± sign alternates between neighboring sites (see Eq. (3.12)). Making use of Eq. (2.5),
which states the orthonormality condition satisfied by the Wannier functions, the onsite
order parameter can be interpreted as a spinor

ψ
j

=
�

|ψ�j

|
±�|ψ�j

|

�
� (3.15)

where the basis states ��j

(��) and ��j

(��) contain any spatial dependence, and where the
length of the spinor gives the onsite atom number, i.e., N

j

=
�

|ψ�j

|2 + |ψ�j

|2. Since here
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3. �-orbital bosons in the mean-field approximation

the onsite order parameter has essentially the same properties of a two-level system, it
can be completely characterized by a Bloch vector J

j

= (J�j

� J�j

� J�j

) with components

J�j

= ψ∗
�j

ψ�j

+ ψ∗
�j

ψ�j

�

J�j

= �(ψ∗
�j

ψ�j

− ψ∗
�j

ψ�j

)�

J�j

= |ψ�j

|2 − |ψ�j

|2�

(3.16)

The length of the Bloch vector is related with the total number of atoms at the site j,
|J

j

| = N
j

, and J�j

computes the onsite population imbalance between the ��- and the
��-orbital states. In addition, due to the required onsite phase-locking relation, J�j

is
always zero.

Now we still need to analyze the spatial dependence of the order parameter, which is
absent in the Bloch vector description. This is most conveniently done by considering
first what happens in the limit where the harmonic approximation is reasonable: the
Wannier functions can be replaced by harmonic oscillator ground states (see Sec. 2.3.1)
and the expression of the onsite order parameter becomes

ψ(��)
j

=
�
|ψ�j

|� ± �|ψ�j

|�
�

�− �2+�2
σ2 � (3.17)

where σ2 is the effective width of the oscillator, determined from the lattice parameters.
Now if |ψ�j

| = |ψ�j

|, this is an angular momentum eigenstate, L�j

= −�∂θ
j

, L�j

ψ(��)
j

=
±ψ(��)

j

(��), which allows for interpretation of the onsite order parameter as a vortex/anti-
vortex state which covers the entire lattice. In terms of the Bloch sphere, this means that
J�j

= 0 for every j and that the Bloch vector points parallel to the direction defined by J�j

.
This vortex/anti-vortex structure is illustrated in the right pannel of Fig. 3.1. We remark
that this solution is only true in the harmonic approximation. Outside this regime there
is no requirement which ensures the existence of a true vortex/anti-vortex state5 even
when J�j

= 0. It still stands though, that due to the properties of the Wannier functions
and the onsite interorbital phase relation, the density vanishes at the center of the site j,
and therefore the onsite order parameter do show a vortex-like singularity. In addition,
it also holds that the neighboring sites are then characterized by anti-vortex-like states.
This is the extent to which the order parameter of the general case shares properties
of the staggered vortex solution.

3.1.2. The three-dimensional la�ice

Similar analysis6 also reveals many features of the physics in the three-dimensional
system. But in the isotropic cubic lattice, due to the triple degeneracy of the orbital
states on the � band, the angular momentum becomes a vector with components Lα,
α ={�� �� �}. Let us assume first that |ψ�j

| = |ψ�j

| = |ψ�j

| and check the requirements
for minimizing Eq. (3.10). Under these conditions the phase relation to be satisfied is

5In the sense of eigenvalues of L�j

.
6We follow analysis done in Ref. [9].
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3. �-orbital bosons in the mean-field approximation

θ�j

− θ�j

= θ�j

− θ�j

= θ�j

− θ�j

= ±2π/3 ± π , which can be written, for example, as

Ψ
j

=




ψ�j

ψ�j

ψ�j



 =
�

N
3 ��θ




1

�2π�/3

�4π�/3



 � (3.18)

where N is the total onsite atom number and θ is an arbitrary phase. The onsite wave
function with equal number of atoms on each of the orbital states has a unit angular
momentum per atom which points along the axis L ∝ (±1� ±1� ±1). And because U�� > 0,
the relative phases of the three orbital order parameters are frustrated7. In particular,
it was pointed out in Ref. [7] that “the onsite frustrated phase configurations come in
two different “chiralities” that cannot be converted into each other by shifting any one
of the phases by the π shift allowed by the Z2 symmetry.”8

With information about the onsite orbitals phase locking and in particular the frustrated
character of the phase relation in the three orbital case, one can then pose the inverse
question. Let us assume that this property is inherent of the model, and that the phases
of the different orbital states are arranged as in Eq. (3.18). Is this phase relation still
valid regardless of the values of Uαα and Uαβ , or is there any condition imposed over
the values of these coupling constants?

We follow again the approach of Ref. [9], and re-write the interacting part of the mean-
field Hamiltonian as9

H�� = U��
2 (�2

� + �2
� + �2

�) + 2U��(���� + ���� + ����)�

HFD = U��
�
cos(∆��)���� + cos(∆��)���� + cos(∆�� − ∆��)����

�
�

(3.19)

where �α = |ψα|2, and ∆αβ = 2(θα − θβ). In these terms, defining n = (��� ��� ��), the
energy functional can be written in the quadratic form of the �α variables,

E[ψ�� ψ�� ψ�] = n

T
Mn� (3.20)

with

M =




U��/2 U��(2 + cos(∆��)) U��(2 + cos(∆��))

U��(2 + cos(∆��)) U��/2 U��(2 + cos(∆�� − ∆��))

U��(2 + cos(∆��)) U��(2 + cos(∆�� − ∆��)) U��/2




�

(3.21)
Solving for the eigenvalues we find that

λ1 = U�� − 3U��

λ2 = U�� − 3U��

λ3 = U�� + 6U���

(3.22)

7Notice that the phase relation to be satisfied is a (dependent) linear combination of the phases of the
different orbital states.

8We refer to the original reference [7] for more discussions on the symmetry properties of the broken
symmetry phase of three orbital system.

9Due to typos in Ref. [9], there are different factors in the calculations presented here. We point out,
however, that this does not change the conclusions drawn by the authors.
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3. �-orbital bosons in the mean-field approximation

which requires U�� > 3U�� for otherwise M is not positive definite. This is usually
satisfied in sinusoidal lattices (see Fig. A.2). However when this condition is violated, the
onsite phase of the order parameters cannot establish the phase relation described in
Eq. (3.20) because for this range of the parameter values M is not positive definite. In
particular, this also means that minimization of the overall energy has to be studied now
in the case where |ψ�j

| �= |ψ�j

| �= |ψ�j

| and therefore qualitative features of the ground-
state are expected to be different (see Ref. [9] for discussions of this case). Furthermore
this also reveals limitations in the description provided by the harmonic approximation,
in which case U�� = 3U�� as discussed previously.
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4. Confined �-orbital bosons

In this chapter we study the superfluid phase of �-orbital bosons confined by a harmonic
trap1. Mean-field analysis carried out in Chapter 3 revealed the existence of specific on
and inter site phase relations to be satisfied by the phase of the orbital order parame-
ters in order to minimize the system’s energy. More explicitly, it was shown that in a
situation of equal number of atoms in the different orbital states, the ground state in the
isotropic square lattice is characterized by a staggered vortex-like solution. But how is
this scenario altered by the presence of an external confining trap?

By rendering the atomic density an inhomogeneous spatial profile, the presence of a
confining potential immediately adds an extra feature for the physics in the � band.
In the case of a harmonic trap, for example, the atomic density has an approximate
Gaussian distribution in the lattice. Now how will the combination of inhomogeneous
atomic density + the anisotropic tunneling in the � band affect the properties of the
ground state?

In order to answer this question we proceed with a mean field analysis for a system of
harmonically confined �-orbital bosons. We first discuss how confinement changes the
equations of the order parameters in Sec. 4.1, where we also discuss the approximations
considered. We continue with the study of Bose-condensation for the ideal gas in the
� band in Sec. 4.2, and also analyze finite temperature properties. We consider the
interacting case in Sec. 4.2.2, and conclude the study by analyzing the properties of the
system with an anisotropic optical lattice in Sec. 4.2.3.

4.1. Mean-field equations of the two-dimensional confined system

In Sec. 2.4 the general expression of the many-body Hamiltonian, Eq. (2.24), was ex-
panded with the use of orbital states of the � band. In this section we extend this
procedure in order to include effects stemming from an external confining harmonic
trap. We do this by modifying the term in Eq. (2.24) that describes contributions of
external potentials as

V (���) � V����(���) + V����(���)� (4.1)

where
V����(���) = V� sin2(���) + V� sin2(���) (4.2)

and
V����(���) = �ω̃2

2 (��2 + ��2) = ω2

2 (�2 + �2)� (4.3)

1This chapter is based on Paper I, which is attached in the end of this thesis.
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4. Confined �-orbital bosons

Here, as usual, � is the wave vector of the lattice, Vα the lattice amplitude in the di-
rection α ={�� �}, ω̃ is the trap frequency. ω =

√
2�ω̃/~�2 is the dimensionless trap

frequency, and � = ��� and � = ��� are dimensionless positions. We now assume that
the parameters of the system satisfy the requirements necessary for validity of the lo-
cal density approximation2. We consider thus a very smooth confining potential, with
characteristic length ����� =

√
�/�ω̃ � λ/2. Under this condition, the system can still

be considered periodic on the length scale characteristic of the trap, and corresponding
trap effects can be implemented at each site, as a shift of the onsite energies3. In addi-
tion, the site-localized Wannier functions are assumed the same as in the non-trapped
case, which also implies that the orbital states remain unaltered from the ones discussed
previously.

The expression of the second quantized Hamiltonian describing �-orbital bosons in the
square lattice and with harmonic confinement then follows as

Ĥ2D = −
�

αβ
�

�i�j�β
�αβ�̂†

αi

�̂αj

+
�

α
�

j

ω
2 (�2

j

+ �2
j

)�̂αj

+
�

α
�

j

Uαα
2 �̂α(�̂αj

− 1) +
�

αβ�α �=β
�

j

Uαβ�̂αj

�̂βj

+
�

αβ�α �=β
�

j

Uαβ
4 (�̂†

αj

�̂†
αj

�̂βj

�̂βj

+ �̂†
βj

�̂†
βj

�̂αj

�̂αj

)�

(4.4)

where again �̂αj

= �̂†
αj

�̂αj

, with α = {�� �} the number operator for the orbital state α.
In particular, notice here that the first, second and third lines correspond, respectively,
to the former Ĥ0, Ĥ�� and ĤFD of Eq. (2.28).

As a quick remark, we explicitly write the expression of ĤU = Ĥ�� + ĤFD for the
case of an isotropic square lattice, where Uαβ = Uβα

4:

ĤU = U��
2 �̂�

j

(�̂�
j

− 1) + U��
2 �̂�

j

(�̂�
j

− 1) + 2U���̂�
j

�̂�
j

+ U��
2 �̂†

�j

�̂†
�j

�̂�j

�̂�j

+ U��
2 �̂†

�j

�̂†
�j

�̂�j

�̂�j

�
(4.5)

Our goal now is to obtain equations similar to Eqs. (3.7), i.e, the equations of motion for
the order parameter, but for the system described by the Hamiltonian (4.4). We thus
start with the coherent state ansatz, Eq. (3.1), and obtain the mean-field Hamiltonian
that will be used to compute the Euler-Lagrange equations. In the same way as for the
three-dimensional case in Sec. 3.1, normalization is imposed in the whole lattice as

N = N� + N� =
�

j

|ψ�j

|2 +
�

j

|ψ�j

|2� (4.6)

where N is the total number of atoms.

The equations for the order parameters then follow. They correspond to a set of coupled

2We remark that the term local density approximation means different things in different contexts. What
we mean by local density approximation is explicitly defined in the sequence of the text and no other
significance is implied.

3This is equivalent to having a position dependent chemical potential.
4We do this here just because the literature has considerable amount of typos in this part.
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4. Confined �-orbital bosons

(discrete) Gross-Pitaevskii equations, one for each of the orbital states at each site j

−� ∂ψ�j

∂� = −
�

β∈{���} ��β(ψ�j+iβ − 2ψ�j

+ ψ�j−1β ) + ω2

2 (�2
j

+ �2
j

)ψ�j

+(U��|ψ�j

|2 + (U�� + U��)|ψ�j

|2)ψ�j

+
�

U��+U��
2

�
ψ2

�j

ψ∗
�j

−� ∂ψ�j

∂� = −
�

β∈{���} ��β(ψ�j+iβ − 2ψ�j

+ ψ�j−1β ) + ω2

2 (�2
j

+ �2
j

)ψ�j

+(U�� |ψ�j

|2 + (U�� + U��)|ψ�j

|2)ψ�j

+
�

U��+U��
2

�
ψ2

�j

ψ∗
�j

�

(4.7)

where the expressions of the couplings are given by Eqs. (2.32) and (2.33), which are
computed here with the lattice Wannier functions obtained from numerical solution as
the Mathieu equation for the potential (4.2).

4.2. The ideal gas

We start by considering first the simplest case of the non interacting gas, where expres-
sion of the mean-field Hamiltonian follows as

H0
MF = −

�

α�β

�

�����β

�αβψ∗
αi

ψαj

+
�

α

�

j

ω2

2 (�2
j

+ �2
j

)�αj

� (4.8)

where �αj

= |ψαj

|2 is the onsite density of the orbital state α.

The analysis again makes use of the same ideas discussed in Chapter 3: the order
parameters are complex numbers,

ψαj

= |ψαj

|��θαj � (4.9)

and therefore we are required to characterize properties of both amplitudes and phases
in the lattice. Here Eq. (4.8) accounts only for contributions of the free part of the full
Hamiltonian (4.4), and the additional term describing contributions of the trap depends
only on number operators. This means that the confining potential does not require any
particular phase relation to be satisfied, and that the phases of the order parameters
behave in exactly the same way as in the non-confined system discussed in Sec. 3.1.1:
neighboring sites will always keep the same phase relation in the directions perpen-
dicular to the node, while in the parallel direction the phase alternates with a π phase
difference.

We proceed with the Schrödinger equation for (4.8),

� ∂
∂� Ψ = H (0)

MFΨ�

We first notice that the the Hamiltonian of this discrete model, Eq. (4.8), has structure
similar to the Mathieu equation expanded in momentum eigenstates [37], and therefore
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4. Confined �-orbital bosons

the eigenvalue problem for each of the �α orbitals can be written in the form

� ∂
∂�




...
ψαj−1β

ψαjβ

ψαj+1β
...




=




. . . ...

ω2

2 R2
j−2β

−�αβ 0 0 0

� � � −�αβ
ω2

2 R2
j−1β

−�αβ 0 0 � � �

� � � 0 −�αβ
ω2

2 R2
j

−�αβ 0 � � �

0 0 −�αβ
ω2

2 R2
j+1β

−�αβ

... . . .







...
ψαj−1β

ψαjβ

ψαj+1β
...




�

(4.10)
where as usual α� β ={�� �} and R2

j

= �2
j

+ �2
j

. Special cases of this equation can be
solved analytically. However, since the solution is given in terms of Fourier expansions
of the Mathieu functions, there is not much to learn from analytical expressions in
this case [37]. In any way, it is still possible to understand the influence of the trap in
rather simple terms by considering the continuum limit, where analytical solutions have
a closed form. This consists in making ψαj

� ψα(�� �), such that the kinetic energy
transforms as

ψαj+1β − 2ψαj

+ ψαj−1β � ∂2

∂β2 ψα(�� �)�

But another step before arriving at the final form of the equations, is to impose in the
wave function ansatz the correct phase imprint which renders the stripped order in the
lattice. The phase factors are then further absorbed into the redefinition of the tunneling
coefficients by making �αα � −�αα, and the equations of the orbital states are given by

� ∂
∂� ψ�(�� �) =

�
−|���| ∂2

∂�2 − |��� | ∂2

∂�2 + ω2

2 (�2 + �2)
�

ψ�(�� �)

� ∂
∂� ψ�(�� �) =

�
−|���| ∂2

∂�2 − |��� | ∂2

∂�2 + ω2

2 (�2 + �2)
�

ψ�(�� �)
(4.11)

By introducing the effective mass �αβ = |�αβ|−1/2, and parallel and transverse frequen-
cies

ω� = ω
�

2|�αβ|� α = β

ω⊥ = ω
�

2|�αβ|� α �= β�
(4.12)

Eq. (4.11) can be re-written as

� ∂
∂� ψ�(�� �) =

�
�2

�
2���

+
�2

�
2���

+
���ω�

2 �2 + ���ω2
⊥

2 �2
�

ψ�(�� �)� (4.13)

with a corresponding equation for the �� orbital state. We find therefore that the con-
tinuum approximation considerably simplifies the problem, for now the system we have
to deal with resumes to the 2D anisotropic harmonic oscillator. This also shows that
implementation of the striped pattern in the wave-function ansatz prior to taking the the
continuum limit helps avoiding a final Hamiltonian that is not bounded from below. It
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4. Confined �-orbital bosons

has an overall effect in the system, in the sense that it inverts the � band and shifts its
minimum to the center of the Brillouin zone, but the physics remain unchanged.

Now the anisotropy arising from the different tunneling elements ��� and ��� will affect
�αβ and therefore also ωαβ . As a consequence, the density of the resulting ground state
of Eq. (4.13) will be characterized by a Gaussian distribution, but with different widths in
�- and �-directions. We use this fact to define the anisotropy parameter

S� =

�
(∆��)2
(∆��)2 � (4.14)

where (∆αβ)2 = �β2�α − �β�2
α, and ����α represents the expectation value taken with

respect to ψα(�� �). The anisotropy in the density for atoms occupying the ��-orbital
state is characterized by an equivalent expression, that satisfies S�S� = 1 for symmetry
reasons, and thus from now on we use S = S� whenever discussing such anisotropies.
In particular, in the continuum case discussed here

S��� =
�

|���|
|��� |

�1/4
=

� ω�
ω⊥

�
� (4.15)

The limit where ω� = ω⊥ corresponds to the case of isotropic tunneling, and yields S = 1.
But as soon as this isotropy is broken, S �= 1. Accordingly this reveals a narrowing in
the density of atoms in the orbital states along one of the directions.

4.2.1. The ideal gas at finite temperatures

The possibility of rewriting the Schrödinger equation of the non-interacting system in a
rather simple form allows for the study of thermodynamic properties of condensation
in the � band.

We start by analyzing the properties of the continuum limit, described by Eqs. (4.11).
Here known properties of condensation in harmonically trapped systems can be directly
used [29]. The critical temperature for the Bose-Einstein condensation, for example is
given by

T (2D)
� = ω(2D)

���

�
6N/π2 (4.16)

and
T (3D)

� = ω(3D)
��� (N/ζ(3))1/3 (4.17)

in the two and three dimensional cases. It also follows that ζ(3) ≈ 1�20206 and the
effective trapping frequencies are defined [29] as

ω(3D)
��� = 3ω

�
|���||��� | (4.18)

and
ω(3D)

��� = 4ω(|���||��� ||���|)1/3 = 4ω(|���||��� |2)1/3� (4.19)

For the discrete model described by Eq. (4.8), the critical temperature can be computed
by noticing that the number of thermal atoms is determined by

NT =
�

� �=0

1
�β(E�−µ) − 1

� (4.20)
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4. Confined �-orbital bosons

Figure 4.1.: Critical temperature for the establishment of Bose-Einstein condensation in the �
band as a function of the atom number denoted by N . (a) shows the results of the
2D system while (b) shows the results for the 3D system. We also compare the
results obtained for the continuum approximation (dashed line) with the results of
the discrete model obtained numerically (solid line). The parameters here are ω2/2 =
0�001 for the dimensionless trap strength and |���/��� | = 20�1, which corresponds to
the ratio between the tunneling coefficients for V� = V� = 17.

where β = E�/��T is the inverse (dimensionless) temperature and µ is the chemical
potential. In these terms, the chemical potential is found by fixing the total atom number
N , and the energy levels E� are obtained via diagonalization of (4.10).

In Fig. 4.1 we compare the results for the critical temperature in both the continuum
and discrete cases. In the limit of very small atom number, the continuum limit predicts
larger values for the critical temperature of the discrete model, while in the other
limit, of large atom number, it predicts considerable smaller critical temperatures. We
attribute this difference as being a consequence of the different density of states between
the lattice and continuum models.

Now in the 2D version of the system, is there any change in the profile of the atomic
density distribution as the temperature is lowered below the critical temperature T�
associated to the transition to the condensed phase? In the limit of high temperature,
we expect the system to display isotropic atomic density. This is because in this region
the system is described by the Boltzmann distribution, which is isotropic. But after the
system reaches the critical temperature, is there any direct signature of this intrinsic
tunneling anisotropy? The answer is yes. In fact, in the low temperature limit, the
condensed state of �-orbital bosons is characterized by a bimodal structure. In partic-
ular, below T� the condensate density has properties similar to the properties of the
ground state, which feature anisotropies because of the different tunneling strengths in
the different directions. This is illustrated in Figs. 4.2 (a) and (b), where we show the
density

������(j) = N0|ψ0(j)|2 +
�

� �=0

|ψ�(j)|2
�β(E�−µ) − 1

(4.21)

for two different temperatures, above T� and for the ground state (where T = 0).
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4. Confined �-orbital bosons

Figure 4.2.: Populations per site of the 2D Bose gas in the � band and for a single orbital state.
(a) shows a situation where T > T� , while in (b) T = 0. In both cases the total number
of atoms in the system N��� = 1000, the dimensionless trap strength ω2/2 = 0�001
and potential depths are V� = V� = 17.

Figure 4.3.: The anisotropy parameter S (see text) that is used to characterize the anisotropy in
the density in the 2D system, and as a function of the temperatures scaled with ��� .
The number of atoms considered is N = 1000, the dimensionless trap strength is
ω2/2 = 0�001 and V� = V� = 17.
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4. Confined �-orbital bosons

To conclude this section, we use the anisotropy parameter defined in Eq. (4.14) and
characterize how the anisotropy in the �-orbital ideal gas changes with temperature for
a system with 1000 atoms in Fig. 4.3. As Fig. 4.1 (a) indicates, after the (scaled) critical
temperature T� ≈ 0�9, the atomic density becomes isotropic in the ��-plane.

4.2.2. Interacting system

In order to characterize the ground state of the interacting system we propagate the
mean-field equations (4.7) in imaginary time with an initial trial wave-function.

To illustrate how this procedure works [38], let us consider the Schrödinger equa-
tion Ĥψ = Eψ such that the wave function ψ evolves in time according to ψ(�) =
�−�Ĥ�ψ(0), where we used ~ = 1. Writing ψ in the basis of its energy eigenstates,
ψ =

�
� ��φ� , with �� = �ψ|φ��,

ψ(�) =
�

�
���−�E��φ(0)�

where E� corresponds to the �-th energy level of the system. Now using � � �τ ,
with

ψ(τ) =
�

�
���−E�τφ(0)�

the overlap between the ground state with the ψ(τ) propagated in imaginary time,
and after a long propagation time, is given by

�ψ(τ)|�0φ(τ)� = lim
τ�∞

�2
0�−2E0τ

�2
0�−2�0τ +

�
�=1 �2

��−2E�τ ∼ 1

Therefore in the limit of τ � ∞, ψ(τ) will converge to the true ground state of the
system, as long as the overlap between these states is non-vanishing:

ψ(τ) = �0�−τHφ(0) + �(�−τ(E1−E0))�

with a correction of the order of �(�−τ(E1−E0)).
This method can also be applied to non-linear systems as e.g the system described

by Eqs. (4.7), but in this case propagation has to be carried out self-consistently.

We re-write Eqs. (4.7) as

�∂Ψ
j

∂� =
�

H11 H12
H21 H22

�
Ψ

j

� (4.22)

where Ψ
j

=
�

ψ�j

ψ�j

�
and

H11 = −���
∂2

∂�2 − ���
∂2

∂�2 + U��|ψ�j

|2 + (U�� + U��)|ψ�j

|2�

H22 = −���
∂2

∂�2 − ���
∂2

∂�2 + U�� |ψ�j

|2 + (U�� + U��)|ψ�j

|2�

H12 =
�

U��+U��
2

�
ψ�j

ψ∗
�j

�

H21 =
�

U��+U��
2

�
ψ�j

ψ∗
�j

�

(4.23)
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Since the Hamiltonian governing time-evolution contains both spatial and momentum
dependent terms, we study the system numerically, with the use of the split-operator
method [39]. This method is based on factorization of the evolution operator, and there-
fore becomes exact only in the limit of vanishingly small time steps. Propagation is thus
carried out in very tiny time steps, and numerical accuracy of the procedure is checked
by varying the size of the time steps.

In what follows, we illustrate the details of the calculation. The time evolution operator
is written as

U(δ�) = �−�Hδ� = exp
�

−�
�

H11 H12
H21 H22

�
δ�

�
= exp

�
−�

��
H11 0
0 H22

�
+

�
0 H12

H21 0

��
δ�

�

and since we assume the lim δ� � 0, this equation is further approximated as

U(δ�) = �
−�δ�



 H11 0
0 H22





�
−�δ�



 0 H12
H21 0





≈ U1(δ�)U2(δ�)� (4.24)

We now expand U2(δ�). In particular,

�
0 H12

H21 0

�2
=




�
U��+U��

2

�2
|ψ�j

|2|ψ�j

|2 0

0
�

U��+U��
2

�2
|ψ�j

|2|ψ�j

|2


 (4.25)

and �
0 H12

H21 0

�3
=

�
U�� + U��

2

�3
|ψ�j

|2|ψ�j

|2
�

0 ψ�j

ψ∗
�j

ψ�j

ψ∗
�j

0

�
� (4.26)

from where it follows that expansion of U2(δ�) has the form

(−�δ�)�
�! A� = (−�δ�)�

�! |ψ�j

|�−1|ψ�j

|�−1
�

0 ψ�j

ψ∗
�j

ψ�j

ψ∗
�j

0

�
(4.27)

for odd �, and
(−�δ�)�

�! A� = (−�δ�)�
�! |ψ�j

|�|ψ�j

|�
�

1 0
0 1

�
(4.28)

for even �. Gathering all the terms of the expansion, we have

U2(δ�) =




U (11)
2 U (12)

2

U (21)
2 U (22)

2


 � (4.29)

where
U (11)

2 = U (22)
2 = cos

��
U�� + U��

2

�
δ�|ψ�j

||ψ�j

|
�

�

U (12)
2 = −�δ�

�
U�� + U��

2

�
sinc

��
U�� + U��

2

�
δ�|ψ�j

||ψ�j

|
�

ψ�j

ψ∗
�j

and
U (21)

2 = −���
�

U�� + U��
2

�
sinc

��
U�� + U��

2

�
��|ψ�j

||ψ�j

|
�

ψ�j

ψ∗
�j
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4. Confined �-orbital bosons

Figure 4.4.: (a) and (b) show populations in the ��- and in the ��-orbital states respectively. (c)
illustrates the corresponding population imbalance J�j

. The dimensionless system
parameters are V� = V� = 17, ω = 0�005, and U0N = 1. Excess of atoms in the
��-orbital state appears in the horizontal axis and is indicated by red color, while in
the vertical axis the system displays excess of atoms in the ��-orbital state.

Now the idea is to make Ψ(δ�) = U1(δ�)U2(δ�)Ψ = U1(δ�)Ψ1, where Ψ1 = U2(δ�)Ψ with
U1(δ�) defined in (4.24). This involves evolution with a diagonal matrix that contains
two different types of contributions (see the expressions of H11 and H22 in Eqs. (4.23)),
one that depends on derivatives with respect to � and �, and the other that contains a
quadratic dependency of the orbitals order parameters. We will first evolve Ψ1 with the
part of U1 that does not depend on the derivatives and thus Ψ1 � Ψ̃1. After this step
is taken into account, the remaining part is considered in momentum space. By means
of a Fourier transform we obtain the expression of Ψ̃1 in the momentum representa-
tion, �[Ψ̃1] = Ψ̃, which can then be easily evolved with the corresponding dispersion
relations5

�
ψ̃�j

(δ�)
ψ̃�j

(δ�)

�
=

�
�−�δ�[2��� (1−cos ��� )+2��� (1−cos ��� )] 0

0 �−�δ�[2��� (1−cos ��� )+2��� (1−cos ��� )]

� �
ψ̃�j

ψ̃�j

�
�

(4.30)
By Fourier transforming it back to the position representation, the final result is Ψ(δ�)
(cf. Eq. (4.22)), that is used now as the trial wave function and propagated in imaginary
time again. This procedure is repeated until convergence has been reached.

Fig. 4.4 displays the density profiles of the ��- and ��-orbitals in the confined system,
in (a) and (b), respectively. As can be seen from comparison with Fig. 4.2 (b), here the
density of the ��-orbital state is also elongated in the �-direction, with analogous result
holding for the density of the ��-orbital. Fig. 4.4 (c) shows the population imbalance
in the lattice, i.e., the difference between the number of atoms occupying the �� and
�� orbital states at the site j (J�j

). Now the next question that arises is what happens
in the regime where tunneling stops playing an important role in the dynamics of the
system?

There are two ways of weakening the role of tunneling in the lattice: either by making
the lattice sites very deep, either by making the coupling parameter Ũ0 (see Eq. (2.24))
very large. In these situations, i.e., in the limit where interactions are so strong that

5In momentum space the term −�αβ
∂2

∂β2 corresponds to �αβ�2
αβ . Here however we use �2

αβ � 2�αβ(1−cos �αβ)
to account for the (inverted) shape of the � band and the discrete character of the system.
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4. Confined �-orbital bosons

other effects can be neglected in the dynamics, the system is said to be in the Thomas-
Fermi limit [29]. Now since we already know that the tunneling is the main factor
rendering this anisotropic profile for the atomic cloud, it is natural to expect that by
suppressing its effects, the density should display more and more symmetric profile. But
how does this transition from anisotropic to symmetric profile happens as the relative
strength of tunneling gets weaker as compared to other terms in the mean-field version
of Hamiltonian (4.4)?

In order to characterize anisotropies in the density, we use again the anisotropy param-
eter defined in Sec. 4.2:

S =

�
(∆��)2
(∆��)2

and calculate if for different values of the system’s parameters. As showed in Fig. 4.5, the
anisotropy parameter approaches S = 1 smoothly in both cases. However, as opposed
to the behavior of S obtained for suppressing the tunneling by increasing the interaction
strength (axis U0N in Fig. 4.5), when the lattice sites are made deeper and deeper (V
axis), the anisotropy of the density increases until it reaches a maximum value, and from
there it decreases monotonically until it reaches 1. Although we had no reason to expect
such behavior, which in fact is not predicted by S���� in the continuum limit6, this can
be a consequence of the poor description provided by the tight-binding approximation
in situations which assume shallow lattice sites and therefore the results should not be
taken too literally in this region. To complement the analysis, Figs. 4.6 (a) and (b) display
the density profile of the ��- and ��-orbitals for a situation with moderate interaction,
where U0N = 7�5, ω = 0�005 and V = V� = V� = 17, which confirms the results discussed
here.

When the system is not confined, mean-field analysis reveals that the ground state is
characterized by the staggered vortex-like solution. This corresponds to the most favor-
able configuration satisfying both requirements of tunneling and interaction parts which
lead to the lowest energy. What happens now with the staggered vortex solution, when
the system is harmonically confined?

As opposed to the non-confined system, the atomic cloud in the present case is not evenly
distributed in the lattice, and as discussed previously, it has the approximate form of a
Gaussian distribution. Here we investigate ground state properties and characterize the
fate of the staggered vortex-like solution in terms of the mean-field version of Schwinger
bosons, as discussed previously in Sec. 3.1.1. It was argued there, that the phase of the
full onsite order parameter, Eq. (3.2), was characterized by a true vortex/anti-vortex
profile only in the harmonic approximation. Outside this limit, even J�j

= 0 didn’t
provide sufficient condition for rendering a perfect staggered vortex solution. And as
discussed above, the confined system has already a natural imbalance in the number
of atoms occupying the �� and �� orbital states, as seen in Fig. 4.4. Here it holds thus

6It should be noticed, however, that the expression provided by S���� is obtained in the limit of U0 = 0
and it does not approach 1 as V � ∞. On the other hand, under these circumstances any small U0 > 0
is sufficient to make S���� � 1 since the kinetic term is going to be negligible relatively to interactions.
For moderate values of the lattice depth V , S���� increases monotonically with increasing of V . This
behavior is not confirmed by the predictions of the discrete model (Eq. (4.8)) and thus it should be kept
in mind that the behavior predicted for the density anisotropy in the limit of deep lattices is qualitatively
different in the continuum and discrete models.
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4. Confined �-orbital bosons

Figure 4.5.: The condensate anisotropy parameter S (see Eq. (4.14)) as a function of the inter-
action strength U0N and of the lattice amplitude V = V� = V� for the system with
dimensionless trap frequency ω = 0�005. It illustrates that the system enters the
Thomas-Fermi regime whenever the relative strength of the tunneling compared to
interactions becomes small, i.e., S � 1.

Figure 4.6.: These plots display populations in the ��- (a) and ��- (b) orbital states, for V� = V� =
17, ω = 0�005 and U0N = 15. Due to the strength of the interactions, the anisotropy
in the density is not so pronounced as compared to the results in Figs. 4.4 (a) and
(b).
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4. Confined �-orbital bosons

Figure 4.7.: Bloch vector at different sites of the optical lattice. We use the horizontal axis to
represent the �-component of the spin and the vertical axis to represent the spin
�-component. The �-component of the spin is strictly zero due to the specific onsite
phase locking between the ��-and the ��-orbital states. Information about the density
is encoded in the length of the Bloch vector (see Eq. (3.16)) and the offset from the
horizontal axis encodes information about the breakdown of the antiferromagnetic
order. The black dots are used to denote the lattice sites. In (a) U0N = 1 and in
(b) U0N = 15. The other parameters are the same as in Fig. 4.6. This illustrates,
in particular, that the staggered-vortex solution remains valid in a larger number of
sites in the center of the trap in the limit of large interactions.

that in general J�j

�= 0, and the staggered vortex solution is certainly lost at the edges
of the condensed cloud. In the center of the cloud, however, where J�j

≈ 0, it is still
possible to find characteristics of non-trapped like physics. This is illustrated in Figs. 4.7
(a) and (b), which displays the Bloch vector in the ��-plane7, J

j

= (0� J�j

� J�j

). By calling
the horizontal axis the �-spin direction and the vertical axis the �-spin direction, we see
that the J�j

component dominates at the center of the trap, while at the edges the Bloch
vector no longer points along the horizontal direction. This reveals the breakdown
of the staggered vortex solution in these regions. It also shows, however, that in the
limit of larger interactions where the density becomes more symmetric, the staggered
vortex-like solution holds true for a larger number of sites in the center of the trap.

4.2.3. Properties of the system in the anisotropic la�ice

All the properties discussed so far addressed the case of a symmetric lattice, where
the requirements ensuring the degeneracy of the orbital states were automatically ful-
filled. This picture is modified in anisotropic or asymmetric lattices, where any small
anisotropy/imperfection is in principle capable of lifting the degeneracy between the
orbital states.

In particular, there are two ways of introducing anisotropies in the lattice discussed

7Recall here that J�j

is always zero.
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4. Confined �-orbital bosons

here, either as a result o choosing different wave vectors, �� �= �� , either as a result of
having a lattice with different amplitudes V� �= V� in the different directions. What are
the properties of the physics then, and how robust are the properties of the symmetric
lattice with respect to small imperfections?

We investigate these issues by considering the second scenario, of a lattice with different
amplitudes, and in terms of the anisotropy parameter

R = V�
V�

(4.31)

which controls the ratio between the lattice depths. The case of R = 1 recovers the
symmetric lattice that was already discussed.

We have checked (numerically) that the main effect of the asymmetry is to shift the
energy levels between the orbital states. The amount can be estimated in the harmonic
approximation, for example, by considering the onsite energies of the �� and ��-orbitals
at the j-th lattice site:

∆ = E� − E� = 2
�

V�(
√

R − 1)� (4.32)

where Eα =
�

��� �∗
αj

(��)[−∇2 + V���(��)]�αj

(��) is the energy of the �α orbital state. This
splitting is actually site independent, and as long as the value of ∆ is much smaller than
the energy scale set by the interaction terms, EU ∼ U0N|ψ�|2, it doesn’t really affect the
physics.

This picture becomes more complicated when more sites are taken into account. It can
be the case, for example, that interaction is capable of coupling the order parameters of
the orbital states in a small region δ around R = 1, such that small changes of the lattice
parameters can lead to drastic changes in the properties of the ground state8. This is an
important point to be considered here, because in case it is possible to accurately control
these parameters, the physics in a neighborhood around the degeneracy point might
reveal novel phenomena similar to adiabatic ramping through an avoided crossing9 (as
discussed in Ref. [40]). In this sense the parameter which computes population imbalance
between the different orbital states

J� = 1
N

�

j

J�j

� (4.33)

arises as a natural candidate for characterizing sensitivity of the system with respect
to R. When J� = −1, all the particles occupy only �� orbital states, and in the same
way, when J� = 1 all the particles occupy only �� orbital states. In addition, the case of
J� = 0 recovers the symmetric lattice, which is characterized by the equal sharing of
population among the different orbitals. Now it is important to remember that the trap
defines an effective size for the system that is fixed by ω. Since this will set the extent to
which finite size effects affect the system10, we expect that sensitivity under variations
of R is greatly influenced by the values of the the trap frequency.

8In the sense of changing its symmetry properties.
9It is important to point out, however, that since here the densities of different orbital states are spatially

different, adiabatic driving could lead to macroscopic flow of particles withing the trap.
10By transforming energy level crossings in avoided crossings, for example.
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Figure 4.8.: The parameter for measuring population imbalance J� as a function of the lattice
asymmetry parameter, R, and for different values of the trapping frequency. Here
U0N = 1 and V� = 17. The vertical dashed lines are used to denote the typical sizes
δ of the transition region where atoms coexist in the two orbital states. In particular,
smaller values of ω are associated with smaller values of δ. This means that the
transition becoes sharper as the system’s size increases.

Figure 4.8 depicts the behavior of J� around R = 1 for systems of different sizes, i.e.,
with different trapping frequencies ω. It illustrates that the range of δ is smaller for
larger systems, which implies that qualitative properties of the ground state will change
more abruptly for increasing system sizes. We also verified numerically that δ increases
with increasing values of the interaction strength U0N , which is in agreement with the
picture that the orbital order parameters are coupled by interactions.

This suggests thus that if the system interacts very weakly, a very fine tuning of the
lattice parameters is required in order to investigate the properties of the ground state
of the symmetric lattice. In addition, these properties become more robust in the limit
of stronger interactions. In fact, even a small temperature could actually contibute to
the establishment of phase coherence between the order parameters of the �� and ��
orbital states in experimental realizations. This follows from the reduction of the energy
gap between the ground and first excited states around the R = 1 point, that makes it
easier for the atoms to occupy the first excited state. In particular, this is needed for
balancing the population of the two orbitals. We furthermore notice that the transition
from one to the other extreme of J� is smooth for nonzero ω, and that by controlling the
lattice amplitudes this system could realize a many-body Landau-Zener transition [41],
which when R is tuned externally could form a play-ground of the Kibble-Zurek [42]
mechanism.
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5. Beyond the mean-field approximation: E�ective
spin Hamiltonians via exchange mechanism

In the previous chapters we studied the physics of �-orbital bosons from a mean-field
perspective. In this chapter we move away from the mean-field regime and study the
physics of the strongly correlated Mott insulator phase of �-orbital bosons. We are
particularly interested in the Mott-insulator state with a unit filling of the lattice sites1

and mainly in the case of a 2D lattice.

As will be shown in Sec. 5.1, there is a regime for which the dynamics of the two orbital
case can be effectively described by the Hamiltonian of the XYZ quantum Heisenberg
model in external field2. This spin model, in turn, is one of the classical models employed
for describing quantum magnetism [44, 45], and particularly special for falling in the class
of non-integrable models [46]. This means that there is no known heuristics leading to
analytical solutions in closed form. On the other hand, as we show here, this physics
is accessible with the use of bosons in the � band of an optical lattice. In this context,
therefore, �-orbital bosons constitute a nice controllable system that can be used as a
quantum simulator3 [3, 24].

This will be discussed in Sec. 5.1.1, where we characterize the phase diagram for the
particular case of an effective 1D spin chain for both the infinite and finite cases. We
continue then by presenting detection schemes which are capable of experimentally
addressing the physics discussed, in Sec. 5.2. We conclude this study by extending the
calculations for the three orbital case4 in Sec. 5.5.

1We remark that this is the easiest case for experimental realizations of Mott phases for bosons in excited
bands [43].

2This chapter is based in the study done in Paper II.
3The idea of quantum simulation dates back to 1982, in the work of Feynman entitled Simulating Physics

with Computers [23]. In this work Feynman suggests that an alternative way to understanding compu-
tationally intractable systems (due to the exponential growth of the Hilbert space, for example) would be
to find another system of experimental feasibility that has the same equations of motion. In this sense
one physical system would be ’simulated’ by another.

4That is, where an effective one-dimensional chain is constructed from a three-dimensional lattice.
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5.1. �-orbital Bose system and e�ective spin Hamiltonian

Let us consider once more the second quantized Hamiltonian describing a system of
�-orbital bosons in two dimensions5:

Ĥ = −
�

α
�

����� �α
�� �̂��α�̂��α +

�
��α

�
Uαα

2 �̂��α(�̂��α − 1) + E��
α �̂��α

�

+
�

�α �=β

�
Uαβ�̂��α�̂��β + Uαβ

2 �̂†
��α�̂†

��α�̂��β�̂��β
�

�
(5.1)

where �̂†
��α creates a particle in the �α-orbital with α = {�� �} at site �, �̂��α = �̂†

��α�̂��α, and
where

�
����� is the sum over nearest neighbors. We remind again that the tunneling

elements and coupling constants depend on the orbital states and are given by Eqs. (2.33)
and (2.32), and E��

α denotes the onsite energy of the �α-orbital state.

Our interest here is in the physics of the Mott insulator phase with a unit filling of
the lattice sites. In this regime the system admits description in terms of an effective
Hamiltonian, obtained from the perturbative expansion of the tunneling processes up to
second order in �/U . We give here a detailed description of the procedure [45, 47].

First let Ĥ act on the Hilbert space �. Define �P as the projection on the subspace
P̂� of states which describe sites occupied by one atom, and �Q , where Q̂ = 1̂ − P̂
the subspace of states with at least one doubly occupied site. Since both P̂ and Q̂ are
projection operators, the following relations hold: P̂2 = P̂ and Q̂2 = Q̂. The eigenvalue
problem associated to Ĥ can be decomposed as

ĤΨ = EΨ � Ĥ
�

P̂ + Q̂
�

Ψ �
�

ĤK + ĤU
� �

P̂ + Q̂
�

Ψ = EΨ� (5.2)

We then act with Q̂ and P̂ from the left
�

Q̂ĤKP̂ + Q̂ĤKQ̂ + Q̂ĤUP̂ + Q̂ĤUQ̂
�

Ψ = EΨ�

�
P̂ĤKP̂ + P̂ĤKQ̂ + P̂ĤUQ̂ + Q̂ĤUP̂

�
Ψ = EΨ�

(5.3)

and use that Q̂ĤKP̂, Q̂ĤUP̂, P̂ĤKP̂ and P̂ĤUP̂ are all equal to zero6 to obtain the fol-
lowing expression

Q̂Ψ = − 1
Q̂ĤQ̂ − E

Q̂ĤKP̂Ψ� (5.4)

which leads to
ĤM���1 = −P̂ĤKQ̂ 1

Q̂ĤQ̂ − E
Q̂ĤKP̂� (5.5)

So far this result is exact. It explicitly shows the effects of the tunneling, which acts
as an intermediate and couples the different projections of the Hilbert space P̂� and

5In order to match the notation used in the previous chapters of this thesis, the notation here differs from
what we used in Paper II.

6The first three terms are equal to zero for connecting orthogonal projection of the Hilbert space, while
the last term is equal to zero for computing interactions in states that have a unit occupation of the
lattice sites.
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Q̂�. We summarize it here by considering the physics in two neighboring sites, and
denote the states of the 2-site problem as |site

j

� site
j+1

�. Let us start from a situation
where each of these lattice sites are occupied by only one atom. Suppose then that the
particle at the site j tunnels to the site j + 1. This yields a state where the (j + 1)-th
site is doubly occupied, and that has a corresponding matrix element which accounts
for the interaction processes allowed by ĤU . After interaction has taken place, one of
the particles is brought back to the site j

7, and again, in the final state, the lattice sites
are characterized by unit filling. This is the starting point for derivation of the effective
Hamiltonian describing the � = 1 Mott (Mott1) phase of �-orbital bosons. But up till now
we have not yet specified the equations that describe the optical lattice. We use here the
same sinusoidal potential as in Chapter 4,

V����(r) = V� sin2(���) + V� sin2(���)� (5.6)

and remind once more that Vα and �α are the amplitude and wave vector of the potential
in the direction α = {�� �}.

Under the assumptions of the Mott phase, the operator 1/(Q̂ĤUQ̂ − E) in Eq. (5.5) can
then be expanded to lowest order in �/Uαβ in analogy to the customary procedure used
for the large U expansion of the Hubbard model at half filling [45, 47]. Let us consider
the 2-site problem again8 and define a basis for the �P and �Q subspaces:

�P � {|X� X�� |X� Y�� |Y � X�� |Y � Y�} (5.7)

and
�Q � {|0� 2X�� |0� XY�� |0� 2Y�}� (5.8)

Notice, in particular, that the states listed above for a basis in �Q are only the ones
that are relevant for the perturbative calculation9. It also follows that the full energy in
Eq. (5.5) is of the order of E ∼ �2/U , which makes it possible to consider (ĤQ − E)−1 ≈
Ĥ−1

Q , where ĤQ = Q̂ĤUQ̂. However, due to the possibility of transferring population
between the different orbital states via action of ĤFD , the projection of the Hamiltonian
on the �Q subspace is not diagonal in the basis of the intermediate states with doubly
occupied sites. We therefore adapt the usual procedure for this situation and estimate the
matrix elements for characterizing the virtual interaction resulting from the exchange
processes by using the inverse matrix Ĥ−1

Q . Explicitly,

ĤQ =




U�� 0 U��

0 2U�� 0

U�� 0 U��




(5.9)

and its inverse

Ĥ−1
Q =




U��/U2 0 −U��/U2

0 1/2U�� 0

−U��/U2 0 U��/U2




� (5.10)

7Again via action of the tunneling Hamiltonian.
8Under the assumption of the tight-binding regime it is enough to consider what happens in two sites.
9In fact, these are precisely the intermediate states of the perturbative analysis.
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where U2 ≡ U��U�� − U2
�� . On this basis we arrive at the final form of the effective

Hamiltonian by computing the relevant matrix elements of (5.5).

From states of the type |α�� α��

�̂†
α���̂α��Ĥ−1

Q �̂†
α�� �̂

†
α��|α�� α�� = �̂†

α���̂α��Ĥ−1
Q

√
2|0� 2α��

=
√

2�̂†
α���̂α��

�
Uββ
U2 |0� 2α�� − Uαβ

U2 |0� 2α��
�

= 2Uββ
U2 |α�� α��

the effective Hamiltonian acquires a term of the form

−
�

�����

�

α

2|�α|2Uββ
U2 �̂α���̂α�� �

In the same way, from the states of the type |α�� β��, with α �= β,

�̂†
α���̂α��Ĥ−1

Q �̂†
α�� �̂α��|α�� β�� = �̂†

α���̂α��Ĥ−1
Q |0� α�β��

= 1
2U��

�̂†
α���̂α�� |0� α�β�� = 1

2U��
|α�� β���

corresponding to the operator

−
�

�����

�

α

|�α|2
2U��

�̂α���̂β�� �

From the states of the type |β�� α�� and the following process

�̂†
α���̂α��Ĥ−1

Q �̂†
β�� �̂β��|β�� α�� = �̂†

α���̂α��Ĥ−1
Q |0� α�β��

= 1
2U��

�̂†
α���̂α�� |0� α�β�� = 1

2U��
|α�� β���

the Hamiltonian gains a contribution as

−
�

�����

�

α

|�α|2
2U��

�̂α���̂β�� �

Finally, we consider the states of the type |β�� β��,

�̂†
α���̂α��Ĥ−1

Q �̂†
β�� �̂β��|β�� β�� = �̂†

α���̂α��Ĥ−1
Q

√
2|0� 2β��

=
√

2�̂†
α���̂α��

�
Uαα
U2 |0� 2β�� − U��

U2 |0� 2α��
�

=−2U��
U2 |α�� α���

that contribute to the effective Hamiltonian with a term that changes the orbital states
of the atoms in both sites

�

<���>

�

α�α �=β

2����U��
U2 �̂†

α���̂β���̂†
β�� �̂α�� �
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The resulting expression for the effective Hamiltonian corresponds thus to

ĤM��� = −
�

�����

�

α

�
2|�α|2Uββ

U2 �̂α���̂α�� + |�α|2
2U��

�̂α���̂β��

− 2����U��
U2 �̂†

α���̂β���̂†
α�� �̂β�� + ����

2U��
�̂†

α���̂β���̂†
β�� �̂α��

�
�

(5.11)

We now use the orbital states to define the Schwinger spin operators [48]

Ŝ� = 1
2(�̂†

��̂� − �̂†
��̂�)

Ŝ+ = Ŝ� + �Ŝ� = �̂†
��̂�

Ŝ− = Ŝ� − �Ŝ� = �̂†
��̂��

(5.12)

and together with the constraint of unit occupation of the lattice sites in the Mott1 phase,
i.e. �̂��� + �̂��� = 1, we rewrite Eq. (5.11) as

ĤM��� = −
�

�����

�
J��Ŝ�

� Ŝ�
� +J��Ŝ�

� Ŝ�
� +J�� Ŝ�

� Ŝ�
�

�
−

�

�
J�Ŝ�

� �

This shows that within the perturbative regime, the physics of bosonic atoms in the
orbital states of a 2D optical lattice is well described by the XYZ quantum Heisenberg
model in an external field, where all the parameters of the spin model depend on the
lattice configuration. We notice, in addition, that no assumption regarding the geometry
of the lattice was used, and thus this derivation applies to square lattices, hexagonal
lattices, etc.

From now on we restrict the study to the case of asymmetric lattices with very deep
potential wells in one of the axis, say the �-direction, in such a way to yield an effective
1D dynamics10 (here along the �-axis). At the same time the wave vectors are adjusted
so that the quasi-degeneracy of the orbital states is maintained11. In other words, we
are considering the case where |��� |� |��� | � 0 and also that Uαβ � |���|� |���| due to the
strong coupling regime condition. Therefore, in terms of the lattice parameters, the
expression for the various couplings follow

J�� = 2����
U��

�
1 − 4

U2
��

U2

�
� (5.13)

J�� = 2����
U��

�
1 + 4

U2
��

U2

��
� (5.14)

J�� = 4 |��|2U��
U2 + 4 |�� |2U��

U2 − |��|2
U��

− |�� |2
U��

� (5.15)

10Here we focus on the effective 1D system, but generalizations of the procedure for computing the
couplings of the effective Hamiltonian for the 2D system is straightforward.

11In the harmonic approximation this is achieved by imposing that V��2
� = V��2

� . For sinusoidal lattices
there is no simple relation which states the degeneracy condition, but this can be numerically checked
for various lattice configurations.
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J� = 2|��|2U��
U2 − 2|�� |2U��

U2 + (E��
� − E��

� )� (5.16)

We adopt here the standard notation used for the XYZ Heisenberg model and define J =
−2����/U�� , ∆ = −J��, � = −J�, and γ = −4U2

��/U2, in terms of which the Hamiltonian
is then rewritten as

ĤXYZ =
�

�����
J

�
(1 + γ)Ŝ�

� Ŝ�
� + (1 − γ)Ŝ�

� Ŝ�
� + ∆

J Ŝ�
� Ŝ�

�

�
+ �

�

�
Ŝ�

� � (5.17)

Notice that the tunneling in the � band satisfies ���� < 0 and therefore J > 0. In addition,
since |γ| < 1 the interactions between the �-component and the �-component of neigh-
boring spins always favor for anti-ferromagnetic order. This is an interesting property,
for bosonic particles always preserve the sign of the wave function under exchange
processes, and thus it is more natural for a bosonic system to display ferromagnetic
order. This is not the case here, however, and its only possible because of the specific
properties of the tunneling in the � band.

Another important feature of this spin model which follows solely due to the properties
of the �-orbital bosonic system, is the appearance of the anisotropy parameter γ which
breaks the rotational symmetry characteristic of the XXZ Heisenberg model12. In fact,
this is a consequence of the terms describing transit of population between the different
orbital states, in ĤFD , which break the continuous U(1) symmetry of the Hamiltonian
to a set of Z2 symmetries. Accordingly, the resulting XYZ spin model is also invariant
only to discrete Z2 symmetries. This property is related to the ’parity’ of the states of
the many-body Hamiltonian, which divides the eigenstates into states with even or odd
number of atoms in the �� and �� orbitals.

The importance of the orbital changing term in the dynamics of the effective spin model
can be further investigated in terms of the Jordan-Wigner transformation [51]

Ŝ−
� = ��π

��−1
�=1 �̂†

� �̂� �̂�

Ŝ+
� = �̂†

� �
�π

��−1
�=1 �̂†

� �̂� �
(5.18)

where the �̂� are fermionic operators satisfying {�̂�� �̂�}={�̂†
� � �̂†

� }= 0 and {��� �†
� }= δ�� .

This yields the fermionic Hamiltonian

ĤK/J =
�

�

�
(�̂†

��̂�+1 + �̂†
�+1�̂�) + γ(�̂†

��̂†
�+1 + �̂�+1�̂�)

+∆
J (�̂†

��̂� − 1
2 )(�̂†

�+1�†
�+1 − 1

2 ) + �
J (�̂†

��̂� − 1
2 )

� (5.19)

that contains a pairing term proportional to γ. The presence of a pairing term typically
opens a gap in the energy spectrum, and therefore we expect the spectrum to be gapped
whenever γ �= 0. In addition, we notice furthermore that the limit of ∆ � 0 is a
realization of the Kitaev chain [52].

12The same procedure applied to the usual (ground band) Bose-Hubbard Hamiltonian with one atom per
site yields spin chains with continuous symmetries (as is the case of the XXZ model), and which typically
favor for ferromagnetic order [49, 50].
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5.1.1. Properties of the ground state: the phase diagram of the XYZ model

We illustrate the rich physics of the XYZ model in external field by discussing the phase
diagram for the 1D13 open chain14. One dimensional quantum systems are particularly
interesting, for quantum effects are specially pronounced in low dimensions.

One dimensional quantum systems require a description which accounts for the
collective rather than individual behavior of their constituent parts [53]. To see
this more explicitly, let us consider, for example, a system of spinless bosons with
repulsive interactions in one dimension. Such a system is described in general terms
by a symmetric wave-function. But in the limit of infinitely repulsive interactions -
the Tonks-Girardeau limit, it is reasonable to assume that the amplitude of this
wave-function should decrease in the neighborhood of any of the bosonic particles,
and vanish completely at the exact values for which the probability of finding any of
these particles is maximum, as shown in Fig. 5.1.

Now the symmetric wave-function shown in Fig. 5.1 can be used to construct an al-
ternative anti-symmetric wave-function via reflection to the negative axis, with nodes
that reproduce the nodes of the symmetric case. At the level of the wave-functions,
the description provided by the symmetric and anti-symmetric wave-functions will be
very different. In fact, collective anti-symmetric wave-functions describe systems of
non-interacting fermions, not of bosons. But the construction of this anti-symmetric
wave-function can be considered in such a way that its absolute value reproduce
the absolute value of the symmetric wave-function. This means, therefore, that the
properties of the bosonic system at the level of densities, as e.g. density-density cor-
relation functions, can be completely inferred from the properties of a system of
non-interacting fermions. This process is usually referred to as the fermionization
of bosons [54], and is used here to illustrate how interesting and maybe counter
intuitive nature can become when collective behavior is allowed to play a role in low
dimensional quantum systems.

Figure 5.1.: One dimensional system of infinitely repulsive bosonic particles. The position of the
bosons are the black dots in the �-axis and the red and blue wave functions are
the corresponding symmetric and anti-symmetric descriptions. This figure is taken
from Ref. [54].

Now in 1D the ground state of the system described by Eq. (5.17) experiences four dif-
ferent phases as the parameters of this Hamiltonian are varied. A schematic phase
diagram is illustrated in Fig. 5.2. At zero field, the XYZ Heisenberg model is integrable15

13We remark that little is known about the XYZ Heisenberg model in external field in higher dimensions.
In addition to not having analytical solutions, numerical treatment of this problem is very limited due
to the exponential growth of the Hilbert space and becomes intractable already for a small number of
spins (less than 8 spins) in 2D.

14That is, with open boundary conditions.
15It was shown by Sutherland, in 1970 [46, 55], that the transfer matrix of any zero-field eight-vertex model

commutes with the Hamiltonian of the XYZ Heisenberg model. In addition, it was shown by Baxter
in 1971 and 1972 that for any values of the couplings in the Hamiltonian of the XYZ model, Eq. (5.17),
this operator is effectively a logarithmic derivative of an eight-vertex transfer matrix and therefore the
minimum eigenvalue of Eq. (5.17) can be obtained [46, 55]. Baxter study properties of the ground state
of the XYZ model by generalizing the Bethe ansatz [55], and in 1973 Baxter’s results were generalized
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Figure 5.2.: Schematic phase diagram of the XYZ chain. AFM denotes the anti-ferromagnetic
phase, FP the floating phase, SF the spin flop phase and PP the polarized phase.
The properties of these phases and of the different types of phase transitions are
discussed in the text.

with known analytical expressions for the eigenvalues and the eigenvectors [55]. At
large positive values of ∆/J the system has anti-ferromagnetic order in the �-direction.
For small values of ∆/J , the system displays Nèel ordering in the �-direction and is in
the so called spin-flop phase [56]. The � = 0 line for large negative values of ∆/J is
characterized by a ferromagnetic phase in the �-direction, and for all the cases, the
limit of large external field displays a magnetized phase, where the spins align along
the orientation of the field in the �-direction. These three phases also characterize the
phase diagram of the XXZ model in a longitudinal field [44]. For non-zero anisotropy
γ, however, the system has an additional phase in between the anti-ferromagnetic and
spin-flop phases that is called as the floating phase [56]. This is a gapless phase charac-
terized by algebraic decay of the correlations16. Notice, in particular, that this property
is unexpected from the point of view of the fermionic chain, where as stated before for
values of γ �= 0 the Hamiltonian contains a pairing term, which typically opens a gap in
the energy spectrum.

All these phases are separated by different types of phase transitions. The transition
from the anti-ferromagnetic to the floating phase is of the commensurate to incommen-
surate (C-IC) type, whereas the transition from the floating phase to the spin flop phase
is a Berezinski-Kosterlitz-Thouless (BKT) transition. For ∆ < −(1 + |γ|) there is a first
order phase transition at � = 0 between the two polarized phases (all spins up or all
spins down) and finally, between the spin flop and the polarized phases there is an Ising
transition.

In what follows we give a brief description of the properties of the different phases
and the different types of phase transitions. Here we illustrate these concepts in the
context of interacting spins, where we consider an Ising-like Hamiltonian given by
HI���� = −J

�
����� Ŝ�Ŝ� + �

�
� Ŝ�.

• Nèel order: Nèel order is the term generally used to describe a state with

by other authors and used for computing the energy of the excitations of the XYZ model.
16In terms of bosonization [53, 57] and renormalization group arguments, the floating phase is characterized

by irrelevant Umklapp terms and accordingly described by the Luttinger Liquid theory. Upon entering
the XY phase these terms are no longer irrelevant and the phase becomes gapped [56].
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broken symmetry and for which

�Ŝ�� �= 0

for all the spins [58]. And although this is most commonly used to refer to the
bipartite lattice, i.e., the Nèel anti-ferromagnet, where the direction neighboring
spins alternate in opposite directions [58], there are more complex patterns that
also corresponds to a Nèel state [58].

• Anti-ferromagnetic phase (J < 0): as stated above, the anti-ferromagnetic phase
is characterized by Nèel order with alternating neighboring spins. States of this
type are characterized by staggered magnetization [58], and therefore the net
magnetization is vanishing:

M =
�

�
�Ŝ�� = 0�

• Floating phase (J < 0): this is a gapless phase without long range order, and
for which the correlations decay algebraically [59].

• Spin-flop phase (J < 0): this corresponds to a gapped phase with Nèel order in
the � and � components of the spin. It is again a gapped phase, with exponential
decay of the correlations.

• Highly magnetized state or polarized phase (J < 0): for sufficiently large �, the
phase diagram of spin models subjected to external fields will always display
a highly magnetized state, where the spins align in the direction of the field.
This corresponds to a ’forced’ order, in the sense that there is no symmetry
breaking involved in the ordering processes and the spins are uncorrelated.

• Ferromagnetic phase (J > 0): for the case of positive J both the spins and their
neighbors align in the same direction, which therefore builds a highly magne-
tized state. Here, however, as opposed to the polarized phase, the ordering is
accompanied of symmetry breaking, with an order parameter similar to the
order parameter of the anti-ferromagnetic phase [58].

We now briefly discuss the properties of the different types of phase transitions that
appear in the phase diagram of the infinite system, Fig. 5.2:

• Ising transition: the transition between the polarized and the spin flop phases
belongs to the universality class of the 2D Ising model. It is classified as a
continuous or second order phase transition, and therefore the discontinuities
appear at the level of the order parameter (or second derivatives of the en-
ergy). In the Ising transition the critical exponent related to the divergence
of the correlation length goes as ξ ∝ (distance from the transition)−1 as one
approaches the critical point, and in addition, the dynamical critical exponent17

(�) is also equal to one [61, 62].
• Berezinski-Kosterlitz-Thouless (BKT) transition: BKT transitions also belong to

the class of continuous phase transitions. They are rather special, however, for
discontinuities appear in all the derivatives of the energy (they are sometimes
referred to as infinite order phase transitions), and there is no local order
parameter [63]. In fact, BKT transitions do not involve symmetry breaking and
are not described by the Landau theory.

• Commensurate to incommensurate (C-IC) transition: the C-IC transition hap-
pens due to the interplay of competing length scales in the system. In a periodic

17The dynamical critical exponent is the exponent defined to characterize the behavior of the correlation
time near the critical point. In the same way as it works for the correlation length, the correlation time
also diverges in the vicinity of the phase transition. The divergence of the correlation time implies,
that the fluctuations become incredibly slow, a phenomenon that is known as the critical slowing
down [60, 61].
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system, the collective excitations can develop a periodic structure that has dif-
ferent period from the ’natural period of the system’. These structures could
comprise kinks, walls or solitons18 [64].

• First order phase transition: in thermodynamic systems, first order phase tran-
sitions are defined as transitions that involve coexistence of phases, latent heat,
and the discontinuities appear in the first derivative of the free energy [61].
In the same way, in quantum phase transitions19, the discontinuities appear in
the first derivative of the ground state energy as one of the parameters of the
Hamiltonian is varied.

Since any implementation of the Heisenberg model will contain effects of finite size due
to the harmonic confinement inevitably required for experimental realizations with cold
atoms, it is important to reproduce these studies in systems with finite sizes. In the
presence of confinement, in addition, it might also be the case that the inhomogeneities
in the density affect the properties of the system. Here, however, as long as the trap
the trap is smooth enough such that the system satisfies the requisites of the local
density approximation (as discussed in Sec. 4.1), effects stemming from the confinement
renormalize the couplings such that they become spatially dependent. In the same way,
as long as the size of the orbitals is very small compared to the length scale imposed
by the trap, this spatial dependency is not relevant for the physics, and can therefore
be neglected [27]. For this reason we restrict our study of finite size effects to the case
of the open chain with constant coupling coefficients. We perform exact diagonalization
for the system with 18 spins and focus on the behavior of the total magnetization of the
ground state

M =
�

�
�Ŝ�

� � (5.20)

for different values of �/J and ∆. γ is assumed to be fixed and the result is presented
in Fig. 5.3: While both the anti-ferromagnetic and the polarized phases are clearly
visible, numerical treatment of this system exposes that in between these phases, the total
magnetization develops a step-like structure. We attribute these steps in M to a devil’s
staircase structure of spin density waves (SDW) [59]. In fact, the change in the total
magnetization appears as a consequence of the modulation of the anti-ferromagnetic
pattern (of the anti-ferromagnetic phase), which happens as one runs through larger
and larger values of �. This also mean, for the finite system, that it is only possible to
give a precise quantitative estimate for the Ising transition between the polarized and the
spin flop phase20. While it is not clear whether the C-IC transition can be captured by
this procedure, the BKT transition is certainly overshadowed by the sharp transitions
between the different spin density waves. In the thermodynamic limit this staircase
becomes complete and one then recovers the phase diagram displayed in Fig. 5.221.
These transitions between the different SDW are more pronounced for moderate system
sizes and we estimate approximately 15 different SDW between the anti-ferromagnetic
and polarized phases of a system with 50 spins22.

18A very good review on the subject is given in Ref. [59].
19Here there is no concept of temperature, i.e., quantum phase transitions happen at T = 0 and due to

competition between non-commuting terms in the Hamiltonian of the system [65].
20At least by using the total magnetization as the order parameter.
21In fact, using similar heuristics, i.e., going up and down the steps of a complete devil’s staircase, Chuck

Norris counted to infinity - twice [66].
22We consider here that the chain with 50 spins is supposed to provide a very good experimental picture

of the system that we would like to realize.
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Figure 5.3.: Finite size ’phase diagram’ obtained from exact diagonalization of a system with 18
spins and with the anisotropy parameter γ = 0�2. It displays the total magnetization
M (as defined in the text) which is characterized by an incomplete devil’s staircase
of SDW between the AFM and the PP phases.

5.2. Measurements, manipulations & experimental probing

The entire derivation of the spin chain for effectively describing the Mott1 phase of
�-orbital bosons was based on the fact that the spins are encoded in spatial degrees of
freedom rather than in internal atomic states. Experimental manipulation/detection in
this system requires therefore the ability of controlling the spatial states of the atoms at
single sites. This can be done by combining single-site addressing [67] with techniques
used in trapped ion physics. And by exploiting the symmetries of the ��- and the
��-orbital states, stimulated Raman transitions can drive both side-band and carrier
transitions for the chosen orbitals in the Lamb-Dicke regime.

Let us consider the two internal atomic electronic states for 87Rb atoms F = 1 and F = 2
Raman coupled with two lasers with amplitudes Ω1 and Ω2 and wave vectors k

1

and k

2

.
The matrix element describing this transition is given by

Ω1Ω2
δ �F = 2|��(k1−k2)x|F = 1�� (5.21)

where δ is the detuning of the transitions relative to the ancilla electronic state. In the
usual case the spatial dependence of the lasers will induce couplings between vibrational
states of the atom, and this, here, corresponds to the different bands. By making the
effective Rabi frequency very large, Ω = Ω1Ω2/δ, the duration of a π/2-pulse, for ex-
ample, can be made very short in comparison with any other time scale in the system
and therefore it is reasonable to consider that the dynamics in the system is frozen dur-
ing the applied pulse23. Furthermore, accidental degeneracies between other undesired
states can be removed by driving resonant two-photon transitions.

23Indeed, this same assumption applies for experiments with single-site addressing in optical lattices [67].
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Figure 5.4.: Schematic representation of the coupling between the different orbital states at a
single site. While the internal atomic electronic states are coupled by the carrier
transition, the different orbital degrees of freedom are coupled by the side-band
transitions. As depicted in the figure, the red and blue side-band transitions lower
and raise, respectively, the external vibrational state with a single phonon.

In the region of parameters that is interesting for the physics considered here, i.e.,
deep in the Mott insulator phase, single sites can be approximated with two-dimensional
harmonic oscillators with frequencies ωα =

�
2Vα�2

α/� and the Lamb-Dicke param-
eters [68, 69] become ηα = �α

√
~/2�ωα. Moreover, in the Lamb-Dicke regime, when

ηα � 1, multi-photon transitions can additionally be neglected, and as illustrated in
Fig. 5.4, this leaves three possible transitions for the one-dimensional case:

(I) Carrier transitions - with no change in the vibrational state;

(II) Red side-band transitions - which lower the vibrational state with one quantum;

(III) Blue side-band transitions - which raise the vibrational state with one quantum.

These different transitions are not degenerate, and therefore it is possible to select single
transitions by carefully choosing the frequencies of the lasers. And in these terms, or
with the use if these techniques, it is also possible to singly adress the different orbitals.
The ��-orbital state, for example, can be addressed by considering k1 − k2 = �� such
that there is no component in the �-direction.

This also provides a means for fully controlling the system, for this is achieved if every
unitary R̂β(φ) = �Ŝβφ , where β = {�� �� �} and φ is an effective rotation, can be realized.
To see that this is the case we discuss implementation of R̂�(φ) and R̂�(φ). We start
with the simplest case, of rotations on the �-component of the spin by first noticing that
Ŝ� = Ŝ+Ŝ−−1. Here it is enough to realize the operation Ŝ+Ŝ−, which consists of a phase
shift of one of the orbitals. This is most easily done by driving the carrier transition
off-resonantly for one of the two-orbitals, and since the driving is largely detuned, this
corresponds to Stark shifting one of the orbitals.

The R̂�(φ) operation can be implemented by simultaneously driving off-resonantly the
red side-bands of the two orbitals. Due to the large detuning, the �-band will never be-
come populated but the transition between the two orbitals can be made resonant. More
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explicitly, this operation involves the three states that we denote here as {|�� 0� 0�� |0� �� 0�
and |0� 0� ��}, where the last entry of the ket refers to the state in the �-band. The
�-orbitals are coupled to the �-orbital in a V -configuration, that in the rotating wave
approximation is described by [70]

ĤV =




0 0 Ω1
0 0 Ω2

Ω1 Ω2 δ



 � (5.22)

where Ω1 and Ω2 are considered real and spatially dependent. For δ � Ω1� Ω2 the
Hamiltonian that generates a rotation of the �-component of the spin, R̂�(φ),

Ĥ� =
�

0 U
U 0

�
= UŜ�� (5.23)

is then obtained after adiabatic elimination of the state |0� 0� ��. Notice, however, that if the
Raman transition between the two orbitals is not resonant, then this process will perform
a combination of rotations in the � and � components of the spin. Rotations in the �
component of the spin, in addition, can be performed in two ways, either by adjusting
the phases of the lasers, or either by noticing that R̂�(φ) = R̂�(π/4)R̂�(φ)R̂�(−π/4).

This method allows thus for any manipulation of single spins at a given site. To measure
the state of the spin in a given direction one then combines the rotations with single
site resolved fluorescence (which acts as measuring Ŝ�

� ) [71]. More precisely, since
the drive laser can couple to the two orbitals individually, one of the orbitals will be
transparent to the laser while the other one will show fluorescence. In other words,
one then measures Ŝ�

� on a single site. The other components of the spin can also be
measured in this way, but after the correct rotation to the spin state has been previously
implemented. Furthermore, with the help of coincident detection, it is possible to extract
correlators of the type �Ŝα

� Ŝβ
� �, α� β = {�� �} [72].

5.2.1. External parameter control

The spin mapping carried out in Sec. 5.1 provides a route for obtaining the Hamilto-
nian that effectively describes the physics of Mott1 phase of �-orbital bosons. In that
procedure, all the couplings in the spin picture are shown to depend initially on the
parameters of the bosonic system, and therefore also on the configuration of the optical
potential.

In order to give a qualitative estimate for the couplings in the spin model we make use of
the analytical expressions derived in Sec. 2.3.1, where the parameters of the Hamiltonian
for �-orbital bosons were considered in the harmonic limit. Introducing the widths of
σα of the orbital wave functions for the spatial directions α ={�� �� �}, the expressions
of the couplings in this approximation are given by

U�� = U�� = 3U�� = �0
σ�σ�σ�

� (5.24)

where �0 is used here to denote an effective strength of the interactions, proportional
to the �-wave scattering length. According to Eq. (5.15), this reveals that the interactions
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in the � component of the spin favor primarily for ferromagnetic order, i.e., ∆ < 0. In
fact, using that |��|2 � |�� |2,

∆ ≈ −|��|2
�

4 U��
U��U�� − U2

��
− 1

U��

�
� (5.25)

which in the harmonic approximation becomes

∆ = −|��|2 3σ�σ�σ�
2�0

< 0� (5.26)

Similar computation yields γ = 1/2, which gives anti-ferromagnetic couplings for the
spin � and � components. We notice in addition that even though computation of the
couplings with the lattice Wannier functions yield different values for the couplings, it
does not change the qualitative properties of the physics obtained via the harmonic
approximation. In particular, we have numerically checked that ∆ is always negative,
even outside of this limit.

The fully anti-ferromagnetic regime can be reached, however, with application of the
same ideas discussed in the previous section. This is again based on the techniques
developed for trapped ion physics, and more explicitly, with driving the carrier transition
of either of the two orbitals dispersively, with a spatially dependent field24. If the shape
of the drive is chosen in such a way that the resulting Stark shift is weaker in the center
of the sites, then this procedure will narrow the orbital in one of the directions and
we say that the orbital is squeezed. Let us assume that the squeezing is implemented
here in the �-direction. Then the only requirement is that the spatial profile of the field
driving the carrier transition changes in the length scale of the lattice spacing in this
direction. The tunneling rates �� and �� will not be affected by the squeezing but with
this procedure it is possible to change both U�� and U�� and therefore it is also possible
to tune the coupling constants. To be more specific, let us assume that the ratio σ of
the harmonic length scales of the �� and the �� orbitals is tuned (in the �-direction). A
straightforward calculation using harmonic oscillator functions yields

α ≡ U��
U��

= 2−3/23(1 + σ2)3/2

σ (5.27)

and that
β ≡ U��/U�� = 2−3/23(1 + σ2)3/2� (5.28)

The dependence with σ on the coupling constants is given as

∆/J = 2���−1
�

β
(αβ − 1) = 2���−1

�
α

(αβ − 1) −
���−1

� + ���−1
�

2 (5.29)

and
γ = − 4

(αβ − 1) � (5.30)

The inset in Fig. 5.5 displays the three coupling parameters as a function of σ for
|��/�� | = 0�1. We see that the relative size and even the sign of the couplings can
24This is nothing but a potential that reshapes the lattice sites in different ways for the different orbitals,

and that can be implemented as a change in the σ� widths of the different Wannier functions (��(��) and
�� (��)) of the orbitals, while the widths σ� are kept unaltered.
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be tuned by varying σ . In particular, while interactions in Ŝ� always lead to anti-
ferromagnetic couplings, the interactions in Ŝ� and Ŝ� can lead to both ferromagnetic
or anti-ferromagnetic couplings. In the main part of Fig. 5.5 we sketch the different
possible models as a function of ��/�� and σ . This clearly demonstrates that this method
allows for realization of a whole class of XYZ spin chains.

Figure 5.5.: XYZ Heisenberg chains with different types of couplings that can be achieved by
varying the relative orbital squeezing and the relative tunneling strength. In (I)
the system has anti-ferromagnetic couplings in all the components of the spin with
∆ > J (1 + |γ|). In (II) the system has both ferromagnetic or anti-ferromagnetic
couplings in the � component of the spin and anti-ferromagnetic in the � component
with J (1 + |γ|) > ∆. Finally, (III) has the same characteristics of region (II) but now
|∆| > J (1 + |γ|). In the inset we show one example of the spin parameters where
��/�� = −0�1, and J�� = (1 + γ), J�� = (1 − γ) and J�� = ∆/J .

5.2.2. Experimental realization

In the experiment described in Ref. [11], the lifetimes reported for bosons occupying
the states in the � band of an effective 1D optical lattice were surprisingly long. With an
average number of approximately two atoms per site, the atoms could tunnel hundreds
of times before decaying to the � band. Here the main decay mechanism stem from
atom-atom collisions [7, 11], and therefore an increase in the lifetime is expected for the
case where there is only one atom per site25

The typical values for the tunneling times can be estimated from the overlap integrals
of neighboring Wannier functions. Considering 87Rb atoms, for example, and λ��� =
843 �m, yields J/ER ≈ 0�1 with ER = ~2�2/2� and the characteristic tunneling time
τ = ~/JER ≈ 500 µs. Surprisingly, even deep in the insulating phase, as considered here,
this is a few hundred of times smaller than the expected lifetimes [11] which therefore
allows for experimental explorations of the results reported here.

A last remark is in time which regards the temperatures required for observation of the
spin correlations. The physics discussed here will emerge for temperatures of the order
of �BT . J ∼ �2/U [49]. Although it might be very difficult to experimentally achieve

25In fact, Ref. [11] estimates an increase of up to a factor of 5 in the lifetimes for the situation with unit
filling of the lattice sites.
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such temperatures, this reflects the frontier of experimental realizations and it is being
currently attacked by several experimental groups.

5.3. E�ective model including imperfections due to �-orbital atoms

Difficulties for experimental implementations that are related to the low temperatures
required for accessing the physics explored here were already pointed out in the last
section. The other main difficulty related to experiments regards the existence of imper-
fections in the system. This imperfections consists of residual �-orbital atoms, that result
from the process of loading atoms in the �-band. Although the possibility of promoting
atoms from the � to the � band with 99% fidelity was recently reported [73], the fidelity
for promoting atoms from the � to the � band is currently at 80%. This means that 20%
of the atoms will still remain in the orbital states of the � band and that it is necessary
to investigate the extent of which the presence of (�-orbital atom) impurities are capable
of changing the physics of the clean system.

We notice first that due to the large amplitudes of the optical potential (required by the
Mott insulator phase), the atoms occupying orbital states of the � band can be declared
immobile. As a consequence, random sites will contain localized impurities. The next
factor to consider is related to the energy scales. Double occupation of states with one
�- and one �-orbital atom has a larger energy cost than the double occupation of states
with two atoms in the �-orbital states. In other words, U�� > Uαβ , where α� β = {�� �}
and

U�� = U0

�
�r|�α

� (r)|2|��
� (r)|2 (5.31)

is the interaction energy between an �- and a �-orbital atom26. Accordingly, repeated
experimental realizations will prepare the system in different random configurations as
illustrated in Fig. 5.6. This means that an additional step must be carried out, in principle,
in order to integrate out degrees of freedom corresponding to atoms in the �-orbitals.
This is possible by averaging over all the different configurations which contain a fixed
ratio of �- to �-orbital atoms.

We now repeat the reasoning of Sec. 5.1, to include in the effective Hamiltonian contri-
butions stemming from the presence of impurities in the model. Let us consider two
neighboring sites, � and � , one with an � and the other with a � orbital atom. After the
steps of the perturbative calculation are carried out (in second order in �/U), we are left
with only one additional term,

− �2
α

U��
�̂†

α���̂
†
��� �̂α���̂��� = − �2

α
U��

�̂α��� (5.32)

where again α ={�� �} and �̂��� is the operator that annihilates one atom in the �-orbital
state at the site � , and where in the last equality we used that �̂��� = 1. Since �� �= �� ,
the effect resulting from the presence of an � atom in the system appears as a local
fluctuation in the external field. We therefore obtain an XYZ chain with disorder in the

26Notice here that ��
� (r) is used to denote the � orbital at the site �.
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field, i.e.,
Ĥ (dis)

M��� = −
�

�����

�
J��Ŝ�

� Ŝ�
� + J��Ŝ�

� Ŝ�
� + J�� Ŝ�

� Ŝ�
�

�
−

�

�
J�Ŝ�

� � (5.33)

If the system contains a small number of atoms on the states of the lowest band, this
effect should not be too drastic and we expect the disorder to be irrelevant27 [74]. As the
fraction of impurity atoms increases and the disorder in the external field covers a larger
number of sites, we expect the disorder to become relevant and the qualitative picture
to change. In fact, one possible scenario is the appearance of a localized phase [74]. We
remark here that the physics of disordered one dimensional quantum systems contain,
a plethora of interesting phenomena, as e.g., Anderson phases28 [54, 61, 62], Mott-glass
phases29 [54], and many of its questions are in the frontier of the current research30.
The analysis of the random field XYZ chain discussed here, however, is out of the scope
of the present thesis and is left to the future.

Figure 5.6.: Three random experimental realizations of the insulating state are schematically
depicted. The yellow balls are used to represent �-orbital atoms, while �-orbital
atoms are represented by the blue balls.

5.4. A quick remark regarding alternative systems for implementing
quantum simulators

Alternative scenarios for implementing simulators of quantum systems rely on experi-
mental realizations with trapped ions and polar molecules. Systems of trapped ions have
already been used to implement both a small [76, 77, 78, 79] and a large [80] number
of spins, but one easily looses control in these setups as the system size increases. In
addition, due to trapping potentials the experiments are currently limited to approxi-
mately 25 spins, and due to the inherent long range character of the interactions, the

27In the language of real space renormalization group.
28The Anderson transition is a transition between a localized and a metallic state, that appears in disordered

systems. Nowadays, after many advances on the physics of disordered systems that happened in the 70’s
and 80’s, the term Anderson transition is used in a broader sense [75] and in addition to the transition
from metal-insulator, it also includes critical points with transitions that separate localized phases [75].

29The Mott-Glass phase is an incompressible gapless insulator phase that is conjectured to appear in the
phase diagram of random 1D superfluid to insulator phase transition [62].

30The phase diagram of the system known by the name of random bosons, for example, is still a matter
of ’lively debates’ in the community [62].
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construction of paradigmatic spin models becomes a non-trivial task with systems of
trapped ions.

Similar limitations appear when using polar molecules, where the effective spin interac-
tions [81, 82] are obtained from the intrinsic dipole-dipole interactions. Here again the
character of the dipolar interaction yields effective spin models that are typically long
range and in addition, the couplings feature spatial anisotropies [81]. While this spatial
anisotropy in the couplings might be in favor of anisotropic models as is the case of the
XYZ chain, restricting the range of the interactions might still be tricky for this type of
systems.

In summary, even though the temperatures required for simulating the XYZ model
with bosons in the � band are very low and in the frontier of the current research,
these alternative proposals have different drawbacks and it is not yet clear whether they
provide an easier route for experimental implementation of this system.

5.5. Remarks on the e�ective Hamiltonian of the 3-orbital system

In the previous sections we discussed how to use � orbitals to explore the physics of
paradigmatic spin 1/2 Hamiltonians. The next question which arises, maybe even natu-
rally, regards the effective Hamiltonian that is obtained from the three orbital system.
More explicitly, what is the effective ’spin model’ that describes the Mott1 phase of a 1D
system with three-orbital orbital state?

While this is still in the category of ’work in progress’, we present some preliminary
discussions regarding the derivation of the effective spin Hamiltonian for a system of
(polarized) fermionic atoms in the � band. We restrict ourselves to the fermionic case
for the moment, for this considerably simplifies the interaction part of the Hamiltonian
(in Eq. (5.1)). In fact, polarized fermions in the � band are described by

Ĥ� = −
�

���α
�α
�� �̂�α�̂�α +

�

��α �=β
Uαβ�̂�α�̂�β +

�

��α
E�

α�̂�α� (5.34)

which in addition to the tunneling an on-site energy terms contains only density-density
interactions between the different orbital states. Notice here that since �̂�α and �̂†

�α are
operators that destroy and create, respectively, a fermionic atom in the site �, and that
they satisfy the anti-commutation relations {�̂�α� �̂†

�α}= 1 and {�̂�α� �̂�α} = {�̂†
�α� �̂†

�α}= 0.

We now apply the same reasoning that was used in Sec. 5.1, and obtain the effective
Hamiltonian from second order perturbation theory in �/U . For the three orbital system,
the basis of states in the subspaces �P and �Q is taken as

�P � {|X� X�� |X� Y�� |X� Z�� |Y � X�� |Y � Z�� |Z� X�� |Z� U�� |Z� Z�} (5.35)

and
�Q � {|0� 2X�� |0� XY�� |0� XZ�� |0� 2Y�� |0� YZ�� |0� 2Z�}� (5.36)
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and since the matrix elements which account for transitions of the type �α� β|Ĥ−1
Q |β� α�

will be non-vanishing even for the fermionic case31, the effective Hamiltonian will con-
tain onsite terms that convert any atom in the �α-orbital state into an atom in the �β-
orbital state for any α� β. In order to account for all these dynamical processes we
are required to choose a representation for the generators of the SU(3) group32. We
therefore introduce the Gell-Mann matrices [33]

λ1 =




0 1 0
1 0 0
0 0 0



 � λ2 =




0 −� 0
� 0 0
0 0 0



 � λ3 =




1 0 0
0 −1 0
0 0 0



 �

λ4 =




0 0 1
0 0 0
1 0 0



 � λ5 =




0 0 −�
0 0 0
� 0 0



 �

λ6 =




0 0 0
0 0 1
0 1 0



 � λ7 =




0 0 0
0 0 −�
0 � 0



 � λ8 = 1√
3




1 0 0
0 1 0
0 0 −2



 �

(5.37)

They are traceless Hermitian matrices that satisfy the commutation relations [33]

[λ�� λ� ] = 2�� ���λ�� (5.38)

with �� �� � = 1� ��8 and where the � ��� are completely anti-symmetric structure constants
given by [33]

�123 = 1� �147 = �165 = �246 = �257 = �345 = �376 = 1
2 � �458 = �678 =

√
3

2 (5.39)

In terms of these objects, the correspondence between the SU(3)-spin operators and the
operators in the fermionic picture follows as

λ�
1 = �̂†

���̂�� + �̂†
���̂��� λ�

2 = ��̂†
���̂�� − ��̂†

���̂��

λ�
4 = �̂†

���̂�� + �̂†
���̂��� λ�

5 = ��̂†
���̂�� − ��̂†

���̂��

λ�
6 = �̂†

���̂�� + �̂†
���̂��� λ�

7 = ��̂†
���̂�� − ��̂†

���̂��

(5.40)

λ�
3 = �̂�

� − �̂�
�

λ�
8 = 1√

3 �̂�
� + 1√

3 �̂�
� − 2√

3 �̂�
� �

In analogy with the routine executed previously for analysis of the spin-1/2 case, we also
impose here the constraint of a unit filling of the lattice sites: �̂�

� + �̂�
� + �̂�

� = 1. We

31Notice that it is the density-density interaction term in Eq. (5.35) that allow for such processes to happen.
32Maybe an intuitive way of understanding why this is not a spin-1 case, is by noticing that any of the

orbital states can be directly converted into each other, i.e., �� ⌦ �� ⌦ �� ⌦ �� . In order for the system
to mimic the spin-1 case the conversion between the orbital states should obey a rule as �� ⌦ �� ⌦ �� ,
for example, where an atom occupying a ��-orbital state can only be made to occupy a ��-orbital state
by being in a �� -orbital state first.
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therefore obtain
�̂�

� = 1
3 + 1

2λ�
3 +

√
3

6 λ�
8

�̂�
� = 1

3 − 1
2λ�

3 +
√

3
6 λ�

8

�̂�
� = 1

3 −
√

3
3 λ�

8�

(5.41)

and also rewrite the following expressions:

�̂†
���̂�� = λ�

1+�λ�
2

2

�̂†
���̂�� = λ�

4+�λ�
5

2

�̂†
���̂�� = λ�

6−�λ�
7

2

(5.42)

Now after conducting the steps of the perturbative calculation, the expression for the
effective Hamiltonian describing the Mott1 phase of fermions in the three �-orbital
system follows as

H =
�

�
�
�2
� + �2

�
�

�1
�

�̂�
� �̂�

� + �̂�
� �̂�

�

�
+

�
�2
� + �2

�
�

�2
�

�̂�
� �̂�

� + �̂�
� �̂�

�

�

+
�
�2
� + �2

�
�

�3
�

�̂�
� �̂�

� + �̂�
� �̂�

�

�

+ 2���� �4 �̂†
���̂���̂†

���̂�� + 2���� �5 �̂†
���̂���̂†

���̂�� + 2���� �6 �̂†
���̂���̂†

���̂��

+ 2���� �7�̂†
���̂���̂†

���̂�� + 2���� �8 �̂†
���̂���̂†

���̂�� + 2���� �9�̂†
���̂���̂†

���̂���
(5.43)

where the ��, � = 1���9 are used to denote the inverse of the intensity of the exchange
interaction. In fact, due to the absence of orbital-changing terms in the Hamiltonian
of fermions in the � band, the interaction Hamiltonian is diagonal in the basis of the
intermediate states of the perturbative calculation, and therefore � = 1

2Uαβ
, where α� β =

{�� �� �}. While explicit computation of each term of the effective Hamiltonian is shown
in the appendix, we quote here the final result,

H =
�

�

�√
3

9
(�2

�+�2
� )

U��
−

√
3

9
(�2
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� )
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√
3

9
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U��
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8
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�
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3
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λ�
3λ�
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� )
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3

12
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� )

U��
−

√
3

12
(�2

�+�2
� )

U��

� �
λ�

8λ�
3 + λ�

3λ�
8

�

+
�

�����
����
2U��

(T+
� T−

� + T−
� T+

� ) + ����
2U��

(V+
� V−

� + V−
� V+

� ) + ����
2U��

(U+
� U−

� + U−
� U+

� )
(5.44)

where T± = λ1 ± �λ2, V± = λ4 ± �λ5 and U± = λ6 ± �λ7 are the SU(3) ladder operators.
While analysis of this system is left for the future, we conclude this section by noticing
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that cold atoms in the �-band offer interesting prospects to unravel the physics of spin
chains beyond spin-1/2.
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B. Computation of the e�ective SU(3)-spin chain
Hamiltonian

The following steps show a term-by-term computation of the Hamiltonian shown in
Eq. (5.44) with explicit use of Eqs. (5.41) and (5.42). This is added here just for ’reference
purposes’, in what is related to the continuation of this work.
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6. Conclusions

In this thesis we presented different aspects of the physics of �-orbital bosons that range
to properties of both the mean-field and more strongly correlated levels. The main part
of this text covers the material of Papers I and II that are attached after the bibliographic
references.

We started by introducing the band structure and the orbital states in Chapter 2, where
we also constructed the Hamiltonian for describing the many-body system. This frame-
work was used in Chapter 3 as the basis for the mean-field analysis. There we have
shown that the term describing orbital changing collisions in the Hamiltonian of �-
orbital bosons leads to the formation of structures in the ground-state of the system:
in the 2D system, for example, this corresponds to the staggered-vortex solution. We
continued with Chapter 4, where we studied the physics of �-orbital bosons in the pres-
ence of an external confinig trap. This part presents the study developed in Paper I. In
addition to characterizing the ground state propeties and, in particular, the fate of the
staggered-vortex solution due to the presence of the trap, we also studied finite temper-
ature physics of the ideal gas and properties of the system in anisotropic lattices.

In Chapter 5 we presented the content of Paper II, where we studied properties of the
strongly correlated regime of �-orbital bosons. More explicitly, we have shown that for
the two-orbital case, the dynamics of the Mott phase with a unit filling of the lattice sites
can be effectively described by the spin-1/2 anisotropic Heisenberg (the XYZ) model in
external field. We studied the phase diagram in the thermodynamic limit and also finite
size effects relevant to experimental realizations. We have also proposed manipulation
and detection schemes that allow for experimental probing of the physics discussed. In
addition to what is covered in Paper II, in this chapter we also discussed extensions of the
spin model and directions for future research. As mentioned in Sec. 5.5, generalization
to the 3D lattice and the three orbital system of the study presented here offers an
interesting prospect for studying the physics of models beyond spin-1/2. Along these
lines, it is also interesting to engineer spin-1 chains, which in terms of the orbital states in
the � band, can be constructed by using the �� , the �� and the ���1 orbitals of a 2D lattice.
Due to recent experimental advances in manipulating bosons in excited bands of optical
lattices, and in particular, in the � band [73], characterizations of such systems are also of
experimental relevance. At the same time, there are still open questions for the spin-1/2
system that we intend to investigate in future work. These includes a thorough study
of the system with impurities discussed in Sec. 5.3, studying the dynamics, propagation
of Lieb-Robinson bounds and characterization of the system when it is coupled to an
external bath.

1The ��� orbital is the orbital state that is odd both in the � and the � directions.
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Confined p-band Bose-Einstein condensates

Fernanda Pinheiro,1,2,* Jani-Petri Martikainen,2,3 and Jonas Larson1,4

1Department of Physics, Stockholm University, SE-10691 Stockholm, Sweden
2NORDITA, SE-10691 Stockholm, Sweden

3Aalto University, P.O. Box 1510, FI-00076 Aalto, Finland
4Institut für Theoretische Physik, Universität zu Köln, DE-50937 Köln, Germany
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We study bosonic atoms on the p band of a two-dimensional optical square lattice in the presence of a confining
trapping potential. Using a mean-field approach, we show how the anisotropic tunneling for p-band particles
affects the cloud of condensed atoms by characterizing the ground-state density and the coherence properties of
the atomic states both between sites and atomic flavors. In contrast to the usual results based on the local-density
approximation, the atomic density can become anisotropic. This anisotropic effect is especially pronounced in
the limit of weak atom-atom interactions and of weak lattice amplitudes, i.e., when the properties of the ground
state are mainly driven by the kinetic energies. We also investigate how the trap influences known properties of
the nontrapped case. In particular, we focus on the behavior of the antiferromagnetic vortex-antivortex order,
which for the confined system is shown to disappear at the edges of the condensed cloud.

DOI: 10.1103/PhysRevA.85.033638 PACS number(s): 03.75.Lm, 03.75.Mn

I. INTRODUCTION

With refined experimental techniques in trapping and cool-
ing, atomic gases have become prime candidates for studies
of mesoscopic quantum phenomena [1]. Among different
possible experimental configurations [1,2], systems of cold
atoms subjected to optical lattices constitute one of the most
active topics of the current research in the field. In the ultracold
limit, these setups may serve as quantum simulators which can
be used to test actual models of condensed matter theories
in a precise way [2]. In fact, the degree of experimental
control in optical lattice systems is so great that by tuning
the parameters of the lattice, the atoms can be moved into the
strongly correlated regime, therefore allowing for the study
of a variety of phenomena which include quantum phase
transitions [3]. Beyond experimental manipulations of the
ground state, the versatility of these systems also makes it
possible to experimentally prepare certain excited states. In this
respect, of particular interest are the states of bosons restricted
to the first excited energy bands of the lattice, i.e., the so-called
p-band bosons.

Qualitatively, the physics of p-band bosons is considerably
different from the well-studied systems where the bosons are
only restricted to the lowest band (s-band bosons). The reason
for this can be intuitively understood from the isotropic square
and cubic lattices, where the symmetry of the lattice implies
a double (square lattice) and triple (cubic lattice) degeneracy
[4,5] on the p band. In solid-state systems, such degeneracies
could be removed via Jahn-Teller effects, but since here the
lattice is imposed from the outside, the degeneracy is robust.
This degeneracy motivates the description of the atomic states
in terms of orbitals related to the corresponding localized
Wannier functions, characterized by a node in each of the
spatial directions. In the direction of the node, the Wannier
functions are also broader and, since this directly influences
the ease of tunneling between sites, it directly affects the

*fep@fysik.su.se

dynamical properties of the system. Since the properties of
the tunneling of p-band bosons are dramatically altered from
the ones on the s band, a rich variety of novel quantum phases
[6–9] can appear. When interactions are taken into account, it
has also been argued that in the limit of very strong atom-atom
interactions, the atomic population can move to higher energy
bands, affecting thus the expected ground-state properties of
ultracold atoms in optical lattices [10–15]. The broadening of
the onsite wave functions, for example, was experimentally
verified via microwave spectroscopy [16]. In addition, sig-
natures of (strong) interaction-induced higher-band physics
could also be seen in nonequilibrium configurations through
the mapping of collapse-revival structures in the atomic density
[17] (see also Ref. [18]). Surprising effects are also present in
the limit of weak interactions. In fact, it was recently observed
[19,20] that due to unusual dispersions, the physics of p-band
bosons appears responsible for unconventional condensation,
where nonzero momentum states [21] are occupied. We should
point out, however, that even though experiments concerning
p-band physics have been restricted to one-dimensional square
or cubic lattices [19,20,22,23], several theoretical predictions
have been made for other lattice configurations [24].

In experiments, optical lattice systems are generally sub-
jected to an external confining trap. Although it is known
that even for s-band bosons, the presence of the trap can
add important features to the physics of the system [25], all
of the aforementioned theoretical studies of p-band bosonic
systems neglect effects originating from the confining trap
potential. Thus, it is important to study how the inclusion
of a trap affects the p-band physics. For example, in the
case of a two-dimensional (2D) lattice, it is characteristic of
p-band bosons to have tunneling coefficients with different
amplitudes in different directions. In the nontrapped case, this
property of anisotropic tunneling together with the properties
of homogeneous density distributions yields a corresponding
ground state, which has an antiferromagnetic order with vortex
or antivortex states on every second site (also known as the
state of staggered orbital angular momentum) [5,9]. In trapped
systems, however, the property of anisotropic tunneling
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necessarily introduces density inhomogeneities, which break
the population balance between different possible atomic states
(here corresponding to the two possible orbitals of the 2D
lattice). This also gives rise to physics beyond the one captured
by using the local-density approximation (LDA). The fate of
the antiferromagnetic order in the presence of the trap is then
unclear.

In this paper, we study this issue and address also other
effects and properties which arise when p-band bosons are
confined by an external potential. We mostly restrict the
analysis to 2D, but discuss how the obtained results generalize
to 3D. The analysis is based on the ideal gas theory and a
mean-field approach, where we assume the system to be deep
in the region of the superfluid phase. We start by presenting the
theoretical framework and follow with the study of the ideal
system at finite temperatures, where the critical temperature
for condensation in a noninteracting p-band bosonic gas is
calculated. We then show that for a symmetric square lattice,
the zero-temperature order parameter of the condensed ground
state is complex also in the presence of a trap, but the
vortex-antivortex structure can be lost. In particular, the ground
state for the p-band atomic densities of the two flavors are
shown to be different except for when the system is driven
into the Thomas-Fermi (TF) regime, in which case we can
neglect effects stemming from the kinetic tunneling energy. We
complete the study with an analysis of the zero-temperature
properties of an asymmetric lattice. We find that due to splitting
of the p-band degeneracy, the ground-state properties may be
sensitive to small changes in the two lattice amplitudes.

It is important to point out that our analysis is carried out
when the influence from other bands has been omitted. The
validity of this assumption is specifically tested in the harmonic
approximation, where two p-band atoms become degenerate
with one s-atom and one d-atom. In fact, due to a “reduced
final density of states for scattering processes” [23], these
decays can be significantly suppressed [5] and the lifetimes
of the atoms in p orbitals become 1–2 orders of magnitude
larger than typical tunneling times. In addition, outside the
harmonic approximation, as is the case considered throughout
this paper, the actual anharmonicity of the lattice breaks the
(p + p → s + d) degeneracy for almost all quasimomenta,
suppressing further such loss processes.

II. DERIVATION OF THE EFFECTIVE MODEL
HAMILTONIAN

A. Hamiltonian for p-band bosons

In terms of the field operators !̂("r ′), the dynamics of
the weakly interacting Bose gas can be described by the
Hamiltonian

H =
∫

d"r ′
{
!̂†("r ′)

[
−h̄2∇2

2m
+ V ("r ′)

]
!̂("r ′)

+ Ũ0

2
!̂†("r ′)!̂†("r ′)!̂("r ′)!̂("r ′)

}
,

(1)

where m corresponds to the mass of the particles, Ũ0
corresponds to the strength of the interparticle interaction, and
V ("r ′) accounts for the effects of external potentials acting on

the system. The field operators !̂("r ′) and !̂†("r ′) annihilate
and create a particle at position "r ′, respectively, and obey
the standard boson commutation relation [!̂("r ′′),!̂†("r ′)] =
δ("r ′′ − "r ′). In this work, we consider a trapped system in
2D with V ("r ′) = Vlatt("r ′) + Vtrap("r ′), where the optical lattice
potential

Vlatt("r ′) = Ṽx sin2(kx ′) + Ṽy sin2(ky ′) (2)

has amplitudes and wave vector given, respectively, by Ṽα ,
α ∈ {x,y} and k = 2π/λ, with λ being the wavelength of the
applied lasers, and where

Vtrap("r ′) = mω̃2

2
(x ′2 + y ′2) (3)

describes the action of an overall slowly varying harmonic trap
with frequency ω̃.

The common practice in the study of many-body systems
subjected to periodic potentials consists in the expansion of the
many-body Hamiltonian in terms of a suitable basis, generally
constructed from its corresponding noninteracting part. In fact,
the invariance under discrete translations of the lattice implies
conservation of quasimomentum and an energy spectrum
having a band structure, which therefore immediately suggest
the use of Bloch functions. Here, however, the presence of
the trap breaks translational invariance and implies a finite
size for the system, consequently destroying the symmetries
that rigorously justify theoretical treatment in these terms.
On the other hand, the smoothness of the potential implies
that its characteristic length scale fulfills the condition ltrap =√

h̄/mω̃ ( λ/2, and thus we can implement the effects of
the trap in each site by only shifting the onsite energies
and assuming that the onsite orbitals remain the same in the
absence of a trap. This means that locally the system is still
effectively periodic, and that a satisfactory approximation can
be obtained from the traditional framework.

Before carrying out the expansion of the field operators,
we define dimensionless parameters by taking the recoil
energy Er = h̄2k2/2m as the energy scale (i.e., all energies
are scaled by this quantity) and the inverse wave vector as the
typical length scale l = λ/2π , which produces a dimensionless
trap frequency given by ω =

√
2mω̃/h̄k2. In these terms,

the trapping potential becomes V ("r) = ω2(x2 + y2)/2, where
x = kx ′ and y = ky ′ are the dimensionless positions. From
now on, we assume these units in all of the derivations so that
the resulting equations are dimensionless. As a first step, we
construct the bosonic operators b̂νq and b̂

†
νq which create and

annihilate, respectively, one particle delocalized in the Bloch
state φνq("r) of quasimomentum q = (qx,qy) in the νth energy
band, and use it to write

!̂†("r) =
∑

νq

φ∗
νq("r) b̂†νq,

!̂("r) =
∑

νq

φνq("r) b̂νq,

(4)

where the ν sum runs over all energy bands, and the q sum is
over the first Brillouin zone. We also use the above expressions
to construct the site-localized Wannier functions, where the
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operators read

!̂†(!r) =
∑

νj

w∗
νRj

(!r) â
†
νj,

!̂(!r) =
∑

νj

wνRj (!r) âνj.

(5)

Here, Rj = (xj,yj) = (πjx,πjy) labels the coordinates of the
j th site of the lattice [j = (jx,jy), jx,jy ∈ N ], and âνj (â†

νj)
annihilate (create) a particle in the Wannier state wνRj (!r).
For completeness, the relation between Wannier and Bloch
functions is given by

wνRj (!r) =
∑

q

e−iq·Rjφνq(!r). (6)

As a second step in deriving an effective model described
by the Hamiltonian of Eq. (1), we choose the expansion of
the many-body Hamiltonian in terms of (5) and introduce
some approximations. Our option for this picture is justified
by the fact that while considerably simpler for the practical
implementations, the use of the Wannier basis together with
the tight-binding approximation can still provide a good
description as long as the lattice is deep enough [26]. In
addition to restricting the hopping to nearest neighbors (tight-
binding), we truncate the expansion of the field operators to
include only the p bands.

As the last step of our derivation, we clarify the used
terminology. For a square lattice, the two p-band Wannier
functions at each site j are characterized by a node along
either the x or y directions. Therefore, we call atoms with
orbital wave functions wxj(!r) and wyj(!r), respectively, as x
and y flavors [5], and for completeness we give their explicit
expressions

wxj(!r) = w2jx
(x)w1jy

(y),
wyj(!r) = w1jx

(x)w2jy
(y). (7)

From this, the nature of the node structure becomes clear. It
is a direct consequence of the nodal structure of the Wannier
functions w2j (x) and w1j (x). An x-flavor (or equivalently px-
orbital) atom, thus, not only has a wave function with a node
along the x direction, but also has a broader distribution along
x. Accordingly, the opposite is true for atoms in the y flavor.
This property directly affects the tunneling properties of the
atoms in this system.

Putting everything together, we can write the resulting
many-body Hamiltonian

H = H0 + Hnn + HFD, (8)

with the ideal part given by

H0 = −
∑

α,β

∑

〈ij〉α

tαβ â
†
βiâβj +

∑

α

∑

j

Vtrap(Rj)n̂αj, (9)

where
∑

〈ij〉α refers to the sum over nearest neighbors in the

direction α (α,β = x,y), and n̂αj = â
†
αjâαj is the atom number

operator; and where the interaction terms

Hnn =
∑

α

∑

j

Uαα

2
n̂αj(n̂αj − 1) +

∑

αβ,α '=β

∑

j

Uαβ n̂αjn̂βj

(10)

and

HFD =
∑

αβ,α '=β

∑

j

Uαβ

2
(â†

αjâ
†
αjâβjâβj + â

†
βjâ

†
βjâαjâα,j) (11)

account, respectively, for the contribution of density-density
and interflavor conversion interactions. The expression for the
interaction parameters is given by

Uαβ = U0

∫
d!r |wαj(!r)|2|wβj(!r)|2, (12)

and for the tunneling coefficients by

tαβ = −
∫

d!r w∗
αj(!r)[−∇2 + V (!r)]wαj+1β

(!r), (13)

where by j + 1β we indicate the neighboring site of j in
the direction β, and U0 = Ũ0l

3/Er , Vβ = Ṽβ/Er are the
dimensionless interparticle strength and lattice amplitudes,
respectively. From here, after substitution of the Wannier
functions (7) into the above Eq. (13), it is straightforward
to see that contributions for the tunneling coefficient in
the direction perpendicular to the node depend uniquely on
Wannier functions of the first band (i.e., ν = 1), while in the
direction of the node, it solely depends on the second-band
Wannier functions (ν = 2). As a consequence, an x-flavor
atom has a larger probability of tunneling in the x direction than
in the y direction, while the opposite also holds for a y-flavor
atom. We continue discussions regarding the effects of this
anisotropic tunneling in Sec. III. Also, before proceeding with
the mean-field derivations, we make a brief comment on the
symmetries of the Hamiltonian (8). As pointed out in Ref. [5],
this Hamiltonian has an associated Z2 symmetry, related to
the parity of atomic flavors: since atom scattering processes
occur in pairs, the number of x-flavor atoms Nx and y-flavor
atoms Ny are preserved modulo 2. Isotropic lattices support,
in addition, a symmetry corresponding to swapping of atomic
flavors x ↔ y. We will also discuss how this property implies
a double degeneracy of the ground state for the infinite system.

B. Mean-field Hamiltonian

Except when otherwise stated, all of our results follow
from analysis of the 2D lattice. We assume the condensate
confined in the transverse z direction, and thus at each lattice
site the system could either be purely two dimensional or form
condensed tubes with typically a few hundred atoms [27]. In
either configuration, a mean-field treatment is expected to give
a reliable picture of the relevant physics [9].

At a mean-field level, the operators âαj are replaced by
the complex numbers ψαj. This approximation is equivalent
to assigning a coherent state at each site, |!〉 =

⊗
j |ψ〉j =⊗

j |ψxj,ψyj〉j, such that âαj|!〉 = ψαj|!〉. In terms of the
Fock basis, the single-site many-body wave function reads

|ψ〉j = exp
(

− |ψxj|2 + |ψyj|2

2

) ∑

nx,ny

ψ
nx

xj ψ
ny

yj√
nx!ny!

|n〉j, (14)

where |n〉j = |nx,ny〉j represents the state of nx x-flavor atoms,
and ny represents the y-flavor atoms at site j. Moreover, in this
language, the onsite order parameter of site j and flavor α reads
ψαj = 〈!|âαj|!〉.
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With the coherent state ansatz, we can obtain the equations
of motion for the order parameter ψαj from the Euler-Lagrange
equations,

∂L

∂ψ∗
αj

− d

dt

(
∂L

∂ψ̇∗
αj

)

= 0, (15)

where the Lagrangian is given by

L =
∑

α

∑

j

i
1
2

[
ψ∗

αj
d

dt
ψαj − ψαj

d

dt
ψ∗

αi

]
− HMF , (16)

with the mean-field Hamiltonian

HMF = −
∑

α,β

∑

〈ij〉α

tαβψ∗
αiψαj +

∑

α

∑

j

Uαα

2
nαjnαj

+
∑

α

∑

j

ω2

2

(
x2

j + y2
j
)
nαj

+
∑

αβ,α %=β

∑

j

Uαβnαjnβj +
∑

αβ,α %=β

∑

j

Uαβ

2

× (ψ∗
αjψ

∗
αjψβjψβj + ψ∗

βjψ
∗
βjψαjψα,j), (17)

and where the Hamiltonian (8) has been normally ordered
prior to the calculation of the coherent-state expectation value.
Here the density of the flavor α is given by nαj = |ψαj|2 and
normalization was imposed in the whole lattice as

N = Nx + Ny =
∑

j

|ψxj|2 +
∑

j

|ψyj|2, (18)

with N accounting for the total number of atoms.
The Euler-Lagrange equations then correspond to a set of

coupled Gross-Pitaevskii equations, one for each atomic α
flavor at each site j:

i
∂ψxj

∂t
= −

∑

β∈{x,y}
txβ

(
ψxj+1β

− 2ψxi + ψxj−1β

)

+ω2

2

(
x2

j + y2
j
)
ψxj

+(Uxx |ψxj|2 + 2Uxy |ψyj|2)ψxj

+(Uxy + Uyx)ψ2
yjψ

∗
xj,

i
∂ψyj

∂t
= −

∑

β∈{x,y}
tyβ(ψyj+1β

− 2ψyi + ψyj−1β
)

+ω2

2

(
x2

j + y2
j
)
ψyj

+ (Uyy |ψyj|2 + 2Uyx |ψxj|2)ψyj

+(Uyx + Uxy)ψ2
xjψ

∗
yj.

(19)

Like all other parameters and variables, time t is a dimension-
less quantity. Note also that we take all of the parameters
entering the above equations from numerically obtained
Wannier overlap integrals according to Eqs. (12) and (13),
and consequently no harmonic approximation is imposed. This

avoids some qualitatively wrong conclusions which can occur
with the latter assumption [11].

III. IDEAL GAS

A. Ground-state properties

Let us first investigate some features of the system in the
noninteracting case, where the free mean-field Hamiltonian is
given by

H
(0)
MF = −

∑

α,β

∑

〈ij〉α

tαβψ∗
αiψαj+

∑

α

∑

j

ω2

2

(
x2

j + y2
j
)
nαj.

(20)

In the absence of interflavor interactions, interflavor onsite
coherence is not established. However, within each flavor, it is
the tunneling which determines how the phases of neighboring
sites are related to each other. We thus characterize these
properties for the ground state by minimizing (20). To this end,
the expression for the onsite order parameters is taken as ψαj =
|ψαj|eiφαj , and by noticing that txx, tyy < 0 and txy, tyx > 0,
we obtain a striped order in the phase of each flavor. More
explicitly, the phase of the x-flavor order parameter can be
expressed as φxj = φx(jx,jy) = π mod(jx,2). This means that
neighboring sites will always keep the same phase in the
direction perpendicular to the node, while in the parallel
direction the phase difference will be π .

The discrete model (20) can in principle be solved an-
alytically by noticing that the Hamiltonian matrix has the
same structure as the one of the Mathieu equation expanded
in momentum eigenstates [28]. The solution is not very
instructive, as it is determined from the Fourier expansion
of the Mathieu functions, i.e., by the transformation matrix
between the quasimomentum and real momentum. A simple
physical picture of the influence of the trap in the discrete
model is instead better analyzed in the continuum limit
where the analytical solutions can be given in closed forms.
Here it is convenient to work with the order parameters
without phase modulation. We thus impose the correct phase
imprint responsible for rendering the striped order into the
wave-function ansatz. Under these circumstances, the phase
factors can be absorbed into the redefinition of the tunneling
coefficient, tαα → −tαα . In addition, the continuum limit
consists in ψαj → ψα(x,y), and the kinetic energy transforms
as

ψαj+1β
− 2ψαi + ψαj−1β

−→ ∂2

∂β2
ψα(α,β). (21)

With this approximation, we obtain the following continuum
equations:

i
∂

∂t
ψx(x,y) =

[
−|txx |

∂2

∂x2
− |txy |

∂2

∂y2

+ω2

2
(x2 + y2)

]
ψx(x,y),

(22)

i
∂

∂t
ψy(x,y) =

[
−|tyy |

∂2

∂y2
− |tyx |

∂2

∂x2

+ ω2

2
(x2 + y2)

]
ψy(x,y),
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where x and y are dimensionless. By introducing the effective
mass mαβ = |tαβ |−1/2, and parallel and transverse frequencies

ω‖ = ω
√

2|tαβ |, α #= β,

ω⊥ = ω
√

2|tαβ |, α = β,

(23)

respectively, Eq. (22) can be written as

i
∂

∂t
ψx(x,y) =

[
p2

x

2mxx

+
p2

y

2mxy

+
mxxω

2
‖

2
x2 + mxyω

2
⊥

2
y2

]

ψα(x,y), (24)

with a similar equation for the y flavor. We find, therefore,
that the continuum approximation reduces the system to two
2D anisotropic harmonic oscillators. It is important to stress,
though, that in order to derive Eq. (24), the striped order
must be correctly implemented. If the phase modulation is not
considered before imposition of the continuum approximation,
then the resulting Hamiltonian is not bounded from below,
and since the lattice naturally introduces a momentum cutoff
& = π/λ at the edges of the Brillouin zone, it is a property
not present in the discrete model. The initial phase imprint is
thus a tool to circumvent this problem, where the overall effect
of the procedure translates into inversion of the p band and
shifting of its minimum to the center of the Brillouin zone.

In the continuum model, the anisotropy arising from the
different tunneling elements txx and txy is directly reflected in
the direction dependence of mαβ and ωαβ . Therefore, it follows
from this anisotropy that the continuum Gaussian ground state
will have different widths in the two directions x and y. We
use this fact to define the anisotropy parameter

Sx =

√
()xx)2

()xy)2
, (25)

with equivalent expression to the y flavor, and where ()αβ)2 =
〈β2〉α − 〈β〉2

α , and 〈·〉α represents the expectation value taken
with respect to ψα(x,y). For symmetry reasons, SxSy = 1 must
hold, and thus we call the x-flavor anisotropy parameter simply
by S. This definition is general and applies to both the discrete
as well as the continuum limit. It can be used to derive an
explicit expression for the latter case,

Scon =
( |txx |

|txy |

)1/4

=
(

ω‖

ω⊥

)1/2

, (26)

which, as expected, predicts S = 1 for isotropic systems (i.e.,
where both directions have the same tunneling strengths).
However, generally S #= 1, and therefore it reveals the ex-
istence of narrowing in the flavor density along one of the
directions. This anisotropy is a consequence of the direction
dependence of the tunneling tαβ and is a result beyond the
LDA. Note furthermore that when the atom-atom interaction
has been neglected, Nx and Ny are preserved quantities and the
actual ground state of the system will be determined from the
preparation process. For a nonzero atom-atom interaction, Nx

and Ny are no longer independently preserved due to the term
(11), and the interaction energy is minimized with Nx = Ny ,
as will be seen in the next section. Now we continue with

further discussions regarding the validity and applicability of
the continuum approximation.

B. Ideal gas at finite temperatures

For the ideal gas system, represented by the Hamiltonian
(20), it is rather straightforward to calculate finite-temperature
effects, either from direct numerical diagonalization or using
the analytical solutions obtained from Fourier expansions
of Mathieu functions. Due to discretization of (20), the
eigenstates in the harmonic trap are not the same as the usual
eigenstates of the harmonic oscillator. Since implications of
this for the thermodynamics of an ideal gas are not clear, we
numerically solve the discrete 2D and also 3D Schrödinger
equations for the eigenstates, and use these as a basis to study
Bose-Einstein condensation on the p band in the presence of
a trap.

In the continuum limit described by Eq. (22), the critical
temperature for the Bose-Einstein condensation in the har-
monic trap is well known [29] and given by

T
(2D)
c0 = ω

(2D)
eff

√
6N/π2 (27)

in 2D, and in 3D by

T
(3D)
c0 = ω

(3D)
eff [N/ζ (3)]1/3 , (28)

with ζ (3) ≈ 1.20206, and where the trapping frequencies are
defined as averages of the effective frequencies (23) as

ω
(2D)
eff = 4ω

√
|txx ||txy | (29)

and

ω
(3D)
eff = 4ω(|txx ||txy |2)1/3. (30)

For bosonic gases, the number NT of thermal (noncondensed)
atoms follows from

NT =
∑

n#=0

1
exp[β (En − µ)] − 1

, (31)

where β = Er/kBT is the inverse (dimensionless) temperature
and µ is the chemical potential. Together with the eigenener-
gies En obtained by solving the Schrödinger equation, this can
be used to compute the critical temperature for condensation
in our lattice model. Notice, however, that while below the
critical temperature the chemical potential µ is equal to
the ground-state energy, at higher temperatures it must be
determined by fixing the total atom number to N .

We compare the predictions for the critical temperature
of the continuum and lattice models in Fig. 1. As is seen,
the general result in both the 2D and 3D systems consists of
a somewhat lower critical temperature for very small atom
numbers, but substantially larger critical temperature for high
atom numbers. Such a difference is due to the different density
of states between the lattice and the continuum models.

In a trap, the transition to the condensed state is typically
associated with pronounced changes in the atomic density
distribution. A broad thermal distribution above the critical
temperature acquires a bimodal structure as a density peak
appears in the center corresponding to the macroscopic
occupation of the condensate ground state. Also, as already
discussed in the previous section, in the case of trapped p-band
atoms, the anisotropy is a new feature appearing in the density
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FIG. 1. (Color online) The critical temperature for the Bose-
Einstein condensation as a function of atom number N in a (a) 2D
system and (b) 3D system. The dashed line shows the result based
on approximating the discrete model with a continuum one, and the
solid line displays the numerically calculated results of the discrete
model. We used the dimensionless trap strength ω2/2 = 0.001 and
|txx/txy | = 20.1, which is our estimate for the ratio of tunneling
strengths at Vx = Vy = 17.

distribution. Above the critical temperature Tc, the density
distribution has the same width in the x and y directions,
but below Tc the condensate density distribution shares the
properties of the ground state, which is anisotropic due to
different tunneling strengths in different directions. We give an
example of this behavior in Fig. 2 by displaying the anisotropy
parameter (25) as a function of temperature for 1000 atoms.
Furthermore, in Fig. 3, we show the density [ψn(j) are the
eigenstate wave functions]

ntot(j) = N0|ψ0(j)|2 +
∑

n!=0

|ψn(j)|2

exp[β (En − µ)] − 1
(32)

close to Tc and at T = 0, demonstrating the appearance of
strong anisotropy (for single flavor) at low temperatures.
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FIG. 2. (Color online) The anisotropy parameter S of the 2D
density distribution as a function of the txx-scaled temperature for
1000 atoms, dimensionless trap strength ω2/2 = 0.001, and potential
depth Vx = Vy = 17.

IV. INTERACTING GAS

A. Characterizing the ground state

Until now, we have not considered how interactions affect
the system’s ground-state properties. Effects stemming from
the tunneling part and the corresponding phase ordering
imposed in the minimization of the mean-field Hamiltonian
were already discussed in Sec. III. We thus complete the
characterization of the ground state of the system by repeating
this analysis to the interacting part of HMF . Since neighboring
sites are not coupled by the interaction term, it is enough to
consider the energy contribution within only one single site. In
an analogous procedure to the one used in the aforementioned
analysis, we substitute the expression ψαj = |ψαj|eiφαj for
the onsite order parameter of the flavor α, and the resulting
density-density and interflavor conversion parts of the mean-
field Hamiltonian follow, respectively, as

H (j)
nn = Uxx

2
|ψxj|4 + Uyy

2
|ψyj|4 + (Uxy + Uyx)|ψxj|2|ψyj|2

(33)

and

H
(j)
FD = Uxy + Uyx

2
|ψxj|2|ψyj|2 cos[2(φxj − φyj)].

(34)

Here, the term accounting for the density-density interactions
is phase independent and gives no information about the onsite
phase ordering. However, the interflavor conversion term will
explicitly depend on the phase difference between the x-
and y-flavor order parameters, and accordingly, establishes an
onsite interflavor phase locking. In fact, when Uxy,Uyx > 0,
the onsite energy is minimized with φxj − φyj = ±π/2.

Now combining the above argument with the results of
Sec. III, we obtain both the onsite and intersite full phase
coherence of the condensate within the lattice. To this end, we
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FIG. 3. (Color online) The populations per site (for a single
atomic flavor) of the 2D Bose gas (a) close (kBT /txx = 1) to
the condensation critical temperature, and (b) at T = 0. In both
examples, the number of atoms is 1000, dimensionless trapping
strength ω2/2 = 0.001, and potential depth Vx = Vy = 17.

adopt the position representation of the onsite order parameter,

ψj(!r) = ψxjwxj(!r) + ψyjwyj(!r), (35)

and apply the requirements of phase locking, which yield

ψj(!r) = |ψxj|wxj(!r) ± i|ψyj|wyj(!r), (36)

where the ± sign alternates between neighboring sites. Note
that in the absence of a trap, flipping the sign on all of
the sites gives a new configuration with exactly the same

energy. This characteristic degeneracy, related to the swapping
of the flavors x ↔ y, was already pointed out earlier. By
further considering the orthonormality property of Wannier
functions,

∫
d!rw∗

αj(!r)wβi(!r) = δαβδji, we interpret the onsite
order parameter as a spinor,

ψj =
[

|ψxj|
±i|ψyj|

]

, (37)

where the spatial dependence has been absorbed into the basis
states wxj(!r) and wyj(!r). In particular, the length of the spinor
defined in this way gives the number of atoms at site j, i.e.,
Nj =

√
|ψxj|2 + |ψyj|2. For having the same properties as a

two-level system, the spinor onsite order parameter can be fully
characterized by the Bloch vector Jj = (Jxj,Jyj,Jzj), where the
components are

Jxj = ψ∗
xjψyj + ψ∗

yjψxj,

Jyj = i(ψ∗
xjψyj − ψ∗

yjψxj), (38)

Jzj = |ψxj|2 − |ψyj|2.

In this picture, the length of the Bloch vector |Jj| = Nj
corresponds to the number of atoms at site j, Jzj is the
population imbalance between the two flavors, and due to
the specific phase locking in (37), we have Jxj = 0. We also
point out that the Bloch vector constructed here corresponds
to a mean-field version of the Schwinger angular momentum
representation [30].

While the Bloch vector contains all of the information
about the spinor order parameter (37), it does not contain
the full information on the spatial dependence of the onsite
order parameter (36). This can be most easily investigated in
the harmonic approximation, where the Wannier functions are
replaced by harmonic eigenstates. Using this description, we
have

ψ
(ha)
0 (!r) = [|ψx0|x ± i|ψy0|y]e− x2+y2

σ , (39)

with σ being the effective width determined from the lattice
amplitude. It is clear that for |ψxj| = |ψyj|, the above onsite or-
der parameter represents a vortex-antivortex state, with quan-
tization Lzjψ

(ha)
j (!r) = ±ψ

(ha)
j (!r) where Lzj = −i∂φj . This is

only true, however, in the harmonic approximation and when
Jzj = 0. Beyond the harmonic approximation, this is not
strictly true even when Jzj = 0. Nevertheless, due to the
properties of the Wannier functions, given by Eq. (7), a π/2
phase difference between flavors implies that the condensate
density vanishes at the center of site j and that the condensate
has a vortexlike singularity in it.

B. Properties in the symmetric lattice

In the previous section, we introduced the quantities
characterizing the physical state within each site. For the
global properties, we use the anisotropy parameter as defined
in Eq. (25). We numerically solve Eq. (19) by employing the
split-operator method [31], which is based on factorization
of the time-evolution operator into spatial and momentum
parts. This implies that the method is exact only in the limit
of a vanishingly small time step. Therefore, propagation is
divided into small time steps and we verify the numerical
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accuracy by varying their size. In order to find the ground
state, we propagate an initial trial state in imaginary time
until convergence has been reached. It is generally seen that
convergence is faster if we assume an initial guess with the
phase ordering properties discussed in the previous section.
It is also important to notice that a poor choice for the initial
state may result in convergence to a local, but not global,
energy minimum. To avoid this, we compare many different
simulations where the initial trial state has been varied, and
the one with the lowest final energy is assumed to be the
ground state. The size of the grid is taken such that the atomic
population is approximately zero at the edge of the grid, and
in all simulations we consider a 2D system. The parameters of
the Hamiltonian are calculated using the numerically obtained
Wannier functions, and consequently we do not impose the
harmonic approximation.

We have seen that the tunneling and the onsite interaction
establish a phase locking according to Eq. (36). In a system
without the external trap and U0 != 0, it follows that Jyj/Nj will
either be +1 or −1, and the system possesses a checkerboard
structure, i.e., an antiferromagnet state with spins alternating
between pointing in the positive or negative y direction. The
condensate will thus show the staggered vortex-antivortex
structure. Within the validity of the tight-binding and single-
band approximations, this result is exact. However, the strict
vortex quantization Lzjψ

(ha)
j (#r) = ±ψ

(ha)
j (#r) is only precise

in the harmonic approximation. In the presence of the trap,
the inhomogeneities in the density together with the tunneling
anisotropy typically give rise to onsite interflavor population
imbalance, which tends to break the antiferromagnetic order
and lower the onsite angular momentum per particle from
1, which is expected from a quantized vortex with angular
momentum along z.

The ground-state lattice populations |ψxj|2 and |ψyj|2
for a system of Vx = Vy = 17, ω = 0.005, and U0N = 1
are displayed in Figs. 4(a) and 4(b). It is clear how the
anisotropy manifests itself by rendering a condensate with a
spatially squeezed profile. In Fig. 4(c), we show the population
imbalance Jzj. As we argued above, whenever Jzj != 0, the
antiferromagnetic order is broken, and from the figure it is
evident that this is especially true in the edge of the condensate.
To complement the results, we also present the corresponding
Bloch vectors in Fig. 5(a). Since Jxj = 0, it is enough to
show the Bloch vector in the spin yz plane, Jj = (0,Jyj,Jzj).
By calling the horizontal axis the y-spin direction and the
vertical axis the z-spin direction, we see that in the center of
the condensate, the Jyj component dominates, while at the
edge the Bloch vector no longer points along the horizontal
direction, demonstrating the breakdown of the antiferromag-
netic order in these regions. Thus, at the center of the con-
densate where Jzj ≈ 0, the antiferromagnetic ordering is still
present.

In Fig. 6, we show the ground-state lattice populations for a
more strongly interacting system with U0N = 15. In this case,
interactions and trap energies are larger than the kinetic energy
and we approach the TF regime. We can see how the effects
of the anisotropic density are now smoothed and the region of
the center of the trap is enlarged. The latter also corresponds
to the region where nontrappedlike physics actually occurs, as
confirmed in Fig. 5(b) by the presence of almost horizontal
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FIG. 4. (Color online) (a) and (b) show the x- and y-flavor
ground-state population, respectively. (c) gives instead the cor-
responding population imbalance Jzj. The dimensionless system
parameters are Vx = Vy = 17, ω = 0.005, and U0N = 1. Red color
(dominant in the horizontal line) indicates an excess of x-flavor atoms,
while the blue regions (dominant in the vertical axis) indicate an
excess of y-flavor atoms.

Bloch vectors. This also implies that now the ferromagnetic
order extends over more sites in the lattice.
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FIG. 5. (Color online) The Bloch vector at the different lattice
sites (the x component is strictly zero). The y-spin direction has been
chosen along the horizontal axis and the z-spin direction has been
chosen along the vertical axis. The length of the vector represents
the density, while the offset from the horizontal axis indicates the
breakdown of the antiferromagnetic order. The lattice sites are marked
by black dots. (a) gives the results where the interaction plays a minor
role, U0N = 1, while in (b), U0N = 15 and interaction cannot be
ignored. The rest of the parameters are the same as for Fig. 4.

We complete the study of the interacting system’s ground
state in the symmetric lattice by investigating the behavior
of the anisotropy parameter (25). Here, the relevant question
to be understood is related to characterization of S when the
system undergoes a transition to the TF regime. When the
kinetic energy becomes suppressed, the anisotropy should
vanish and hence S → 1. In the lattice, there are two ways
of suppressing the kinetic energy, either by increasing the
interparticle interaction strength U0 directly by making use
of Feshbach resonances, or by considering larger potential
amplitudes. The predicted behavior of S is shown in Fig. 7.
Note that increasing U0N leads to a monotonic decrease of
S until it asymptotically reaches 1. In the other case, where
variation of V = Vx = Vy is considered, S also approaches
1 asymptotically, but now the behavior is not monotonic.
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FIG. 6. (Color online) Plots showing the (a) x-flavor and (b) y-
flavor ground-state populations, respectively, for the dimensionless
system parameters Vx = Vy = 17, ω = 0.005, and U0N = 15. Due
to the larger interaction, the squeezing effect is not as pronounced in
this case compared to Fig. 4.

This anomalous and surprising behavior does not appear in
the continuum approximation. It should be noted that the
continuum limit is evaluated in the ideal limit of U0 = 0, and
we especially have that Scon is not approaching 1 as V → ∞.
In this limit, on the other hand, any small U0 > 0 will imply
S = 1 since the kinetic term is negligible compared to the
interactions. For small and moderate V , the continuum result
(26) is found to increase monotonously for increasing values of
V . This behavior is not found for the discrete model, even for
U0 = 0. Thus, for large amplitudes, the discrete and continuum
models predict qualitatively different results for the squeezed
profile of condensate in terms of the anisotropy parameter.
We should also point out that for small amplitudes, typically
V < 5Er [26], the tight-binding approximations break down
and the results should not be taken too literally in this regime.
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FIG. 7. (Color online) The condensate anisotropy parameter S

as defined in Eq. (25) as a function of the interaction strength U0N

and the lattice amplitude V = Vx = Vy . Whenever the amplitude
or the interaction become large, the squeezing approaches one and
the condensate enter into the TF regime. The dimensionless trap
frequency ω = 0.005.

C. Properties in the anisotropic lattice

Asymmetry in the lattice breaks the degeneracy of x and
y flavors. In order to investigate the effect of anisotropies, we
introduce the asymmetry parameter

R = Vx

Vy

, (40)

which controls the ratio between the lattice depths such
that R = 1 represents the symmetric lattice configuration
we discussed earlier. We have numerically verified that the
dominant effect of the asymmetry is to shift the energy levels
of the x and y flavors. By considering only a single site first,
we note that in the harmonic approximation this shift equals

" = Ey − Ex = 2
√

Vx(
√

R − 1), (41)

where Ex and Ey are the energies of the onsite flavors,
i.e., Eα =

∫
d#rw∗

αj( #j )[−∇ + Vlatt(#r)]wαj( #j ), and where the
j dependence vanishes. In this single-site picture, this splitting
will have only a small effect if it is much smaller than the
characteristic interaction energy scale, Eint ∼ U0N |ψx |2.

The picture becomes more complicated when we consider
more sites. It can be, for example, that the region δ around
R = 1 in which interaction mixes the two flavors changes as
the trapping strength is varied, and, in particular, if δ is small,
then the properties of the ground state may change dramatically
with small variations in the various lattice parameters. On
the other hand, if these parameters can be controlled, then
the physics around the degeneracy point might lead to novel
physics similar to the adiabatic driving considered recently in
Ref. [32]. However, it is worth pointing out that the present
model possesses an additional property, namely, that the x- and
y-flavor densities are spatially different and adiabatic driving
between the two might therefore lead to macroscopic particle
flow within the trap. While interesting, this time-dependent
aspect will be addressed elsewhere.

0.9998 0.9999 1 1.0001 1.0002
−1

−0.5

0

0.5

1

R

J z

FIG. 8. (Color online) The parameter Jz as a function of the lattice
asymmetry parameter R, for three different trapping frequencies,
ω = 0.003 (red solid line), ω = 0.005 (black dashed line), and
ω = 0.007 (blue dotted line). The vertical dashed thin lines indicate
the typical sizes of δ, which determines the transition region where the
two atomic flavors coexist. It is clear how δ is decreased when the trap
is “opened up” (decreasing ω). The remaining dimensionless param-
eters are U0N = 1 and Vx = 17 (meaning that Vy = 17/R).

The asymmetries for our square lattice can in principle be
implemented in two ways: either by considering a lattice with
different wave vectors kx and ky or different amplitudes Vx

and Vy . Here we characterize the behavior of the system in the
latter process.

The sensitivity to R can be analyzed, for example, in the
value of the mean population inversion,

Jz = 1
N

∑

j

Jzj. (42)

If Jz = −1, then the system consists of only y-flavor atoms,
and Jz = +1 represents only atoms in the x flavor. Thus, Jz

gives a measure of how much interaction mixes the two flavors.
In the vicinity of R = 1, the properties of Jz are illustrated
in Fig. (8). It clearly shows uniquely occupied flavors in
both regions where R < 1 and R > 1. Also, as expected,
the exact point R = 1 is characterized by equal sharing of
population among the two flavors, and therefore one recovers
the properties of the degenerate system. As pointed out
above, the nonzero interaction (U0 '= 0) is crucial in order to
stabilize the equal population at R = 1.

The confinement imposed by the harmonic trap implies
that we are dealing with a finite-size system. The frequency
ω sets, in some sense, the system size and, as we discussed
above, it is interesting to understand how δ depends on the
system size. Figure 8 depicts the variations of Jz around
R = 1, and it is seen how these become more dramatic
when ω is decreased. More precisely, there seems to be a
one-to-one correspondence between the range δ in which
|Jz| < 1 and ω, and as ω → 0, the plot indicates also that
δ → 0. This suggests (for very weakly interacting systems)
similar behavior to the one generally exhibited by systems
undergoing a first-order phase transition [33]. In addition, we
also studied the ground-state energy E0(R) and found that
dE0(R)/dR shows a pronounced change around R = 1 as ω
is decreased. We have also numerically verified that the range
δ grows for increasing interaction strength U0N , in agreement
with our earlier argument that interaction mixes the flavors.
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The above findings suggest that for weak interactions, a
careful adjustment of the lattice is required in order to study the
antiferromagnetic properties. As interactions become stronger,
the antiferromagnetic properties become more robust. In
experimental realizations, even a small temperature might
actually help to establish a phase coherence between x- and
y-flavor atoms since the energy gap between the ground and
first excited energies greatly decreases around the R = 1 point,
and in its vicinity one may expect population also of the first
excited state. We furthermore notice that for nonzero ω, the
transition from one to the other extreme of Jz is smooth, and
therefore by controlling the lattice amplitudes the system could
be considered for studies of the many-body Landau-Zener
transition [34] or the Kibble-Zurek mechanism [35].

V. CONCLUSION

We have investigated how a confining potential affects the
properties of bosonic atoms residing on the p bands of optical
lattices. Our focus was on the 2D square lattice with equal
lattice amplitudes in the two directions, and we restricted our
analysis to a mean-field approach. It is known that for a p-band
square lattice model, even at a mean-field level, the ground
state forms nontrivial states in terms of an antiferromagnetic
order [5,9]. As a result of the anisotropic tunneling on the p
band together with the confinement introduced by the trap,
we showed that the antiferromagnetic structure is destroyed
in the edges of the condensate. The effects of the tunneling
anisotropy are also manifest in the density profile of the atomic
cloud, yielding a spatially elongated condensate in one of the
two spatial directions, despite the isotropic trap. We showed
how this narrowing is suppressed when the kinetic energy is
lowered, either due to increasing of the strength of atom-atom
interactions and/or due to increasing the lattice amplitudes.
The same suppression was found also for the ideal gas when the
temperature is increased and thereby the properties of the gas
are greatly determined by thermal atoms. By considering un-
equal lattice amplitudes in the x and y directions, the degener-
acy on the p bands is broken, and we demonstrated that the sen-
sitivity of the ground-state properties depends strongly on the
system “size.” The results presented are for 2D lattices, but it is
understood that the general findings directly generalize to 3D
as well. In the 3D cubic case, the phase ordering can be more
complicated [9], but as in the 2D case, this ordering would also
be destroyed in the edges of the condensate in a trapped system.

One point we have not addressed concerns experimental
realizations. The main source for dissipation and decoherence
in the square lattices is the scattering of two p-band atoms
into one s-band and one d-band atom [9,23]. This process is
resonant in the harmonic approximation, while it is generally
off-resonant for actual lattices, which causes the typical life-

time for p-band atoms to be much larger than the characteristic
tunneling times. In Ref. [23], coherence of p-band atoms
in a cubic lattice was indeed demonstrated. Alternatives for
suppressing this decay further include loading fermionic atoms
into the s band of the lattice [36] or considering experimental
setups with nonseparable lattices [19,20,37]. In the first case,
the presence of fermions in the s band prevents the bosonic
p-band atoms to occupy the lowest band due to atom-atom
interactions. Now, in configurations involving nonseparable
lattices (e.g., superlattices), few bands can be separated
from the rest and thus the role of the (p + p → s + d)
scattering becomes overshadowed. In Refs. [19,20], however,
the experimental setup gives rise to hybridization of different
flavor atoms and the analysis becomes more complex than the
one for the simple square lattice considered here.

Another important experimentally relevant question con-
cerns detection of the presented predictions. If the detection
makes no difference between x- and y-flavor atoms, then
the Bloch vector cannot be fully measured. However, in a
recent work, it was suggested how such measurements can
indeed be performed [38]. The idea utilizes Raman pulses
that rotate the spinor (37) similarly to qubit measurements
in atomic physics [39]. Moreover, in a recent experiment on
triangular lattices [27], it was demonstrated how the phase of
the condensate affects the densities in time-of-flight measure-
ments. We have numerically studied the full condensate order
parameter "(x,y), and found that coherence within single sites
is seen in "(x,y), while long-range coherence is manifested
in the momentum distribution of "(x,y). This means that
if the condensate density |"(x,y)|2 is detected at different
time instants in time-of-flight measurements, then one could
in principle extract all information about the phase coherence.

We believe that entering the more strongly correlated
regime where quantum fluctuations become more important
would be of interest. The mean-field method adopted here
is not capable of capturing these effects, and we therefore
leave this investigation for the future. We especially intend
to study the “wedding cake” structure [25] formed by alter-
nating insulating Motts and superfluids in the presence of a
harmonic trap, as well as nonequilibrium properties of the
system.
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[32] M. Ölschläger, G. Wirth, T. Kock, and A. Hemmerich, Phys.

Rev. Lett. 108, 075302 (2012).
[33] S. Sachdev, Quantum Phase Transitions (Cambridge University

Press, Cambridge, 1999).
[34] A. Altland, V. Gurarie, T. Kriecherbauer, and A. Polkovnikov,

Phys. Rev. A 79, 042703 (2009); A. P. Itin and P. Törmä, ibid. 79,
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We demonstrate how the spin-1/2 XYZ quantum Heisenberg model can be realized with bosonic
atoms loaded in the p-band of an optical lattice in the Mott regime. The combination of Bose
statistics and the symmetry of the p-orbital wave functions leads to a non-integrable Heisenberg
model with anti-ferromagnetic couplings. Moreover, the sign and relative strength of the couplings
characterizing the model are shown to be experimentally tunable. We display the rich phase di-
agram in the one dimensional case, and discuss finite size effects relevant for trapped systems.
Finally, experimental issues related to preparation, manipulation, detection, and imperfections are
considered.
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Introduction.– Powerful tools developed recently to un-
ravel the physics of many-body quantum systems offer an
exciting new platform for understanding quantum mag-
netism. It is now possible to engineer different systems in
the lab that mimic the physics of theoretically challenging
spin models [1], thereby performing “quantum simula-
tions” [2]. Along these lines, systems of trapped ions and
of polar molecules are promising candidates. Trapped
ions, for example, have already been employed to sim-
ulate both small [3] and large [4] numbers of spins. In
these setups, however, sustaining control over the param-
eters becomes very difficult as the system size increases.
Furthermore, due to trapping potentials realizations are
limited to chains with up to 25 spins. It is also very dif-
ficult to construct paradigmatic spin models with short
range interactions using systems of trapped ions. Simi-
lar limitations appear when using polar molecules, where
the effective spin interactions [5, 6] are obtained from
the intrinsic dipole-dipole interactions. Due to the char-
acter of the dipolar interaction, these systems give rise to
emergent models that are inherently long range and the
resulting couplings usually feature spatial anisotropies.

Short range spin models can instead be realized with
atoms in optical lattices [1]. A bosonic system in a tilted
lattice has recently been used to simulate the phase tran-
sition in a 1D Ising model [7]. Fermionic atoms were em-
ployed to study dynamical properties of quantum mag-
netism for spin systems [8, 9]. This idea, first introduced
in Ref. [10], has also been applied to other configura-
tions, and simulation of different types of spin models
have been proposed [11]. However, due to the charac-
ter of the atomic s-wave scattering among the different
Zeeman levels, such mappings usually yield effective spin
models supporting continuous symmetries like the XXZ
model. But as the main goal of a quantum simulator is
to realize systems that cannot be tackled via analytical
and/or numerical approaches, it is important to explore
alternative scenarios that yield low symmetry spin mod-

els with anisotropic couplings and external fields.

In this paper we propose such a scenario by demon-
strating that bosonic atoms in the first excited band (p-
band) of a two-dimensional (2D) optical lattice can real-
ize the spin-1/2 XYZ quantum Heisenberg model in an
external field. Systems of cold atoms in excited bands
feature an additional orbital degree of freedom [12] that
gives rise to novel physical properties [13], which include
supersolids [14] and other types of novel phases [15], un-
conventional condensation [16], and frustration [17]. Also
a condensate with a complex order parameter was re-
cently observed experimentally [18, 19]. The dynam-
ics of bosons in the p-band include anisotropic tunnel-
ing and orbital changing interactions, where two atoms
in one orbital state scatter into two atoms in a differ-
ent orbital state. This is the key mechanism leading to
the anisotropy of the effective spin model obtained here:
These processes reduce the continuous U(1) symmetry
characteristic of the XXZ model, which would effectively
describe fermions in the p band [20], into a set of dis-
crete Z2 symmetries characteristic of the XYZ model.
In addition, due to the anomalous p-band dispersions
the couplings of the resulting spin model can favor for
anti-ferromagnetic order even in the bosonic case.

We also demonstrate how further control of both the
strength and sign of the couplings is obtained by external
driving. This means that one can realize a whole class
of anisotropic XYZ models with ferromagnetic and/or
anti-ferromagnetic correlations. To illustrate the rich
physics that can be explored with this system we discuss
the phase diagram of the 1D XYZ chain in an external
field. This case exhibits ferromagnetic as well as anti-
ferromagnetic phases, a magnetized/polarized phase, a
spin-flop and a floating phase [21]. Finite size effects
relevant for the trapped case are examined via exact di-
agonalization. This reveals the appearance of a devil’s
staircase manifested in the form of spin density waves.
Finally, we discuss how to experimentally probe and ma-



2

nipulate the spin degrees of freedom.
p-orbital Bose system.– We consider bosonic atoms

of mass m in a 2D optical lattice of the form V (r) =
Vx sin

2(kxx)+Vy sin
2(kyy). Assuming that all atoms are

in the first excited p-orbital, the tight-binding Hamilto-
nian is

Ĥ = −
∑

ij,α

tαij â
†
i,αâj,α +

∑

i,α

[

Uαα

2
n̂i,α(n̂i,α − 1) + Ep

αn̂i,α

]

+
∑

i,α!=α′

(

Uαα′ n̂i,αn̂i,α′ +
Uαα′

2
â†i,αâ

†
i,αâi,α′ âi,α′

)

. (1)

Here â†i,α creates a bosonic particle in the orbital α =

px, py at site i, n̂i,α = â†i,αâi,α, and the sum is over near-
est neighbors i, j. The tunneling matrix elements are
given by tαij = −

∫

drwα
i (r)

∗
[

−h̄2∇2/2m+ V (r)
]

wα
j (r)

where wα
i (r) is the Wannier function of orbital α at site

i. Note that tαij is anisotropic. For instance, a boson
in the px-orbital has a much larger tunneling rate in
the x-direction than in the y-direction. The coupling
constants are given by Uαα′ = U0

∫

dr |wα
i (r)|

2|wα′

i (r)|2,
with U0 > 0 the onsite interaction strength determined
by the scattering length. The last term in (1) is the or-
bital changing term describing the flipping of a pair of
atoms from the state α′ to the state α. Note that this
term is absent in the case of fermionic atoms.
Effective spin Hamiltonian.– We are interested in the

physics of the Mott insulator phase with unit filling in the
strongly repulsive limit |tαij |

2 # Uαα′ . Projecting onto
the Mott space of singly occupied sites with the opera-
tor P̂ , the Schrödinger equation becomes ĤMottP̂ |ψ〉 =
EP̂ |ψ〉 with ĤMott = −P̂ Ĥ(ĤQ − E)−1ĤP̂ . Here Q̂ =

1 − P̂ and ĤQ = Q̂ĤQ̂ [22]. Since E ∼ t2/U , we can
take (ĤQ − E)−1 = Ĥ−1

Q .
The space of doubly occupied states of a given

site j is three-dimensional and spanned by |pxpx〉 =
2−1/2â†jxâ

†
jx|0〉, |pypy〉 = 2−1/2â†jy â

†
jy|0〉, and |pxpy〉 =

â†jxâ
†
jy|0〉. In this space, it is straightforward to find ĤQ

from (1), and subsequent inversion yields

Ĥ−1
Q =





Uyy/U2 −Uxy/U2 0
−Uxy/U2 Uxx/U2 0

0 0 1/2Uxy



 (2)

with U2 = UxxUyy − U2
xy. In particular, the off-diagonal

terms in Ĥ−1
Q derive from the orbital changing term. Us-

ing (2) we can now calculate all possible matrix elements
of ĤMott in the Mott space,

ĤMott = −
∑

ij,α

(

2|tαij |
2Uᾱᾱ

U2
n̂i,αn̂j,α +

|tαij |
2

2Uxy
n̂i,αn̂j,ᾱ

−
2txijt

y
jiUxy

U2
â†i,αâi,ᾱâ

†
j,αâj,ᾱ +

txijt
y
ji

2Uxy
â†i,αâi,ᾱâ

†
j,ᾱâj,α

)

(3)

where x̄ = y, and ȳ = x. By further employ-
ing the Schwinger angular momentum representation,
Ŝz
i = 1

2 (â
†
xiâxi − â†yiâyi), Ŝ

+
i = Ŝx

i + iŜy
i = â†xiâyi and

Ŝ−
i = Ŝx

i − iŜy
i = â†yiâxi, together with the constraint

â†xiâxi + â†yiâyi = 1, we can (ignoring irrelevant con-
stants) map (3) onto a spin-1/2 XYZ model in an ex-
ternal field [23]

ĤXYZ =
∑

〈ij〉

Jij
[

(1 + γ)Ŝx
i Ŝ

x
j + (1− γ)Ŝy

i Ŝ
y
j

]

∑

〈ij〉

∆ij Ŝ
z
i Ŝ

z
j + h

∑

i

Ŝz
i . (4)

Here, 〈i, j〉 means summing over each nearest neighbor
pair i, j only once. The couplings are given by Jij =
−2txijt

y
ji/Uxy, γ = −4U2

xy/U
2, and ∆ij = −4(|txij |

2Uyy +
|tyij |

2Uxx)/U2+(|txij |
2+ |tyij |

2)/Uxy. The magnetic field is
h = 4

∑

〈ij〉(|t
y
ij |

2Uxx− |txij |
2Uyy)/U2+Epx

−Epy
, where

Eα is the onsite energy of the orbital α.

Equation (4) is a main result of this paper. It demon-
strates how p-orbital bosons in a 2D optical lattice can
realize the XYZ quantum spin-1/2 Heisenberg model.
Several interesting facts should be noted. First, txijt

y
ji < 0

due to the symmetry of the p-orbitals [12] and there-
fore Jij > 0. Furthermore, since |γ| < 1 we have anti-
ferromagnetic instead of the usual ferromagnetic cou-
plings for bosons. Also, we obtain the XYZ model when
γ '= 0. The presence of γ can be traced to the orbital
changing term in Eq. (1), which reduces the continuous
U(1) symmetry of Ŝx and Ŝy to a set of Z2 symmetries.
The Z2 symmetries reflect the ‘parity’ conservation in the
original bosonic picture which classifies the many-body
states according to total even or odd number of atoms in
the px- and py-orbitals. Since the orbital changing term
is absent for fermions, the XYZ model with anisotropic
coupling is a peculiar feature of bosons in the p-band. We
emphasize that the above derivation makes no assump-
tions regarding the geometry of the 2D lattice - i.e. it can
be square, hexagonal etc.

1D XYZ phase diagram.– To illustrate the rich physics
of the XYZ model, we now focus on the case of a 1D
lattice where where quantum fluctuations are especially
pronounced. Note that by increasing both the lattice
amplitude and spacing in the y-direction keeping Vyk2y (
Vxk2x, one can exponentially suppress tunneling in the
y-direction to obtain a 1D model, while the px and py
orbitals are still quasi-degenerate [24]. In the 1D setting,
we will drop the ”direction” subscript ij on the coupling
constants.

For 1D, the importance of the orbital changing term
can be further illuminated, by employing the Jordan-

Wigner transformation Ŝ−
i = eiπ

∑i−1
j=1 ĉ†j ĉj ĉi for fermionic
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FIG. 1. (Color online) (a) Schematic phase diagram of the
XYZ chain. (b) Finite size ’phase diagram’ obtained by exact
diagonalization of 18 spins. The finite size ’phase diagram’
comprises an incomplete devil’s staircase of SDW between the
PP and AFM phases. The anisotropy parameter is γ = 0.2
in (b).

operators ĉi. The result is the fermionic Hamiltonian

ĤK/J =
∑

n

[(

ĉ†nĉn+1+ ĉ†n+1ĉn
)

+γ
(

ĉ†nĉ
†
n+1+ ĉn+1ĉn

)

+

∆

J

(

ĉ†nĉn +
1

2

)(

ĉ†n+1ĉn+1 −
1

2

)

+
h

J

(

ĉ†nĉn −
1

2

)

]

.

(5)

We see that γ "= 0 leads to a pairing term that typically
opens a gap in the energy spectrum. Incidentally the
limit of ∆ → 0 in Eq. (5) is a realization of the Kitaev
chain [25].
The schematic phase diagram is illustrated in Fig. 1

(a). At zero field, the XYZ model is integrable [26].
For large positive values of ∆/J the system is anti-
ferromagnetic (AFM) in the z-direction. Small val-
ues of ∆/J are characterized by Néel ordering in the
y−direction and the system is in the so-called spin-flop
phase (SF). The h = 0 line for large negative values of
∆/J is characterized by a ferromagnetic phase (FM) in
the z-direction, and for all the cases, the limit of large
external field displays a magnetized phase (PP), where
the spins align along the orientation of the field in the z-
direction. These three phases also characterize the phase
diagram of the XXZ model in a longitudinal field [27].
However, for non-zero anisotropy γ, a gapless floating
phase (FP) emerges between the SF and the AFM phases
which is characterized by power-law decay of the corre-
lations [21, 28, 29]. The transition from the AFM to the

FP is of the commensurate-incommensurate (C-IC) type
whereas the transition between the FP and SF phases is
of the Berezinsky-Kosterlitz-Thouless (BKT) type. For
∆ < −(1 + |γ|) there is a first order transition at h = 0
between the two polarized phases. Finally, there is an
Ising transition between the PP and the SF phases.
The experimental realization of the Heisenberg model

will inevitably involve finite size effects due to the har-
monic trapping potential. Within the local density ap-
proximation, the trap renormalizes the couplings so that
they become spatially dependent [30], but this effect can
be negligible if the orbitals are small compared to the
length scale of the trap. In the regime of strong repul-
sion, the main effect of the trap is instead that it gives
rise to “wedding cake” structures with Mott regions of in-
teger filling. This effect was observed in the lowest band
Bose-Hubbard model [1], and predicted theoretically to
occur for anti-ferromagnetic systems [31]. To examine fi-
nite size effects, we have performed exact diagonalization
in a chain with 18 spins with open boundary conditions.
Figure 1 (b) displays the resulting finite size ’phase di-
agram’. The colors correspond to different values of the
total magnetization M =

∑

i〈Ŝ
z
i 〉 of the ground state.

While the PP phase and the AMF phase are both clearly
visible, the numerical results reveal a step like structure
of the magnetization in between the two phases. We at-
tribute these steps in M to a devil’s staircase structure of
spin-density-waves (SDW). As we see from Fig. 1 (b), it
is only possible to give a numerical result for the PP-SF
Ising transition. In particular, the C-IC and BKT transi-
tions are overshadowed by the transitions between SDW.
In the thermodynamic limit the staircase becomes com-
plete and the changes inM become smooth. One then re-
covers the phase diagram of Fig. 1 (a). These transitions,
between different SDW, are more pronounced for mod-
erate systems sizes. For a typical experimental system
with ∼50 sites, for example, we estimate ∼15 different
SDW between the AFM and PP phases.
Measurements and manipulations.– While time-of-

flight measurements can reveal some of the phases [19],
single-site addressing techniques [33] will be much more
powerful when extracting correlation functions. To ad-
dress single orbital states or even perform spin rota-
tions, one may borrow techniques developed for trapped
ions [34]. Making use of the symmetries of the px- and
py-orbitals, stimulated Raman transitions can drive both
sideband and carrier transitions for the chosen orbitals in
the Lamb-Dicke regime. These transitions can be made
so short that the system is essentially frozen during the
operation. Driving sideband transitions in this way, spin
rotations may be implemented. For example, a spin rota-
tion around x is achieved by driving the red-sidebands for
both orbitals [23]. As a result, the two p-orbitals are cou-
pled to the s-orbital in a V -configuration and in the large
detuned case an adiabatic elimination of the s-band gives
an effective coupling between the px- and py-orbital [35].
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FIG. 2. (Color online) Different types of models are achieved
by varying the relative tunneling strength and the relative
orbital squeezing. The three different parameter regions are:
(I) anti-ferromagnetic couplings in all spin components with
∆ > J(1 + |γ|), (II) ferromagnetic or anti-ferromagnetic cou-
plings in the z-component and anti-ferromagnetic in the y-
component with J(1 + |γ|) > |∆|, and (III) same as in (II)
but with |∆| > J(1+ |γ|). The inset shows one example of the
spin parameters Jxx = (1+ γ), Jyy = (1− γ), and Jzz = ∆/J
for ty/tx = −0.1.

This scheme, thus, realizes an effective spin Hamiltonian

Ĥ(i)
x = ΩxΩy

∆ps
Ŝx
i with Ωα the effective Rabi frequencies

and ∆ps the detuning. Alternatively, Stark-shifting one
of the p-orbitals results in a rotation around z. Since
the spin operators do not commute, any rotation can
be realized from these two operations. Performing flu-
orescence on single orbital states by driving the carrier
transition acts as measuring Ŝz

i . This combined with the
above mentioned rotations makes it possible to measure
the spin at any site in any direction [23, 34].

Tuning of couplings.– For a square optical lattice, we
have Uxx = Uyy. Moreover, in the harmonic approxi-
mation Uxy = Uxx/3, from which it follows that ∆ < 0
and γ = −1/2. This gives ferromagnetic couplings for
the z-component of neighboring spins, while the inter-
actions between x- and between the y-components have
anti-ferromagnetic couplings. We now show how the rel-
ative strength and sign of the different couplings can be
controlled by squeezing one of the orbital states. Such
squeezing can be accomplished by again driving the car-
rier transition of either of the two orbitals, dispersively
with a spatially dependent field [23]. The shape of the
drive can be chosen such that the resulting Stark shift
is weaker in the center of the sites, resulting in a nar-
rowing of the orbital. To be specific, assume that the
ratio σ of the harmonic length scales of the px- and py-
orbitals in the y-direction is tuned. A straightforward
calculation using harmonic oscillator functions yields α ≡
Uxx/Uxy = 2−3/23(1 + σ2)3/2/σ and β ≡ Uyy/Uxy =
2−3/23(1 + σ2)3/2. The coupling constants now depend
on σ as ∆/J = 2tx(ty)−1β/(αβ − 1)+ 2ty(tx)−1α/(αβ −
1) − (tx/ty + ty/tx)/2 and γ = −4/(αβ − 1). The in-
set in Fig. 2 displays the three coupling parameters as a
function of σ for |tx/ty| = 0.1. We see that the relative

size and even the sign of the couplings can be tuned by
varying σ. In particular, while Ŝy always has AFM cou-
plings, they can be made both FM or AFM for Ŝx and
Ŝz. In the main part of Fig. 2, we sketch the different ac-
cessible models as a function of ty/tx and σ. This clearly
demonstrates that one can realize a whole class of XYZ
spin chains by using this method.
Experimental realization.– In Ref. [18], the experimen-

tal realization of p-band bosons in an effective 1D op-
tical lattice with a life-time of several milliseconds was
reported. With an average number of approximately two
atoms per site, the atoms could tunnel hundreds of times
in the p-band before decaying. Since the main decay
mechanism stems from atom collisions [12, 32], an in-
crease of up to a factor of 5 in the lifetime is expected
when there is only one atom per site [18]. Typical val-
ues of the couplings can be estimated from the overlap
integrals of neighboring Wannier functions. Taking 87Rb
atoms and λlat = 843nm, we have J/ER # 0.1 with
ER = h̄2k2/2m, and the characteristic tunneling time is
τ = h̄/JER ∼ 500 µs. Surprisingly, even deep in the
insulating state which we consider, this is a few hundred
of times smaller than the expected life-times [18] which
allows for the experimental explorations of our results.
Furthermore, the spin correlations we discuss in this

paper will emerge for temperatures kBT <
∼ J ∼ t2/U [10].

This presents the usual experimental challenge to obtain
low enough temperatures, which is currently being con-
fronted by several experimental groups.
A major experimental challenge is to achieve a unit

filling of the p-band. This could be achieved by having
an excess number of atoms in the p-band and then adi-
abatically opening up the trap such that the unit filling
is reached. A minority of sites will however be popu-
lated by immobile s-orbital atoms. Since the interaction
energy between s- and p-orbital atoms is higher than be-
tween two p-orbital atoms, processes involving s-orbital
atoms will be suppressed. Thus, the presence of atoms
in the s-band corresponds to introducing static disorder
in the system [23]. This may affect correlations [36], but
the qualitative physics will remain unchanged for concen-
trations close to a unit filling. A more detailed study of
this interesting effect is beyond the scope of the present
work.
Conclusions.– We showed that the Mott regime of unit

filling of bosonic atoms in the first excited band of an op-
tical lattice realizes the spin-1/2 XYZ quantum Heisen-
berg model. We then illustrated the rich physics of this
model by examining the phase diagram of the 1D case.
Finite size effects relevant to the trapped systems were
discussed in detail. We proposed a method to control the
strength and relative size of the spin couplings thereby
demonstrating how one can realize a whole class of XYZ
models. We finally discussed experimental issues related
to the realization of this model. We end by noting two
exciting prospects. First, similar treatment of the three
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orbital model in cubic lattices yields an SU(3) chain [37].
Second, that recent experiments reported a ∼99% load-
ing fidelity of bosons into the d-band [38], which indeed
opens possibilities to probe rich physics beyond spin-1/2
chains.
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1

SUPPLEMENTARY MATERIAL

DERIVATION OF THE EFFECTIVE SPIN

MODEL

We are interested in the strong coupling regime where
the system is deep in the Mott insulator phase with a
unit filling n = 1 of the lattice sites. A natural way
of analyzing this limit involves the use of projection op-
erators that divide the Hilbert space of the associated
eigenvalue problem in orthogonal subspaces according to
site occupations. We define the P̂ and Q̂ operators that
project, respectively, into the subspace of states with unit
occupation and into the perpendicular subspace. They
decompose the eigenvalue equation Ĥ|Ψ〉 = E|Ψ〉, with
E its associated energy, in the form

(

Q̂ĤtP̂+Q̂ĤtQ̂+Q̂ĤU P̂+Q̂ĤU Q̂
)

|Ψ〉 = EQ̂|Ψ〉

(

P̂ ĤtP̂+P̂ ĤtQ̂+P̂ ĤU P̂+P̂ ĤU Q̂
)

|Ψ〉 = EP̂ |Ψ〉,
(1)

where ĤU is the interaction part of the Hamiltonian.
Since Q̂ĤtQ̂, Q̂ĤU P̂ , P̂ ĤU P̂ , and P̂ ĤtP̂ all vanish, it
follows that

Q̂|Ψ〉 = −
1

Q̂ĤQ̂− E
Q̂ĤtP̂ |Ψ〉. (2)

By further substitution of Eq. (2) in the eigenvalue equa-
tion, we are left with the Hamiltonian which describes
the one particle Mott phase of p-orbital bosons

ĤMott = −P̂ ĤtQ̂
1

Q̂ĤU Q̂− E
Q̂ĤtP̂ . (3)

So far this result is exact. It explicitly shows the role of
the tunneling in the system, namely of coupling the sub-
space of states where the sites have unitary occupation
with the states that have one site doubly occupied. First,
a particle tunnels, say, from the site j to j+ 1, where it
interacts with another particle according to what is de-
scribed by ĤU . After interaction, one of the particles is
brought back to the site j, and the final state is again
characterized by lattice sites with a unit filling.
Equation (3) is the starting point in the derivation

of the effective Hamiltonian describing the n = 1 Mott
phase of p-orbital bosons. The procedure is developed
here for an effective 1D system with dynamics along the
x-axis, but generalization to the 2D lattice is straight-
forward. Realization of the 1D configuration relies on
the adjustment of the lattice parameters, that should
contain potential wells much deeper in the y- than in
the x-axis, but in such a way that the quasi degeneracy
between the different orbital states is still maintained.
This means that |txy|, |tyy| → 0, and furthermore due to

the strong coupling regime condition we also have that
Uαβ $ |txx|, |tyx|, α,β = {x, y}.
Under these assumptions, the operator 1/(Q̂ĤQ̂− E)

in Eq. (3) can be expanded to second order in t/Uαβ

(α,β = {x, y}) in analogy to the customary procedure
used for the Hubbard model at half filling [1]. In the
tight-binding regime considered here, it is enough to con-
sider the 2-site problem. The basis spanning the subspace
of states with unit filling is

HP = {|x, x〉 |x, y〉, |y, x〉, |y, y〉},

where |α,β〉 represents the state with an α-orbital atom
in site i and a β-orbital atom in site j. The relevant
states for the doubly occupied sites is

HQ = {|0, 2x〉, |0, 2y〉, |0, xy〉},

which span the intermediate states of the projection op-
eration. We notice, however, that due to the possibility
of transferring population between the different orbital
states, the projection of the Hamiltonian in the HQ sub-
space is not diagonal in this basis of intermediate states.
This is a peculiarity of the present model and derives
entirely from the flavor changing collisions. As a con-
sequence, we compute (ĤQ − E)−1, with ĤQ = Q̂ĤQ̂
by calculating the projected Hamiltonian in the HQ

subspace and taking its corresponding inverse. Since
E ∼ t2/Uαβ , it is justified to ignore E and to consider

(ĤQ − E)−1 ≈ Ĥ−1
Q . Explicitly,

ĤQ =





Uxx Uxy 0
Uxy Uyy 0
0 0 2Uxy





giving

Ĥ−1
Q =





Uyy/U2 −Uxy/U2 0
−Uxy/U2 Uxx/U2 0

0 0 Uxy/2



 ,

where U2 ≡ UxxUyy − U2
xy.

We determine the final form of the effective Hamilto-
nian by computing the relevant matrix elements of (3).
To this end, we consider in detail all the different cases
where the resulting action of the operator ĤMott of
Eq. (3) in the states of the HP subspace yield non van-
ishing contribution.
From states of the type |αi,αj〉

â†α,iâα,jĤ
−1
Q â†α,j âα,i|αi,αj〉 = â†α,iâα,jĤ

−1
Q

√
2|0, 2αj〉

=
√
2â†α,iâα,j

(

Uββ

U2
|0, 2αj〉 −

Uαβ

U2
|0, 2βj〉

)

=
2Uββ

U2
|αi,αj〉

the effective Hamiltonian acquires a term of the form

−
∑

〈i,j〉

∑

α

2|tα|2Uββ

U2
n̂α,in̂α,j .
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In these and the following expressions, it is understood
that β != α. In the same way, from the states of the type
|αi,βj〉,

â†α,iâα,jĤ
−1
Q â†α,j âα,i|αi,βj〉 = â†α,iâα,jĤ

−1
Q |0,αjβj〉

=
1

2Uxy
â†α,iâα,j |0,αjβj〉 =

1

2Uxy
|αi,βj〉,

corresponding to the operator

−
∑

〈i,j〉

∑

α

|tα|2

2Uxy
n̂α,in̂β,j .

From the states of the type |βi,αj〉 and the following
process

â†α,iâα,jĤ
−1
Q â†β,j âβ,i|βi,αj〉 = â†α,iâα,jĤ

−1
Q |0,αjβj〉

=
1

2Uxy
â†α,iâα,j |0,αjβj〉 =

1

2Uxy
|αi,βj〉,

the Hamiltonian gains a contribution as

−
∑

〈i,j〉

∑

α

|tα|2

2Uxy
n̂α,in̂β,j .

Finally, we consider the states of the type |βi,βj〉,

â†α,iâα,jĤ
−1
Q â†β,j âβ,i|βi,βj〉 = â†α,iâα,jĤ

−1
Q

√
2|0, 2βj〉

=
√
2â†α,iâα,j

(

Uαα

U2
|0, 2βj〉−

Uxy

U2
|0, 2αj〉

)

=−
2Uxy

U2
|αi,αj〉,

that contribute to the effective Hamiltonian with a term
that changes the orbital states of the atoms in both sites

∑

〈i,j〉

∑

α,α $=β

2txtyUxy

U2
â†α,iâβ,iâ

†
β,j âα,j .

The resulting expression for the effective Hamiltonian
corresponds thus to

ĤMott = −
∑

〈i,j〉

∑

α

(

2|tα|2Uββ

U2
n̂α,in̂α,j +

|tα|2

2Uxy
n̂α,in̂β,j

−
2txtyUxy

U2
â†α,iâβ,iâ

†
α,j âβ,j +

txty
2Uxy

â†α,iâβ,iâ
†
β,j âα,j

)

.

(4)
We now use the orbital states to define the Schwinger

spin operators

Ŝz =
1

2
(â†xâx − â†yây)

Ŝ+ = Ŝx + iŜy = â†xây

Ŝ− = Ŝx − iŜy = â†yâx,

(5)

and together with the constraint of unit occupation of the
lattice sites in the n = 1 Mott phase, i.e. n̂x,i + n̂y,i = 1,
we rewrite Eq. (4) as

ĤMott =−
∑

〈i,j〉

(

JzzŜz
i Ŝ

z
j +JxxŜx

i Ŝ
x
j +JyyŜy

i Ŝ
y
j

)

−
∑

i

JzŜz
i .

Thus, within the strong coupling regime, the physics of
the n = 1 Mott insulator phase is equivalent to the spin-
1/2 Heisenberg XYZ model in an external field. In terms
of the lattice parameters, the expressions for the various
couplings follow

Jxx = 2
txty
Uxy

(1− 4
U2
xy

U2
)

Jyy = 2
txty
Uxy

(1 + 4
U2
xy

U2
)

Jzz = 4
|tx|2Uyy

U2
+ 4

|ty|2Uxx

U2
−

|tx|2

Uxy
−

|ty|2

Uxy

Jz =
4|tx|2Uyy

U2
−

4|ty|2Uxx

U2
+ (Eos

x − Eos
y )

In terms of Eq. (3) of the main text, we can identify
∆ = −Jzz, h = −Jz, and γ = −4U2

xy/U
2.

SINGLE SITE ADDRESSING OF ORBITAL

STATES

Single site addressing for the present setup implies se-
lective detection/manipulation of the two orbitals. Since
the spin is encoded in external spatial degrees of free-
dom rather than internal atomic electronic states, meth-
ods like those described in Refs. [2] would not work. To
control the spatial state of the atoms at single sites we
may instead apply methods borrowed from trapped ion
physics [3]. Similar methods were already employed in
the experiment [4] in order to load bosons from the s-
band to the p-band. Müller et al. of Ref. [4] did not,
however, consider single site addressing and more impor-
tantly they did not discuss control of the orbital degree
of freedom.
Two internal atomic electronic states, e.g. an F = 1

and an F = 2 state for 87Rb atoms, are Raman cou-
pled with two lasers. This transition is described by the
matrix element Ω1Ω2〈F = 2|ei(k1−k2)·x|F = 1〉/δ where
Ωi and ki are the laser amplitudes and wave vectors, re-
spectively, and δ the detuning of the transitions relative
to the ancilla electronic state. The spatial dependence
of the lasers will induce couplings between vibrational
states of the atom, i.e. different bands. The time du-
ration for a π/2-pulse, for example, can be made very
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| =1,F s| =1,F s

| =2,F s|F|

| =1,F p
| =1,F d

| =2,F p|F|
| =2,F d|F|

FIG. 1. (Color online) Schematic figure of coupling between
different onsite orbital states. The carrier transition acts upon
the internal atomic electronic states, while the red and blue
sideband transitions in addition lower and raise the external
vibrational state with a single phonon respectively, i.e. couple
different orbital degree of freedom.

short by making the effective Rabi frequency Ω = Ω1Ω2/δ
large. In particular, this time can be made short on any
other time scale in the system and one can approximately
consider the system dynamics frozen during the applied
pulse. Indeed, the same assumption applies to any single
site addressing in optical lattices. Furthermore, by driv-
ing resonant two-photon transitions we do not need to
worry about accidental degeneracies between other un-
desired states.
Deep in the Mott insulator phase, as considered in

this work, we can approximate single sites with two di-
mensional harmonic oscillators with frequencies ωα =
√

2Vαk2α/m. The Lamb-Dicke parameters [3, 5] become

ηα = kα
√

h̄/2mωα, and within the Lamb-Dicke regime
(ηα ! 1) we can neglect multi-phonon transitions. Thus,
in one dimension we have three possible transitions: (i)
Carrier transitions - with no change in the vibrational
state, (ii) red sideband transitions - which lower the vi-
brational state with one quantum, and (iii) blue sideband
transitions - which raise the vibrational state with one
quantum. The various possibilities are demonstrated in
Fig. 1.
Since the different transitions are not degenerate, it

is possible to select single transitions by carefully choos-
ing the frequencies of the lasers. Moreover, considering
for example k1 − k2 = kx, i.e. no component in the
y-direction, it is possible to only address the x-orbital.
Thus, we have a method to singly address the differ-
ent orbitals. Full control is achieved when every unitary
R̂β(ϕ) = e−iŜβϕ, where β = x, y, z and ϕ is an effective
rotation angle, can be realized. To start with the sim-
plest example, implementation of R̂z(ϕ), we first note
that since we are considering the case with a single atom
per site Ŝz = Ŝ+Ŝ− − 1 such that it is enough to real-
ize the operation of Ŝ+Ŝ−. This is nothing but a phase
shift of one of the orbitals. This is most easily done by
driving the carrier transition off-resonantly for one of the
two orbitals. Since the driving is largely detuned it only

results in a Stark shift of the orbital.
The R̂x(ϕ) operation is preferably achieved by simul-

taneously driving off-resonantly the red sidebands of the
two orbitals. The s-band will never get populated due to
the large detuning while instead the transition between
the two orbitals can be made resonant. More precisely,
for the three involved states {|x, 0, 0〉, |0, y, 0〉, |0, 0, s〉}
(with the last entry in the ket-vector being the s-orbital)
the resulting coupling Hamiltonian in the rotating wave
approximation has the form a V -coupled system [6]

ĤV =





0 0 Ω1

0 0 Ω2

Ω1 Ω2 δ



 , (6)

where Ω1 and Ω2 have been taken real and for now spa-
tially independent. For δ $ Ω1, Ω2 we adiabatically
eliminate the state |0, 0, s〉 to obtain the desired Hamil-
tonian generating the rotation R̂x(φ), namely

Ĥx =

[

0 U
U 0

]

= UŜx (7)

Note that if the Raman transition between the two
orbitals is not resonant, such an action performs a com-
bination of an x- and z-rotation. To perform y-rotations,
one could either adjust the phases of the lasers or simply
note that R̂y(ϕ) = R̂z(π/4)R̂x(ϕ)R̂z(−π/4). With this
at hand, any manipulation of single site spins can be per-
formed. To measure the spin state in a given direction
one should combine the rotations with single site resolved
fluorescence (i.e. measuring Ŝz

i ) [7]. More precisely, since
the drive laser can couple to the two orbitals individually,
one orbital will be transparent to the laser while the other
one will show fluorescence. In other words, one measures
Ŝz on a single site. Other directions of the spin are mea-
sured in the same way, but after the correct rotation has
been implemented to it. Furthermore, with the help of
coincident detection it is possible to also extract corre-
lators 〈Ŝα

i Ŝ
β
j 〉 [8]. Since there is a single atom at every

site, the “parity problem” [2] of these techniques deriv-
ing from photon induced atom-atom collisions is avoided
and thereby loss of atoms will not limit our measurement
procedure. This summarizes how preparation, manipula-
tions, and detection of single site spins can be performed.
Finally we note that the methods discussed above can

be used in a broader context. For example, there is a
transition between two p-orbital atoms (one px- and one
py-orbital atom) and one s- and the dxy-orbital atom [9].
This transition is resonant for any parameters Vx and Vy

and could in principle cause rapid decay of the p-band
state, or even Rabi-type oscillations between the bands.
We note, however, that in the experiment of Ref. [4] the
collisional decay mechanism was surprisingly small de-
spite this resonant transition. Nevertheless, one could
suppress this resonant transition to increase the life-time
even further with the technique described above: By
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driving the red sideband for the two p-orbital states dis-
persively, the s- and p-bands will be repelled and thereby
this breaks the resonance condition for px+py → s+dxy.

EXTERNAL PARAMETER CONTROL

The ideas of the previous section can also be utilized to
change the system parameters. The simplest example is
the application of Ŝ+Ŝ− which implements a shift in the
external field h. Apart from the external field, it is also
desirable to control the coupling in the z component of
the spin, ∆, and especially to tune it from ferromagnetic
into anti-ferromagnetic.
Using the fact that |tx| " |ty| we have

∆ ≈ −|tx|2
(

4
Uyy

UxxUyy − U2
xy

−
1

Uxy

)

. (8)

This is most easily estimated in the harmonic approxi-
mation. Introducing the widths σα of the orbital wave
functions for the spatial directions α = x, y, z, in this
limit

Uxx = Uyy = 3Uxy ≡
u0

σxσyσz
, (9)

where u0 is an effective interaction strength (proportional
to the s-wave scattering length). We notice that even
though the use of lattice Wannier functions yields a dif-
ferent ratio between Uαα and Uαβ from what is obtained
in the harmonic limit [10], it does not affect the quali-
tative picture of the results discussed here. Using (9) in
the expression for ∆ we find

∆ = −|tx|2
3σxσyσz

2u0
< 0, (10)

which yields ferromagnetic couplings for the z-component
of the spin in the harmonic approximation. This is
also the case for ∆ computed with numerically obtained
Wannier functions for physically relevant parameters, i.e.
within the tight-binding and single-band approximations
and deep in the insulating phase.
The anti-ferromagnetic regime can be reached, how-

ever, again with techniques of trapped ion physics. In-
stead of changing h by a constant amount in all sites we
consider a Stark shift of one of the two orbitals that is
spatially dependent. This is nothing but a potential that
reshapes the lattice sites differently for the two orbitals.
In particular we can imagine squeezing of one orbital in
the y-direction. Thus, the two Wannier functions wx(#r)
and wy(#r) have the same widths σx but different widths
σy. This would require driving the carrier transition with
a field that has a spatially varying (on the length scale
of the y lattice spacing) mode profile. The squeezing in
the y-direction of one orbital wave function will not affect
the tunneling rates tx and ty, but change both Uyy and

FIG. 2. (Color online) Schematic plot of three random exper-
imental realization of the insulating state; yellow balls repre-
sent s-orbital atoms and blue ones p-orbital atoms.

Uxy. We have numerically verified that by sufficiently
strong squeezing, ∆ becomes negative resulting in anti-
ferromagnetic z-coupling (see Fig. 2 of the main text).
The anti-ferromagnetic coupling can also be obtained be
stretching one of the orbitals in the y-direction. We note
that this manipulation also affects the anisotropy param-
eter γ and therefore slightly shifts the phase boundaries
of the phase diagram. However, the qualitative structure
is not changed. As a summary, both h and ∆ can be con-
trolled solely by external driving, i.e. without changing
the lattice parameters.

EFFECTIVE MODEL INCLUDING

IMPERFECTIONS DUE TO s-ORBITAL ATOMS

Transferring every atom from the s-band to the p-
bands is experimentally challenging. Even though the
possibility of loading atoms from the lowest band to the
d-band with 97-99% fidelity was recently reported [11],
in experiments involving the p-band approximately 20%
of the atoms remain on the lowest band [4, 12]. In the
experiment reported in Ref. [4], the loading resulted in
approximately two p-orbital atoms per site. Increasing
the lattice amplitude and opening up the trap adiabati-
cally will create an insulating state with unit filling. The
s-orbital atoms can be considered immobile since the lat-
tice amplitude will typically be around 20 recoil energies.
Thus, random sites in the lattice will be populated by
s-orbital atoms. Energetically it costs more energy to
doubly occupy these states with one s- and one p-orbital
atom than those with two p-orbital atoms, i.e. Ups > Uαβ

where

Ups = U0

∫

dr |wα
i (r)|2|ws

i (r)|2 (11)

and ws
i (r) is the s-orbital Wannier function at site i.

Repeated experimental realizations will prepare differ-
ent random configurations as illustrated in Fig. 2. The
various configurations are presumably equally probable.
If a single realization is not determined from any mea-
surement, the state will be a statistical average over all
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possible configurations. That is, we integrate out the de-
grees of freedom of the s-band atoms (i.e. average over
all possible configurations constrained to a fixed ratio of
s-orbital atoms).
Let us consider two neighboring sites i and j, one with

a p-orbital atom and one with an s-orbital atom. Since we
have neglected tunneling of s-orbital atoms, the only non-
vanishing terms within second order perturbation theory
are

−
t2α
Ups

â†α,iâ
†
s,j âα,iâs,j = −

t2α
Ups

n̂α,i, (12)

where α = (x, y), âs,j is the annihilation operator for an
s-orbital atom at site j and we have used the fact that
ns,j = 1. Now, since tx "= ty it follows that the presence
of an s-orbital shifts the external field h = Jz locally.
Thus, the presence of s-orbital atoms will be manifest in
local fluctuations in the external field, i.e. we obtain an
XY Z chain with disorder.

Ĥ(dis)
Mott = −

∑

〈i,j〉

(

JzzŜz
i Ŝ

z
j +JxxŜx

i Ŝ
x
j +JyyŜy

i Ŝ
y
j

)

−
∑

i

Jz
i Ŝ

z
i .

For few atoms on the lowest band, this effect should not
qualitatively change the results presented in this paper.
We expect then that the disorder is irrelevant [13]. For
a larger fraction of s-orbital atoms one could expect the

disorder to become relevant and localized phases to ap-
pear [13]. This interesting topic is, however, outside the
scope of the present paper.
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