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Abstrakt

Optiska gitter är en typ av kvantmekaniskt laboratoriesystem som under de senaste
tjugo åren spelat en central roll inom kvantoptik och den kondenserade materiens
fysik. Atomer som kyls till temperaturer nära den absoluta nollpunkten kan h̊allas
f̊angna med elektriska och magnetiska fält. Med laserstr̊alar är det sedan möjligt att
placera atomerna i en periodisk elektromagnetisk potential. S̊adana kvantmekaniska
mångpartikelsystem delar många egenskaper med fasta tillst̊and, exempelvis met-
aller. Flexibiliteten hos optiska gitter gör att de är lämpliga som kvantsimulatorer :
modellsystem som kan efterlikna egenskaperna hos andra kvantmekaniska system
men är lättare att mäta och manipulera.

Denna avhandling berör en speciell typ av gitter: sick-sack-potentialen, vilken
kan sägas ha en serie minima i ett diagonalt mönster och till̊ater atomer att tunnla
s̊aväl diagonalt (mellan närmsta minima) som horisontellt (mellan näst närmsta
minima). Det fullständiga problemet formuleras i termer av en andrakvantiserad
Hamiltonian av Hubbardtyp, där kopplingskonstanterna ges som överlappsintegraler
av Wannierfunktioner i gittret. En exakt lösning av problemet presenteras för det
fall att interaktionen kan försummas. Genom en kvantmekanisk medelfältteori un-
dersöks ordningen i den superflytande fasen, som visar sig ha en längre period än
det underliggande gittret. Periodiciteten är möjlig att variera genom att manipulera
graden av horisontell tunnling. I Mott-fasen används störningsräkning för att ta
fram en effektiv Hamiltonian och genom en spin-boson-mappning omvandlas prob-
lemet till en ekvivalent beskrivning i termer av spinn-1/2 partiklar. Medelfältteori
med spin-koherenta tillst̊and visar att denna spinn-modell inneh̊aller en polariserad
fas, en fas som är anti-ferromagnetisk i y-komponenten av ordningsparametern samt
en som uppvisar en fördubblad periodicitet. Avhandlingen ger ocks̊a den nödvändiga
bakgrunden i kvantfältteori, det fasta tillst̊andets fysik, fasöverg̊angar och optiska
gitter.

2



Aknowledgements

First, I want to thank my supervisor Jonas for the trust, support, inspiring discus-
sions and proof-reading which made this thesis possible.

I would like to thank Pil for a crucial proof-reading and discussion of my thesis,
and the whole KomKo group at Stockholm University, for the warm welcome and
the stimulating discussions. I want to thank Fernanda for figure 7.5.

I want to mention my fellow students and friends Douglas, Mihae and Johan. Our
discussions were crucial for me in learning to become a somewhat more systematic
person.

I want to thank my friends and loved ones - involved in far more important things
than physics - for constantly shaking me out of any pattern. Without you, I would
have been a lesser person and a lesser student. I especially want to thank C, J, K,
my mother, sister and father for their constant love and support.

3



Contents

1 Introduction 6

2 Quantum field theory 9
2.1 Motivation for quantum field theory . . . . . . . . . . . . . . . . . . . 9
2.2 Second quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Operators in second quantization . . . . . . . . . . . . . . . . . . . . 12
2.4 Normal ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Mean-field approximations . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Many-body physics 17
3.1 The solid state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Models of the solid state . . . . . . . . . . . . . . . . . . . . . 17
3.1.2 Crystal lattices . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.3 Bloch functions . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.4 Wannier functions . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.5 Hamiltonians in the Wannier basis . . . . . . . . . . . . . . . 24

3.2 Classical and quantum phase transitions . . . . . . . . . . . . . . . . 25
3.3 The Bose-Einstein Condensate . . . . . . . . . . . . . . . . . . . . . . 28
3.4 The Bose-Hubbard Model . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Optical lattices 33
4.1 Trapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3 Relevant scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4 Measurement and manipulation . . . . . . . . . . . . . . . . . . . . . 36

5 From potentials to overlap integrals 40
5.1 The square lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.1.1 Wannier functions in the square lattice . . . . . . . . . . . . . 40
5.1.2 The harmonic oscillator approximation . . . . . . . . . . . . . 41
5.1.3 Analytic overlap integral . . . . . . . . . . . . . . . . . . . . . 44
5.1.4 Overlaps in the quadratic lattice . . . . . . . . . . . . . . . . . 47

5.2 The zig-zag lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2.1 Constructing the zig-zag lattice . . . . . . . . . . . . . . . . . 48
5.2.2 Wannier states in the zig-zag lattice . . . . . . . . . . . . . . . 50
5.2.3 Overlap integrals . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2.4 The second-quantized Hamiltonian . . . . . . . . . . . . . . . 54

6 Exact diagonalization 56

4



7 Mean-field approximations 61
7.1 Toy model of next-nearest neighbor tunnling . . . . . . . . . . . . . . 62
7.2 Mean-field treatment of the quantum Ising model . . . . . . . . . . . 66
7.3 Mean-field derivation of vortex-antivortex structure . . . . . . . . . . 66
7.4 Mean-field approximation of the zig-zag chain . . . . . . . . . . . . . 68

8 The Mott insulator phase 71
8.1 Perturbation theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
8.2 The effective Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . 73
8.3 Schwinger spin-boson mapping . . . . . . . . . . . . . . . . . . . . . . 75
8.4 The spin Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
8.5 Mean-field approximation of the spin model . . . . . . . . . . . . . . 80

9 Conclusions 85

5



Chapter 1

Introduction

As long as we stick to things and
words we can believe that we are
speaking of what we see, that we
see what we are speaking of, and
that the two are linked.

Gilles Deleuze

In most physical problems, and even in our daily lives, we are confronted with
complicated things which behave in simple ways. Gases, networks or solids are
complicated in detail, but often follow simple laws in some or most aspects. It is
remarkable in itself that it is often possible to make such simplified models with-
out knowing the microscopic details of why they work. The reason is that most
correlations between constituents “average out” at a large scale, so that only some
microscopic effects really matter. As an example: ordinary objects around us con-
tain more than 1023 particles, but most of the measurable properties at our scale
in length, time and energy can be computed from a few numbers such as temper-
ature, heat capacity and electrical conductivity. This averaging behavior and the
macroscopic laws it leads to is the reason why thermodynamics is so powerful [J.11,
p. 113, p. 116].

To really understand how the macroscopic average laws arise, however, is the
real challenge. This is the subject of statistical mechanics, which relates micro-
scopic events to macroscopic. The reality is quantum mechanical, but the quantum
mechanical nature of the parts does not always influence the state of the whole sys-
tem. In such cases, it may be possible to describe it by a semi-classical model. But
in some cases - when interactions are strong and thermal fluctuations small - the
quantum mechanics matter for global properties. This is the case for most solids and
some exotic liquids and gases. Global properties such as conductivity are accessible
in solids, but it is complicated to measure the state of single atoms due to the small
lattice spacing and strong interactions.

Such truly quantum mechanical systems may be impossible to even simulate with
a computer. The reason is that quantum mechanics requires us to account for any
possible state of the system. The number of possible states increases exponentially
as we add particles to the system. For even a moderate number of particles, the com-
putation time could surpass what can be computed during the age of the Universe!
To simulate such a quantum mechanical system, it is necessary to use a different
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Figure 1.1: The zig-zag lattice. Minima of the potential are shown in white and
maxima in dark blue. All lengths are rescaled by the lattice constant `.

kind of hardware. Two quantum mechanical systems may possess similar physics but
different characteristic length scales, lifetimes et cetera. Therefore, it is in principle
possible to “simulate” quantum systems with other quantum systems which are sim-
pler to manipulate and measure, an idea first proposed by Feynman [Fey81, MAV12,
p. 66]. Such a model system is called a quantum simulator.

During the later half of the 20th century, a number of key technologies were de-
veloped which lead to an increasing level of control over quantum systems in the lab.
The ion trap was one of the techniques used for single-particle quantum systems.
Such technology enabled the Bell experiment, atomic clocks and the development
of quantum information theory. Methods of cooling, trapping and manipulation of
atoms were developed which led to better control of many-body systems [MAV12,
p. 3]. In 1995, a group of experimental physicists successfully prepared a cool di-
lute gas of atoms in the same quantum state, creating a Bose-Einstein condensate
(BEC) [PS08, p. 1]. For this they were awarded the Nobel prize in 1997. The creation
of optical lattices made it possible to trap dilute alkali gases in periodic potentials:
such potentials resemble the effective potentials for valence electrons in solids, but
possesses an adjustable lattice spacing about three orders of magnitude wider [PS08,
p. 409]. The rate of tunneling between sites can be controlled by adjusting the am-
plitude of the laser, and even the strength of atom interactions can be controlled
through a techniqe called Feshbach resonances [PS08, p. 143, p. 148]. This flexibility
means that optical lattices are useful for quantum simulation of many different prob-
lems in quantum optics, condensed matter physics and even fundamental particle
physics. Some of the most important experimental results were the observation of
a superfluid-to-Mott quantum phase transition by [MOT+02] and the observation
of topological order in condensates [RPC+99]. One dramatic example of interest to
both particle physicists and the popular science press: in some aspects, atoms in
optical lattices near certain phase transitions behave like black holes [JMB10, GC14]!

In isolated atoms, the bound electrons occupy discrete energy levels of increasing
angular momentum. These levels can be labelled by the azimuthal quantum num-
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bers 0, 1, 2, 3, 4, 5, . . . , which are also called s, p, d, f, g, h, . . . for historical reasons.
The energy levels correspond to the different orbitals of the atom. In solids, the
interactions between atoms lead to dense bands of discrete energy levels which are
often referred to as energy bands. While atoms in the s band have been studied
extensively, for example in [W.03] or [AS05], the physics of p-band atoms is less
explored: such systems are accessible and good candidates for simulating quantum
magnetism [TSAI07]. In [PML12] and [PBML13], the physics of the p band was
explored in a quadratic, two-dimensional lattice. Such lattices are separable, which
leads to some limitations of how atoms can tunnel. They can be used to simulate
for example the Heisenberg model, but non-separable lattices open up the possibil-
ity to study a broader range of spin models. Non-separable lattices may also have
topological properties [MAV12, p. 429].

For this thesis, I have studied the physics of bosonic atoms in the p band, loaded
in a zig-zag lattice, shown in figure 1.1. The minima (white in the figure) form zig-zag
chains separated by strong maxima (dark blue) which effectively prevents atoms from
tunneling between different chains. The system can therefore be viewed as quasi-
one dimensional. Quantum mechanical many-body systems require new theoretical
tools for their solution: in chapter 2, I will therefore give an introduction to non-
relativistic quantum field theory and some approximation methods related to it.
With these tools, many-body systems are then investigated in chapter 3 where Bloch
and Wannier states are introduced - the wavelike and localized quantum mechanical
states of a periodic potential. In this chapter, the concept of phase transitions is also
introduced and exemplified by the classical and quantum Ising phase transitions,
Bose-Einstein condensation and the superfluid-Mott phase transition. Chapter 4
gives a brief survey of how optical lattices are created and how measurement and
manipulation is performed.

In chapter 5, the many-body Hamiltonian is rewritten in terms of quantum field
operators by computing the overlaps of Wannier wavefunctions. These overlaps de-
scribe the energy associated with atoms tunneling between minima of the potential.
In chapter 6, the Hamiltonian is diagonalized exactly in the absence of interactions.
In chapter 7, the ground state of the system is found by a variational calculation
called mean-field theory. For strong interactions, the atoms are expected to localize
with constant density on each site. I derive an effective Hamiltonian in chapter
8, describing the relevant dynamics in this phase. Furthermore, via a Schwinger
spin-boson mapping, the dynamics in the Mott phase is shown to be equivalent to
a spin model with properties beyond the common Heisenberg models. Particularly,
the model shows next-nearest neighbor couplings and a Dzyaloshinskii-Moriya or
anti-symmetric exchange.

The text is meant to be accessible to students of physics at an advanced under-
graduate or graduate level. I have tried to avoid technical jargon when possible and
italicized new terms to highlight them. The quantum field theory is perhaps the
most inaccessible part of the text. Since a thesis for a master’s degree is somewhat
less formal, I have chosen to address the reader with the pronoun “I”.
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Chapter 2

Quantum field theory

An inexperienced reader of the
most interesting physical papers is
often left in a vacuum about the
precise meaning of the most
common terms. . . . What is a
current algebra, a supersymmetry
transformation, a topological field
theory, a path integral, finally?
They are very open concepts, and
it is precisely their openness that
makes them so interesting.

Yuri Manin

2.1 Motivation for quantum field theory
The research areas of particle physics and condensed matter physics both rely
strongly on quantum field theory. This theory can be seen as the type of quantum
mechanics which is suitable and natural to many-body physics. Since this thesis
only concerns Bose particles, I will not discuss the theory for fermions, which differs
in some important aspects. We can in principle construct multi-particle states by
forming products of single-particle states by hand. But to write down the combined
state of just two bosons in states |ψ1〉, |ψ2〉 with no special quantum numbers, we
have to be careful. By the laws of quantum mechanics, the total wavefunction1 of
two identical Bose particles must be symmetric under the exchange of the particle
coordinates. It must therefore be of the form

ψ12(x1,x2) = 1√
2

(ψ1(x1)ψ2(x2) + ψ1(x2)ψ2(x1)) . (2.1)

For a N -particle state, this sum would include N ! terms, one for every permutation
of the N coordinates [AS10, p. 42].

1The wave function can be seen as the function defined by the inner product ψ(x) = 〈x| ψ〉,
where |x〉 is an eigenstate of the translation operator, with the position eigenvalue x. In this thesis,
I will assume the reader to be familiar with the concepts of states, wavefunctions, Hilbert spaces
and the bra-ket formalism for standard quantum mechanics.
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However, there are two problems with this description: first, it is unfeasible
to even write down the state for O(1023) electrons - even more so for the interac-
tions. Second, the theory fails to describe situations when particles are created or
annihilated, for example the annihilation of an electron-hole pair. Every theory is
also a statement about the “realness” and relevance of that particular description:
standard quantum mechanics have problems with the dynamics of many particles
because it works with “states” which describe the state of the whole system. Only in
special cases, such as for product states, is it easy to discern single particles. Since
many-body quantum mechanics starts by treating the particles as relevant, then
tries to understand their dynamics, it needs another flavor of quantum mechanics.

So far, I have described a many-particle wave function in terms of the unique state
of every single particle, but this is a highly redundant description if many particles
occupy the same states, as would be probable for bosons. Another redundancy is
that general states are not assumed to be symmetric and instead symmetrized “by
hand”.

2.2 Second quantization
It is better to work with a different picture, the number representation, also called
Fock representation, invented by Anish Bose in 1924 [PB11, p. XXV] to explain
black-body radiation. The number representation does not ask for the state of each
particle, but for the number of particles in each single-particle state2.

|s1, s2, . . . , sN〉 = |n1, n2, . . . , nM〉 , (2.2)

where N is the number of electrons and M is the number of states. States such as
(2.2) are called number or Fock states. We say that many-body quantum mechanics
takes place in (the symmetrized subspace of) Fock space:

F =
∞⊗
i=0
Hi, (2.3)

which is the tensor product of a (possibly infinite) number of copies of single-boson
Hilbert spaces, one for each particle. The Fock states form an orthonormal basis
in Fock space. The number representation is more “natural” because the indis-
tinguishability of quantum states is built into it, if certain commutation rules are
obeyed. Define the boson creation operator as an operator which adds a particle to
the state:

â†i |n1, n2, . . . , ni, . . . , nM〉 =
√
ni + 1 |n1, n2, . . . , ni + 1, . . . , nM〉 . (2.4)

The index i here stands for a set of quantum numbers in some single-particle basis of
choice. Depending on basis the creation operators could be labeled by momentum,
position, site, orbital or spin. The boson annihilation operator is similarly defined
by:

âi |n1, n2, . . . , ni, . . . , nM〉 = √ni |n1, n2, . . . , ni − 1, . . . , nM〉 . (2.5)
2Meaning that particles in the same single-particle state share position, momentum and all

quantum numbers.
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Note that the creation operator is the hermitian conjugate of the annihilation oper-
ator. These operators additionally satisfy the important commutation relation3:[

â†i , âj
]

= â†i âj − âj â
†
i = δij. (2.6)

The vacuum state is defined as the state for which
∀i : âi |0〉 = 0. (2.7)

Defined like this, the annihilation and creation operators construct symmetrized
states:

â†i â
†
j |0〉 = â†j â

†
i |0〉 (2.8)

Any Fock state can be constructed by repeated application of creation operators on
the vacuum state as

|n1, n2, . . . , nM〉 ∝
(
a†1
)n1

. . .
(
a†M
)nM |0〉 . (2.9)

Furthermore, any operator may be described by combining creation and annihilation
operators, as should be obvious since they can be used to construct any basis state.

The field of all these quantized degrees of freedom for a kind of particle, la-
beled by position, momentum, spin or other quantum numbers, is called a quantum
field [FG10, p. 7]. Single particles and, for example, the process of electron-hole-
annihilation, may be described as processes involving low-energy excitations of this
quantum field4. This formalism for writing a quantum mechanical system in terms
of field operators, is a procedure known as second quantization. “First quantization”
refers to the fact that simultaneous measurement of some variables, like position and
momentum, is impossible in principle [Mah90, p. 1]. “Second quantization” refers
to the fact that fields are created and destroyed in quantas, called particles.

It is common to work with an orthonormal functional basis which is able to
describe any state, and expand the Fock states in this basis. One common such
functional basis is the position basis5, consisting of Dirac delta distributions [Aue94,
p. 4] and labeled by the position quantum number. Let ψ̂†s(x) be the creation
operator of a state at position x with some set of other quantum numbers s:〈

x′s′
∣∣∣ ψ̂†s(x)

∣∣∣0〉 = δss′δ(x− x′). (2.10)
Suitable bases in condensed matter applications are the Bloch or Wannier states,
which will be described closer in section 3.1.5.

3For fermions, the commutation relation has to be replaced by an anti-commutation relation{
â†, â

}
= â†â + ââ† = 1. This relation guarantees that fermion creation operators create anti-

symmetric states (states which changes sign when permuting the coordinates and quantum numbers
of any particle).

4Quantum fields are very abstract. They do not neccessarily have to describe elementary
particles such as electrons. In solids, the relevant excitations (the best description of what kind of
particles are interacting) are not the “bare” electrons found in vacuum, since all electrons in a solid
interact in such a way that their effective mass and charge is altered. This is sometimes referred
to as “dressed” electrons or “quasi-particles” forming a Fermi liquid. Quantum fields can also
describe collective excitations, such as sound vibration (phonons) or collective electronic dynamics
(plasmons) [AS10, p. 210] [Mah90, p. 893]

5The Dirac delta functions δ(x) (position basis) and plane waves eikx (momentum basis) are
common in quantum mechanics. This is confusing to new students of quantum mechanics, since
these functions are not square-integrable (

∫∞
−∞ e−ikxeikxdx =∞) and hence do not fit into Hilbert

space. The solution to this mathematically is to either extend Hilbert space to a larger space
(rigged Hilbert space) where these distributions are included, or to formulate quantum mechanics
with projection operators [Bal10, p. 20, p. 28]
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2.3 Operators in second quantization
Since it is possible to construct any state in Fock space with the creation and
annihilation operators, it is also possible to write any operator on Fock states in
terms of them. Since quantum field theory is concerned with the relation between
the full quantum system and the individual “particles” of which it consists, it is
natural to classify Fock space operators after the number of individual particles
involved. One-body operators are operators only acting on one particle at a time. In
the basis where the operator is diagonal [AS10, p. 47]:

Ô1 =
∑
n

onâ
†
nân. (2.11)

Now do a transformation back to a general Fock space basis and use the spectral
resolution of the first-quantized one-body operator:

ân =
∑
µ

〈n| µ〉 âµ ⇒

Ô1 =
∑
µν

∑
n

on 〈µ| n〉 〈n| ν〉 â†µâν =

=
∑
µν

〈µ|
∑
n

(|n〉 on 〈n|) |ν〉 â†µâν =
∑
µν

〈µ| ô |ν〉 â†µâν , (2.12)

where ô is the local operator acting only on particle n, which follows from the fact
that the single-particle basis is orthogonal. The set of numbers {〈µ| ô |ν〉} can be
viewed as a “matrix” representation of the operator in Fock space.

Two-body operators are similarly described by

O2 =
∑
µµ′νν′

〈
µµ′

∣∣∣ Ô2

∣∣∣νν ′〉 â†µâ†µ′ âν âν′ . (2.13)

This expression is not fundamentally different from the one-body operator. It only
involves the sum over four sets of quantum numbers instead of two.

2.4 Normal ordering
Quantum field theory is plagued by mathematical subtleties, which often appear
in the form of infinities6. One prominent example is related to expectation values,
which are in turn related to observation. The expectation value of the Hamiltonian
operator is what is commonly referred to as the energy of a state. For the vacuum
state |0〉, one would expect 〈0| Ĥ |0〉 to be zero (the vacuum is empty!). This is often
referred to as the vacuum expectation value (VEV) of an operator. If the Hamiltonian
has a non-zero VEV, the vacuum contains an unphysical energy. This vacuum
energy has no physical meaning since only energy differences matter physically by
the equation F = −∇V which holds for any conservative force in classical as well as
quantum mechanics. There is a canonical procedure to make sure that all VEV:s are
zero, known as normal ordering [FG10, p. 42]. Normal ordering means “manually”

6Many of these problems are related to the formulation in operators on infinite-dimensional
spaces, and do not appear in the “equivalent” path integral formalism [MD95, p. 275,p. 306] in
which one can derive expectation values and correlation functions without having to deal with
Hilbert spaces.
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moving all creation operators to the left of all annihilation operators, and is often
denoted by :: like

:â†â: = â†â, (2.14)
:ââ†: = â†â. (2.15)

A normal-ordered VEV of any operator is always zero:

〈0| :Ô: |0〉 = 0. (2.16)

2.5 Mean-field approximations
Quantum fluctuations become less important for a system above a certain temper-
ature, time scale, length scale et cetera. In this limit, classical statistical mechanics
is a sufficient description. For bosons, a high occupation number in each Fock state
leads to weaker relative fluctuations. The collective degree of freedom of the bosons
may then be approximated as classical. But even in systems where quantum effects
are important, classical limits may be useful as a first estimate, to gain intuition
about the full solution.

The variational theorem of quantum mechanics [Sak94, p. 332]

Ē = 〈ψ| :Ĥ: |ψ〉 ≥ E0, (2.17)

where E0 is the true ground state energy, :Ĥ: is the normal ordered Hamiltonian and
|ψ〉 is any normalized state. By choosing a trial wavefunction ψλ dependent on a set
of parameters λ = λ1, λ2, . . . and finding the minimum of Ē by varying λ, an upper
bound for E0 can be found. This bound can be further improved by minimizing with
a larger class of functions. An educated guess of trial wavefunction can also provide
a way of approximating the true ground state, although Ē is mostly sensitive to
short-range correlations. Some guessing is involved in finding the long-range order
by a variational method [Aue94, p. 39].

One very simple variational ansatz7 in many-body quantum mechanics is to
assume nearly all particles to be in the ground state and use a trial wavefunction
which is a product state8 of identical single-particle wavefunctions:

Ψ(r1, r2, . . . , rN) =
N∏
i=0

φ(ri), (2.18)

where N is the total number of bosons. This is sometimes called a Hartree approx-
imation [PS08, p. 160] and is an important model of the Bose-Einstein condensate
which will be described in section 3.3. In a manner similar to the approximations

7“Ansatz” is a complex german word roughly translatable to “starting point”, “beginnings” or
“attempt”. Physicists and mathematicians use it as a name for any attempt to rewrite or guess
the structure of the solution to a problem, especially a differential equation.

8I will often write product states as |Ψ〉 =
∏
j |ψ〉j for example. It would be more mathemati-

cally correct to write |Ψ〉 =
⊗

j |ψ〉j since what is really meant is a tensor product of state vectors
in different subspaces. As it is common to write product states as |xy〉 = |x〉 |y〉, I will use the
product symbol in this text.
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leading to Sommerfeld theory, first-order effects of the interactions can be included9

in an effective contact interaction U(r, r′) = U0δ
(3)(r− r′). The upper bound on the

ground state energy is then [PS08, p. 159]

Ē = 〈Ψ| :Ĥ: |Ψ〉 =

= N
∫
dr
[
h̄2

2m |∇φ(r)|2 + V (r) |φ(r)|2 + (N − 1)
2 U0 |φ(r)|4

]
, (2.19)

which has to be minimized functionally [PS08, p. 162] to find the optimal function
φ(x). Note that this has to be done under any constraints on the system, such as
a fixed temperature or particle number. Particle number can be held fixed with
the help of a Lagrange multiplier µ, commonly referred to as the chemical poten-
tial. Functional minimization with respect to variation in ψ∗(r) (treated as a field
independent of its complex conjugate) yields

δ

δψ∗(r) (E − µN) = 0⇒

δ

δψ∗(r)

∫
dr

h̄

2m |∇ψ((r))|2 + δ

δψ∗(r)

∫
dr
[
(V (r)− µ) |ψ(r)|2 + 1

2U0 |ψ(r)|4
]

=[
− h̄2

2m∇
2 + V (r) + U0 |ψ(r)|2

]
ψ(r) = µψ(r),

(2.20)

where order of functional differentiation and integration was interchanged, which is
legitimate because of absolute convergence of the integral. Furthermore, I used the
chain rule for functional differentiation

δ

δψ∗(r) |ψ(r)|α = α |ψ(r)|α−1 ψ(r), (2.21)

as well as partial integration of the kinetic term∫
dr |∇ψ(r)| =

∫
dr (∇ψ(r)) (∇ψ∗(r)) =

(∇ψ(r)) (∇ψ∗(r))|∂V −
∫
dr
(
∇2ψ(r)

)
ψ∗(r) = −

∫
dr
(
∇2ψ(r)

)
ψ∗(r). (2.22)

The boundary term vanishes because the wavefunction and its gradient goes to zero
at infinity. ψ(r) =

√
Nφ(r). Note that I have also assumed N to be large enough

that N − 1 ≈ N . Equation (2.20) is called the Gross-Pitaevskii equation and has
the form of a Schrödinger equation with a non-linear density term. In this sense,
the Hartree approximation is a mean-field theory, where the field ψ(r) is the mean
field which has to be solved for self-consistently10. It can be viewed as a kind of
average, macroscopic wavefunction.

9This is the Born approximation of scattering theory [PS08, p. 119], which estimates the scat-
tering length as a =

(
mr/2πh̄2) ∫ drU(r) ⇒

∫
drUeff(r) = 2πh̄2a

mr
= U0, where mr is the effective

mass. In coordinate space this means that Ueff(r) = U0δ
(3)(r).

10The concept of a mean-field solution is borrowed from statistical mechanics [MB06, p. 64].
The interaction of one boson with wavefunction ψ(r) with every other boson is accounted for
by the term proportial to |ψ(r)|. This is of course a simplification, since boson interactions are
not instantaneous. In the method of mean-field theory, the field is then determined from some
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Another choice of trial states is the coherent state ansatz, which assumes a prod-
uct state in the form

|Ψ〉 ({αj}) =
N∏
i

|αi〉 ⇒ 〈Ψ| âi |Ψ〉 = 〈αi| âi |αi〉 = αi (2.23)

∣∣∣αxj , αyj〉j = exp

−
∣∣∣αxj ∣∣∣2 +

∣∣∣αyj ∣∣∣2
2

 ∑
nx,ny

(
αxj
)nx (

αyj
)ny√

nx!ny!
|nxny〉j (2.24)

where the full set of complex eigenvalues α are the parameters to be varied. The set
{αi} is commonly referred to as the order parameters11 of the system. The states
|αi〉 are coherent states, eigenstates of the annihilation operator âi, with a complex
eigenvalue αi:

âi |αi〉 = αiâi ⇒ 〈αi| âi |αi〉 = αi. (2.25)

The set of coherent eigenstates of an annihilation operator âi are in correspondence
with the set of complex numbers, since the above state can be formed for any
complex number αi. For a state to be the eigenstate of an annihilation operator, it
cannot simultaneously be an eigenstate of the number operator12. Such a state can
be written as [Bal10, p. 544]

|αi〉 = e−
1
2 |αi|

2
∞∑
ni=0

αnii√
ni!

(
â†i
)ni |0〉 = e−

1
2 |αi|

2
∞∑
ni=0

αnii√
ni!
|ni〉 (2.26)

The set of states {|αi〉} (where i here label all the possible Fock states, for exam-
ple site number and orbital quantum number), forms an overcomplete basis in the
complex plane, since ∫

|α〉 〈α| dα2 = πÎ 6= Î , (2.27)

and π > 1. This means that arbitrary states can be specified in a coherent state
basis, but generally not in one unique way. By a similar calculation as above, the
coherent state ansatz also leads to a Gross-Pitaevskii equation, which is why it is
referred to as a mean-field theory. In section 7.3, I will use the coherent state ansatz
to find a mean-field solution for the zig-zag lattice.

One interesting question is if mean-field theories are useful for understanding
systems close to a quantum phase transition. While a “classical” phase transition

kind of self-consistency condition: assuming the mean-field solution to be correct, all expectation
values and correlators must be consistent with the assumptions. In the mean-field solution of the
classical Ising model H = −J

∑
〈ij〉 sisj where si = ±1 and the sum is over nearest neighbors. The

statistical average m = 〈sj〉 is assumed to hold for all sites j, which may be inserted as a mean
field so that H ≈ −J

∑
i qmsi (q is the number of nearest neighbors for each site) if the fluctuation

around the mean value is small. The self-consistent condition (reminiscent of the Gross-Pitaevskii
equation) is then simply m = 〈sj〉 for all sites j

11The name refers to the order parameters in the Landau-Ginzburg theory of phase transitions
and fluctuations. The numbers {αi} characterizes the mean-field order of the quantum system in
the same way, although we have to keep in mind that this is only a semi-classical approximation

12This is just an awkward way of noting that a coherent state cannot be a state of fixed particle
number. If it were, annihilation would be able to change the number and thus change the state.
Such a state would not be an eigenstate.
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is driven by thermal fluctuations, a quantum phase transition is driven by quantum
fluctuations and strictly only defined at zero temperature [S.11]. In both cases, the
correlation length diverges as the system approaches the critical point, indicating
that the system becomes equally sensitive to all possible length scales.
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Chapter 3

Many-body physics

If you don’t know ladders, don’t
play go

Go Proverb

This chapter will give a brief survey of topics which are important to understand
many-body quantum mechanical problems. Many-body Hamiltonians and impor-
tant mathematical aspects of periodic potentials will be discussed in section 3.1, in
terms of fermionic systems such as valence electrons in solids. Section 3.2 reviews
the physics of phase transitions, which arise in the thermodynamic limit N → ∞.
Sections 3.3 and 3.4 finally give two examples of bosonic many-body systems where
phase transitions occur.

3.1 The solid state

3.1.1 Models of the solid state
Historically, the first working microscopic model of a solid was the Drude theory of
metals. It treats the solid as a collection of cores and valence electrons. The cores can
be viewed as consisting of the nucleus and the tightly bound core electrons [AM76,
p. 3]. The forces binding the core electrons to the nucleus and the nuclear forces are
so strong in comparison to the interaction with the conduction electrons, that the
core may be viewed as a rigid unit. For crystalline solids, the cores can be assumed
to form a periodic lattice. Drude theory assumes the cores to be inert and neglects
interaction between the conduction electrons (independent electron approximation)
and interaction between conduction electrons and cores (free electron approximation)
except for a type of hard scattering of the conduction electrons off the cores. The
resulting model is similar to a free kinetic gas, but collisions between the gas particles
is here replaced by the collisions between electrons and cores. The frequency of
scatterings is assumed to happen with a mean probability density 1/τ and assumed
to scatter the electrons in a random direction and with a new speed related to the
temperature. While Drude theory gives successful predictions for heat and electron
conductivity, it fails to describe the heat capacity of common metals, among other
things. It turns out that the main reason for this failure is the assumption of a
classical, random interaction between electrons and cores.
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The most relevant improvement of Drude theory is to replace the random electron-
core scattering by a quantum mechanical system of independent electrons moving
in a background potential representing the cores. The Schrödinger equation for
time-independent potentials

ih̄
∂

∂t
|ψ〉 = Ĥ |ψ〉 =

(
− h̄2

2m∇̂
2 + V (x)

)
|ψ〉 , (3.1)

is commonly solved by first finding the eigenstates of the time-independent Schrödinger
equation

Ĥ |ψ〉 = E |ψ〉 . (3.2)

For a many-body problem the Hamiltonian Ĥ can always be split up into one part
which is a sum of single-body potentials and a part which captures interaction
between particles:

H = H0 + 1
2
∑
i 6=j

U(xi,xj), (3.3)

H0 =
∑
i

(
− h̄2

2m∇
2
i + V (xi)

)
=
∑
i

H0 [∇i,xi] . (3.4)

One particularly simple approximation is to ignore all interactions between elec-
trons, and model the solid as unbound conduction electrons moving independently
in a periodic “background” potential. This is possible because Coulomb interaction
between negative and positive charges, for example, can be expected to “screen”
particles far away from each other [Aue94, p. 4] so that each particle feels an aver-
age “background field” plus a weaker, truly inter-particle interaction U1. If the true
interaction is weak enough, it may be a good approximation to ignore it and just
assume independent electrons.

The Schrödinger equation for H0 separates into a sum of independent single-
electron Schrödinger equations:(

−∇2 + V (x)
)
φ(x) = Eφ(x), (3.5)

V (x−X) = V (x), (3.6)

where X denotes the position of any core. Here the equation have been written in a
rescaled form by making a variable change to some rescaled coordinates (x→ `x for
the simplest case of scaling all coordinates by some factor), dividing by h̄2/2m and
redefining the potential as V → 2m`V/h̄2 and the energy as E → 2m`E/h̄2. The
rescaling makes the Schrödinger equation dimensionless in length, time, momentum
and energy. In this thesis, I will often rescale the Hamiltonian to bring concepts to
front and keep equations from getting cluttered. (3.6) simply states that the po-
tential of the periodic array of cores is also periodic. Surprisingly, it turns out that
this approximation, called Sommerfeld theory or the independent electron approxi-
mation, is enough to explain many properties solids. That said, Sommerfeld theory

1Screening is the reason why thermodynamics works and the Earth doesn’t explode: if there
were no screening, the forces between charges would have too long range and overpower the weak
gravitational force holding the planet together.
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fails for example in explaining conductance/resistance of many common elements
and the heat capacity of e.g. iron [AM76, p. 59]. In this thesis, the independent
electron approximation will often be taken as a starting point for a better estimate
taking the interaction potential in (3.3) into account.

3.1.2 Crystal lattices
To understand crystalline solids, it is important to understand the mathematical
properties of the idealization of an infinite, periodic lattice. While a true solid has
a finite extent and irregularities, an ideal infinite lattice forms a starting point for
understand bulk effects of crystalline solids. In d dimensions, consider an infinite set
of vectors with d elements2, {X}, where X can always be written as [AM76, p. 65]

X = n1a1 + · · ·+ ndad, ni ∈ Z. (3.7)

Thus any point in the lattice can be identified by d integers ni. The vectors ai
are called the primitive vectors, and are not unique in the sense that any linear
combination with integer coefficients would be another, valid set of primitive vectors.
The set {X} is called a Bravais lattice and the individual vectors X are the lattice
points. The set of points which are closer to a specific lattice point X than to
any other, forms a volume which is called the primitive cell or Wigner-Seitz cell.
The primitive cell describes a tesselation, or tiling, of space, since the primitive
cells partition the space. Remarkably, any crystal structure can be written as a
Bravais lattice, which describes the tesselation of the volume, if the positions of the
individual atoms within each tile are also specified. Figure 3.1 shows some Bravais
lattices in two dimension with one atom per cell.

The fact that some lattice geometries lead to Hamiltonians which are separable
is of importance: separable Hamiltonians have the property that they are reducible
to a set of one-dimensional Schrödinger equations by an ansatz ψ(x) = ∏d

j=1 ψj(x̃j),
where x̃j are some set of possibly transformed coordinates. Such an ansatz is suc-
cessful only if the potential is of the form

V (x) =
d∑
j=1

Vj(x̃j)⇒ H =
d∑
j=1

− ∣∣∣∣∣∂x̃
∂x

∣∣∣∣∣
2

∇̃2 + Vj(x̃j)
 =

d∑
j=1

H̃j

⇒ 0 =
 d∑
j=1

H̃j − E

ψ(x) =
d∑
j=1

 d∏
i=1,i 6=j

ψi(x̃j)
(H̃j − Ej

)
ψ(x̃j), (3.8)

which has to vanish term by term.
Most of the properties we are interested in will also be periodic in the lattice.

This means that their Fourier expansions will only contain modes related to the
lattice constant. More precisely, I can define the reciprocal lattice as the set of wave
vectors which yield plane waves with the periodicity of the Bravais lattice. The
condition can be written as [AM76, p. 86]

eiK·(x+X) = eiK·x ⇔ K ·X = 2πn, n ∈ Z. (3.9)
2I have mentioned a dimension d of the crystal: in actual crystals d = 1, 2 or 3. d < 2 can be

realized if the system is limited to movement in one direction by a harmonic potential in one or
two directions, or possibly if it is translation invariant perpendicular to the lattice.
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Figure 3.1: Different types of Bravais lattices in two dimensions. The three in the
first row, and the quadratic lattice on the second row, have the property that the 2D
Schrödinger equation is separable in a potential with these structure. The triangular
lattice in the bottom left is not separable. Source: ”2d-bravais” by Prolineserver -
Own work. Licensed under CC BY-SA 3.0 via Commons - (link).

The lattice defined by (3.9) is also in fact a Bravais lattice with d primitive vectors
bi. The primitive cell around k = 0 of a reciprocal lattice is known as the first
Brillouin zone [AM76, p. 89]. It is surrounded by the second, third Brillouin zone
et cetera. I finally note that (3.9) implies the relation between vectors in space and
reciprocal space:

ai · bj = 2πδij. (3.10)

Note that this should not be interpreted as an actual scalar product, since the vectors
involved live in different spaces. In two dimensions, the primitive reciprocal vectors
are easily found:

ai · bj = aibj cos θ = 2πδij ⇒ bj = 2π
a2
i

R(±π/2)ai, for i 6= j, (3.11)

so that the direction of the primitive vectors of the reciprocal lattice are just given
by the π/2 rotated real space primitive vectors.

3.1.3 Bloch functions
The Bloch theorem states that Schrödinger equations with periodical potentials have
solutions of the form [AM76, p. 133]

φnk(x) = eik·xunk(x), (3.12)
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where u has the same periodic structure as the lattice: unk(x−X) = unk(x).
Such a solution is called a Bloch function, Bloch wavefunction or Bloch wave.

The vector k is called quasimomentum or crystal momentum. It is related to, but
not identical with, the true momentum of the electron. The quasimomentum is a
quantum number, a conserved quantity, of the Bloch function, just like its energy.
The proper momentum is not conserved for the electron as it moves in a varying
potential (i.e. since it is not invariant under arbitrary translations). The label
n denotes the n separate energy levels En(k) of the solution, but note that the
energies can be said to form bands since they are functions of k. The reason is that
the Bloch waves are extended and are therefore in a sense intermediate between the
bound (which have separate energy levels) and free (continuous energy spectrum).

The conserved crystal momentum is a consequence of the Hamiltonian having
discrete translation symmetries. This manifests itself in that a set of translation
operators {T̂d} all commute with the Hamiltonian ([T̂d, Ĥ] = 0). Assuming for the
moment periodic boundary conditions (I will let N → ∞ after the calculation)
φ(x + Nd) = T̂Ndφ(x) = φ(x) ⇒ T̂Nd = 1. The translation operators form a
representation of the additive group (modulo N) because T̂aT̂b = T̂a+b. This sug-
gests writing T̂d = eik̂d and since the Hamiltonian and the translation operator are
simultaneously diagonalizable:

φq(x+ d) = eik̂dψq(x) =
〈
x
∣∣∣ eik̂d ∣∣∣q〉 = eiqd 〈x| q〉 = eiqdφq(x), (3.13)

where |q〉 is an eigenstate of k̂ with eigenvalue q. Hence the solutions consist of a
part which is periodic in the lattice, multiplied by a phase proportional to q. The
result holds in the limit where N →∞ since the argument above holds for any N .

The condition for a wavefunction to be a Bloch function may be rewritten as

ψ(x + X) = eik·Xψ(x), (3.14)

but for a quasimomentum which is translated by a reciprocal lattice vector k′ =
k + K, equation (3.9) yields

eik
′·Xψ(x) = ei(k+K)·Xψ(x) = eik·Xψ(x). (3.15)

Hence

φn(k+K)(x) = φnk(x). (3.16)

Because of this “tiled” property of Bloch functions in the quasimomentum, it is
possible to restrict k to the first Brillouin zone. Figure 3.2 shows a plot of the
energy levels, or the spectrum, as a function of the quasimomentum. These energy
levels are sometimes referred to as energy bands [AM76, p. 141], although the actual
energy levels of the whole solid might differ due to interaction between conduction
electrons.

3.1.4 Wannier functions
Just like for any quantum mechanical problem, the shape and strength of the lat-
tice potential V (x) will determine the kind of solution. For a weak potential, the
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Figure 3.2: Energy-quasimomentum plot for a separable Bloch wave, for the s band
(blue), p band (green) and d band (red). Here the spectrum has been extended to
±1 to show the periodicity in quasimomentum. The extent of the first Brillouin
zone is marked by the dotted lines.
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conduction electrons are essentially free particles. The Bloch waves are then a suit-
able description of the electron. But if the “conduction” (non-core) electrons are
bound by a strong potential well, the solutions should resemble bound states such
as harmonic oscillator or atomic states which are localized [AM76, p. 176]3. In
fact, irregardless of the strength of the potential, it is always mathematically justi-
fied [AM76, p. 187] (and sometimes useful) to work with a localized single-particle
basis of Wannier functions:

ψnX(x) =
∑

k∈BZ
e−ik·Xφmk(x), (3.17)

where the sum is over all energy bands and all quasimomenta in the first Brillouin
zone. The sum could in principle be extended to all k, but this is not necessary
because of the repeating property of the Bloch function in reciprocal space. Intu-
itively then, the Bloch functions are localized in momentum space while the Wannier
functions are localized in position space. Figure 5.2 shows a Wannier function in
the first excited band, in two dimensions for a sinusoid, quadratic lattice. Note that
it resembles the p orbital state of an atomic wavefunction.

The Wannier functions are orthogonal on the lattice and in band index, so that∫
dxψ∗nX(x)ψn′X′(x) = δXX′δnn′ , (3.18)

Notice that the definition is similar to a Fourier transform of the Bloch functions,
but the sum is over the allowed quasimomenta in the first Brillouin zone. The
asymptotic behaviour of the Wannier states is |ψnX(x)| ∼ |x|−3/4 e−hn|x|, where hn
is a decay constant which decreases with increasing band index [BDZ08, p. 14].

In those situations relevant to this thesis, the energy gap to the first excited
band can be assumed to be large. This can be used to simplify the Hamiltonian of
a system by ignoring interactions between energy bands, among other things [AS10,
p. 70]. This is sometimes called a single-band approximation.

In the definition of the Wannier function, it is possible to insert a complex phase
in each term of the sum. Therefore, there is a local U(1) gauge symmetry of the
Bloch functions [NAJ+12, p. 4]. However, the transformation affects the shape of the
Wannier functions which are thus not defined unambigiously without gauge fixing.
In this thesis, I will choose to work in a gauge where the s-band Wannier functions
are purely real and the p-band Wannier functions are purely imaginary.

Another interesting idea is to choose a gauge such that the Wannier functions
are “maximally localized” in some sense. Define the localization functional as

Ω =
∑
n

[〈
0n
∣∣∣ r2

∣∣∣0n〉− 〈0n|~r |0n〉2] , (3.19)

where |0n〉 is the Bloch state with zero quasimomentum, it is possible to work out
the conditions to minimize this functional and in this sense minimize the spread.
The localization functional is chosen to minimize the sum of the squares of the zero-
momentum states in all bands, which is equivalent to the Foster-Boys criterion in
quantum chemistry [NAJ+12, p. 7].

3This is the case if the lattice spacing is larger than the scattering length, see section 4.3.
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3.1.5 Hamiltonians in the Wannier basis
In the following chapters, I will often work in the Wannier basis and it is therefore
appropriate to mention and explain the form of many-body Hamiltonians in this
basis. The calculations follow equations (2.12) and (2.13) applied to the many-body
Hamiltonian introduced in equations (3.3) and (3.4). In the Wannier basis, where
the basis states are described by lattice position and orbital degrees of freedom, I
find

−
〈
Xiα

∣∣∣ Ĥ0

∣∣∣Xjβ
〉

= −
∑
kγ

〈Xiα| Xkγ〉H0[∇j,x] 〈Xkγ| Xjβ〉 =

= −
∫
dxψ∗Xiα

(x)
[
−∇2 + V (x)

]
ψXjβ(x) = tαβij , (3.20)

where ∗ denotes complex conjugation. tαβij is often called the tunneling or hopping
matrix, since it determines the rate of tunneling from one site and state to another.
It is sometimes also called an overlap integral since the integrand can be interpreted
as the overlap between the two functions ψ†Xiα

(x) and Ĥ0ψXjβ(x). The second-
quantized representation of H0, often called the “kinetic” part, can now be written
as

T̂ =
∑
ij

∑
αβ

tαβij â
†
iαâjβ, (3.21)

tααii is sometimes called the onsite energy. The corresponding string of operators
â†iαâiα = n̂iα is called the number operator or density operator and has the action
of counting the number of particles in state i, α: n̂iα |niα〉 = niα |niα〉. If the onsite
energy is the same for all orbital states α and the particle number is conserved,
the onsite energy is just a constant contribution to the energy, and the states are
called “degenerate”. If it is not, the difference in onsite energy acts like a chemical
potential, favouring density in one state over the other. Note that, for a periodic
potential, there will be a set of tunnelings which repeat in some period over site
number i related to the number of cells in the primitive lattice. This is because of
the way that the tunnelings functionally depend on the potential.

The interaction term is ∑
αβγδijkl

Uαβγδ
ijkl â

†
iαâ
†
jβâkγ âlδ, (3.22)

where

Uαβγδ
ijkl = 〈XiαXjβ| û |XkγXlδ〉 = 1

2

∫
dxdx′U(x,x′)φ∗αi(x)φ∗βj(x′)φγk(x′)φδl(x).

(3.23)
As mentioned earlier, I will apply the single-band approximation and assume that
different energy bands do not couple in the interaction terms (hence the interaction
between px, py states and for example s states will be assumed to be negligible). I
will also neglect everything but onsite interaction. In the process, the interaction
between different sites is ignored, which is appropriate if the system is far from a
density instability and has a lattice spacing larger than the scattering length, which
is referred to as the atomic limit [Aue94, p. 23]. Then the interaction is dominated
by interactions on-site involving the density:∑

iαβγδ

Uαβγδ
iiii â†iαâ

†
iβâiγ âiδ, (3.24)
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3.2 Classical and quantum phase transitions
Phase transitions are properties of many-body systems which are defined in the ther-
modynamic limit N →∞: taking the limit of infinitely many particles while keeping
density and other intensive properties in fixed proportion. Phase transitions are re-
lated to breaking of symmetries in a very general sense, and physical systems can be
divided in abstract universality classes from the nature of their phase transitions.

Closed systems can be described by Hamiltonians, a mathematical structure
shared by classical and quantum mechanics. A general Hamiltonian can be written
in the form

Ĥ({K})/kBT = −
∑
n

KnΘ̂n, (3.25)

where Θ̂n represent all possible combinations of the degrees of freedom, which may
be all possible products of an infinite number of classical/quantum fields, or perhaps
just the square of momenta of the particles in a non-interacting gas. Kn are called
the coupling constants and represent such properties as temperature, strength of
magnetic field or chemical potential. Note that the Hamiltonian can be viewed as
a function of the coupling constants. The theory of phase transitions leads us to
consider the space of coupling constants. Since this thesis is concerned with systems
where the degrees of freedom reside on a lattice, let me restrict the discussion to
such systems and let N denote the number of sites in the system. In classical
mechanics [N.92, p. 23], the partition function Z({K}) = Tr e−H/kBT and the free
energy per site is defined as

fb({K}) = lim
N→∞

F ({K})/N = lim
N→∞

(−kBT lnZ({K})) /N, (3.26)

where certain properties such as density are kept in a fixed proportion in the limiting
process. This limit, called the thermodynamic limit, is not always well defined, but
will be defined “almost everywhere”. A phase is a region in the space of coupling
constants {K}, where the free energy per site is an analytic function. A phase may
end in a point or set of points where the free energy becomes non-analytic. If this
set of points forms a boundary between two regions of analyticity, it is called a
phase transition. There are two mutually exclusive possibilities: either some first
derivative ∂fb/∂Ki is discontinous across the boundary, or some higher derivative
is4. The first case is referred to as a discontinuous or first order phase transition
and the latter a continuous phase transition.

As an illustration of a classical phase transition, consider the Hamiltonian for
the Ising model of a magnetic solid, can be written as

H = −J
∑
〈ij〉

sisj + h
∑
i

si, (3.27)

where the sum is over all pairs of nearest neighbor sites in the lattice, which can
in principle have any geometry or number of dimensions. I will assume it to be
hypercubic lattice of dimension d. si = ±1 and the coupling constants are the
spin-spin interaction J , the external field h and the temperature T . At T = 0,

4fb cannot have a discontinuity across the boundary because of the definition of the free energy.
Later, I will instead work with other energies, which may be discontinuous at a phase transition.
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the free energy per site fb is just the internal energy per site by the thermodynamic
relation [J.11, p. 108] F = E−TS. The solution will try to minimize the total energy
(3.27). Assuming J > 0, the energy is minimized by a polarized or ferromagnetic
configuration where

si =

+1 (J > 0, h < 0)
−1 (J > 0, h > 0),

(3.28)

for all sites i. In this thesis, the polarized/ferromagnetic and anti-ferromagnetic
configuration si = (−1)i will often be encountered. The name polarized is often
used when the configuration results from a uniform magnetic field like the second
term in the Ising Hamiltonian (3.27). The name ferromagnetic should be properly
used when referring to a state ordered by spin-spin interactions. The free energy
per site is just

fb = H/N =

(−J + h) (J > 0, h < 0)
(−J − h) (J > 0, h > 0),

(3.29)

which is continuous but has a cusp (a sharp angle) at h = 0, indicating a discontin-
uous (first order) derivative and thus a discontinuous phase transition. The concept
of an order parameter comes from Landau and Landau-Ginzburg theory [MB06,
p. 83] and is a parameter that contains information about the nature of the phase
and which changes continously or discontinuously across a phase transition. A suit-
able order parameter for this phase transition is precisely the first derivative of the
energy or the magnetization per site M = ∑

i si/N . At the transition, the order
parameter jumps and the phase changes abruptly, which is typical for a first-order
phase transition

M = ∂fb
∂h

=

+1 (J > 0, h < 0)
−1 (J > 0, h > 0).

(3.30)

How should the spins align for h = 0? Both configurations have the same energy, so
the system has to “choose” one of them - which is often referred to as a spontaneous
symmetry breaking [J.11, p.193]. The Hamiltonian for h = 0 is completely symmetric
with respect to the global transformation sj → −sj, but the solution has a lower
symmetry. In practice the “choice” depends on small perturbations and the “history”
of the system.

At T > 0, the free energy also has contributions from disorder. It can be shown
that creation of domains, regions of flipped spins, leads to a lower free energy if
d = 1. Then the system will break up into a paramagnetic state of random domains
for any T 6= 0. For d ≥ 2 however, the energy cost of creating domains is positive
for a certain T < Tc. Therefore, for a square or cubic lattice the ferromagnetic
phase is stable for some nonzero temperatures. Close to Tc, the critical temperature,
domain walls of flipped spins starts to form and eventually disorder the system
completely. In this phase transition, the order parameter M changes continuously
which is illustrated in figure 3.3. This is the sign of a continuous phase transition.

A useful concept for phase transitions is the correlation length ξ, defined as the
characteristic rate of decay of the two-point correlation function [MB06, p. 82]

〈sisj〉 = e−|i−j|/ξ. (3.31)
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FM, ↓

h

TTc

PM

Figure 3.3: Phase diagram in the (h, T ) plane for the classical Ising model in one
dimension and J > 0. For T < Tc, the phase is ferromagnetic (FM), all spins
pointing up or all down. There is a discontinuous phase transition and a spontaneous
symmetry breaking on the line h = 0 and T < Tc. For T > Tc the spins break up
into domains until the phase is disordered (paramagnetic), which is a continuous
phase transition.

As the Ising system approaches the critical coupling T = Tc, the correlation length
can be shown to diverge and the two-point correlator no longer falls off exponentially
with distance. The physical implications of this is profound: close to the phase
transition, every site “communicates” with every other! This behaviour holds for any
phase transition [N.92, p. 31]. The divergence of of correlation length is, to leading
order, asymptotically, ξ ∝ |T−Tc|ν , where ν is a critical exponent [N.92, p. 131]. The
critical exponent is not an integer or even a rational number, and systems which on
the surface appear entirely unrelated show the exact same critical exponents. The
Ising model, for example contains both the Ising model and models with liquid-gas
phase transitions. This phenomenon is referred to as universality. Universality is
explained by the theory of the renormalization group (RG) [N.92, p. 236] [MB06,
p.237 ], which considers the process of reducing the degrees of freedoms of a system (a
procedure applied nearly everywhere in this thesis) in the abstract, as a semi-group
transformation. Repeated application of such transformations leads to flows in the
space of all possible Hamiltonians which partition them into universality classes.

The actual occurence of a classical phase transition is possible because of thermal
fluctuations. Above zero temperature there are always microscopic movements which
acts as “seeds” from which new phases with lower energy can grow, if the system
has passed a phase boundary. A quantum phase transition can be defined as a phase
transition driven by quantum fluctuations instead. Since thermal fluctuations will
always dominate for non-zero temperature, quantum phase transitions are never
observed directly. However, the existence of a quantum phase transition at T = 0
is important for properties at T 6= 0.

As an example of a quantum phase transition, I choose the quantum Ising model
in one dimension [S.11, p. 8], which has the Hamiltonian

Ĥ = −J
∑
j

Ŝzj Ŝ
z
j+1 + h

∑
j

Ŝxj , (3.32)

where Ŝαj = (h̄/2) σ̂αi are the Pauli matrices. In the basis where Ŝzj is diagonal they
can be written as

σ̂x =
(

0 1
1 0

)
, σ̂y =

(
0 −i
i 0

)
, σ̂z =

(
1 0
0 −1

)
, (3.33)
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Assume J > 0 and h � J . In this case the ground state should be close to the
product states ∏j |↑〉j or ∏j |↓〉j, much like in the classical case. It is important to
remember that this is a quantum mechanical problem and the full ground state has
to be obtained through diagonalization of the Hamiltonian. The product states are
exact ground states for the first term in the Hamiltonian since

−Jσ̂zjσ̂z(j+1) |l〉j |l〉j+1 = −J(±1)2 |l〉j |l〉j+1 . (3.34)

Because the up and down states have the same energy, there will again be a spon-
taneous symmetry breaking and the solution will have lower symmetry than the
Hamiltonian.

Assume instead J > 0, h � J . In the σ̂x basis, depending on the sign of h,
the exact solution of the Hamiltonian is the Néel states ∏j |←〉 or ∏j |→〉 where
|↔〉 = 2−1/2 (|↑〉 ± |↓〉). In between, there has to be some kind of phase transition.
In section 7.2 I will use a mean-field approximation to show that this is a second-
order quantum phase transition5. The quantum Ising model also has a (classical)
phase transition to a disordered state. By Mermin and Wagner’s theorem[Aue94,
p. 62], this transition only occurs at a finite temperature for d ≥ 3.

3.3 The Bose-Einstein Condensate
The Hamiltonian (3.4) is useful to describe any non-interacting many-body system.
Since bosonic atoms can occupy the same single-atom state, the ground state at
zero temperature of a many-body system of non-interacting bosons can be assumed
to be a product state of identical single-atom ground states. This state is called a
Bose-Einstein condensate (BEC) and is an important bosonic many-body system.
It is described here to illustrate many of the properties which will be investigated
in this thesis. The density distribution n(r) = N |φ(r)|2, where N is the number of
bosons, of the condensate reflects the single-particle wavefunction squared.

For finite temperature, thermal fluctuations will excite atoms from the ground
state. The critical temperature is defined as the highest temperature for which a large
fraction of the atoms occupy the ground state. It can be determined by considering
the the number of particles in excited states, which is given by [PS08, p. 22]

Nex =
∫ ∞

0
dεg(ε)f 0(ε), (3.35)

where g(ε) is the density of states and f 0(ε) the mean occupation number given by
the Bose distribution as

f 0(εν) = 1
e(εν−µ)/kBT − 1 . (3.36)

Equating the number of excited particles with the total number of particles N =
Nex(Tc) at µ = 0 gives the condition for the critical temperature. For a Bose gas
trapped in a parabolic potential V (x, y, z) = 1

2 (ωxx2 + ωyy
2 + ωzz

2), the density of
states is found to be proportional to the area of the Fermi surface [PS08, p. 21]

g(ε) = ε2

2h̄3ω̄3 , (3.37)

5In fact, the one dimensional quantum Ising model can be solved exactly for any value of g by
a Jordan-Wigner transformation. [S.11, p. 46].
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where ω̄ = (ωxωyωz)1/3. Equation (3.35) can be rewritten by a variable change
x = ε/kTc as

N = (kTc)3

2h̄3ω̄3

∫ ∞
0

dx
x2

ex − 1 . (3.38)

By expanding the denominator in powers of x, the integral can be computed as∫ ∞
0

dx
x2

ex − 1 =
∫ ∞

0
dxe−xx2

∞∑
n=0

e−xn =
∞∑
n=0

1
n2

∫ ∞
0

dx(nx)2e−(n+1)x =

= Γ(3)
∞∑
n=1

1
n2 = Γ(3)π

2

6 , (3.39)

where the known series for π2/6 and an integral representation of the Gamma func-
tion were used. For (3.35) I obtain

N = (kTc)3

2h̄ω̄3 Γ(3)π
2

6 ⇔ kTc =
(12N
π2

)1/3
h̄ω̄ ≈ 0.94h̄ω̄N1/3. (3.40)

This expression shows that large number of particles and a tight confining potential
lead to higher transition temperatures. Figure 3.4 shows the density distribution
of a dilute gas for various temperatures, measured by time-of-flight techniques as
discussed in section 4.4.

3.4 The Bose-Hubbard Model
A model which has been seminal for developing intuition about many-body systems
is the Hubbard model, which is best viewed as an approximation of an interacting
many-body system, and the first model described in this thesis which does not
neglect the particle-particle interaction. For Bose particles which are chargeless,
the interaction term in the Hamiltonian simplifies to a contact interaction [PS08,
p. 119] U(xi,xj) = U0δ

(3)(xi − xj). U0 was already defined in section 2.5. While
the Hubbard model in itself starts from a second-quantized Hamiltonian, which can
result from many physical processes, this thesis is concerned with realizations in
optical lattices. For cold atoms in the s band, when a single-band approximation
and a tight-binding approximation (defined below) are applicable, we obtain the
Bose-Hubbard model. As described in sections 3.1.4 and 3.1.5, for such systems a
Wannier basis is suitable. In the Wannier basis, the interaction is on site, because
of the tight-binding approximation. The interaction strength is

Uiiii = 1
2

∫
dxdx′U0δ

(3)(x− x′) |ψXi
(x)|2 |ψXi

(x′)|2 =

= U0

2

∫
dx |ψXi

(x)|4 = U > 0, (3.41)

which should be interpreted as an effective interaction. Note that ψXj
(x) here are

the separable Wannier functions in the s band. The Bose-Hubbard Hamiltonian can
be written as

ĤHubbard = −t
∑
〈ij〉

(
â†i âj + â†j âj

)
+ U

N−1∑
i=0

n̂i (n̂i − 1)− µ
N−1∑
i=0

n̂i. (3.42)
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Figure 3.4: Bose-Einstein condensation manifest in the velocity density distribution
n(k) of a dilute Bose gas. The leftmost picture is taken above the critical conden-
sation temperature and shows only a thermal density distribution. The middle and
right pictures are for a condensed state: there, a BEC state is visible in middle pic-
ture as a sharp peak surrounded by thermal fluctuations. In the rightmost picture,
temperature is low enough that only the BEC remains. Source: “Bose Einstein con-
densate” by NIST/JILA/CU-Boulder - NIST Image. Licensed under Public Domain
via Commons (link.)
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The notation 〈ij〉 stands for a sum over the nearest neighbors only, and all other
tunneling coefficients are neglected. Such a truncation is often called a tight-binding
approximation and will be used frequently in this thesis. The tunneling t is the same
between all sites in this model and the lattice is taken to be linear or quadratic. I
have also introduced a chemical potential µ as a way of studying the effect of particle
number. This corresponds to a Legendre transform of the Hamiltonian, analogous
to the transformation to grand free energy in statistical mechanics.

The Bose-Hubbard model has a quantum phase transition occurring at critical
values of t/U and µ/U [BDZ08, p. 23][DCI+98]. The hoppping term, proportional
to t, favors delocalization or a Bloch-wave-like state. Because of this delocalization,
the system has a long correlation length. This can be seen by noting that for U = 0,
the Hamiltonian is periodic in the lattice. It is therefore natural to look for solutions
with the same periodicity, like Bloch waves. By a Fourier transformation, it is easy
to find this solution. The relevant excitations in this limit are therefore delocalized,
and in particular the spectrum is gapless which is a characteristic for a symmetry
broken phase. This limit, where t/U � 1 is called the superfluid (SF) phase and
is really a Bose-Einstein condensed phase since all bosons will tend to occupy the
same wavelike state.

In the opposite limit of t/U � 1, the interaction term dominates and suppresses
tunneling between sites. Note that the interaction will be minimized term by term if
the occupation number at each site is zero or one. The interaction generally penalizes
high occupation numbers and spatially varying densities, since the individual terms
grow as ∼ n2 with occupation number and not with n. For t/U � 1 then, the bosons
are localized and confined to each site with uniform density. Correlations are short-
ranged because of the localization. This phase is called the Mott insulator phase,
since the flow of bosons is halted6. Because the individual bosons are localized at
each site, the Mott phase can only have integer occupation n = 1, 2, 3, . . . There are
therefore a series of Mott phases with different number of bosons per site, denoted
as Mott1, Mott2, Mott3 . . . . Adding a single particle costs a finite energy, which may
be minimized by delocalizing it, effectively creating a superfluid state “on top of”
the Mott phase. The important point is that this energy cost remains finite in the
thermodynamic limit, N → ∞, keeping the density n/N constant. In condensed
matter lingo: the phase is gapped.

The interaction part of the energy difference per site is roughly ∆U ≈ U((n +
1)2 − n2)/N ∼ Un/N which is constant. An increasing chemical potential will
therefore not increase particle number inside the Mott phase, ∂

∂µ
〈n̂j〉 = 0 and the

Mott phase is said to be incompressible [MAV12, p. 50]. At the phase boundary
to the superfluid phase, the energy difference of adding a particle vanishes in the
thermodynamic limit (the energy gap closes), and there is a continuous quantum
phase transition to the superfluid phase where ∂

∂µ
〈n̂j〉 6= 0. Hence the phase is

gapless and the Hamiltonian is invariant under a global U(1) transformation: the
corresponding Goldstone modes are long-wavelength phase fluctuations. Goldstone
modes are the low-energy excitations of a continuous symmetry. A suitable set of
order parameters for the phase transition are the expectation number 〈n〉j: these
also change continously in the transition.

Figure 3.5 shows a sketch of the phase diagram [BDZ08, p. 23]. Since occu-
pation is regulated by the chemical potential, the Mott phases form “lobes” in

6“Normal” insulation of electronic currents is related to a different mechanism.
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n = 1 MI

n = 2 MI

n = 3 MI

SF

Figure 3.5: Sketch of a phase diagram for the Hubbard model. The red “lobes” are
regions in a Mott phase with integer fillings. The superfluid (SF) or BEC phase in
between and for higher values of t/U has a continuously varying occupation number.

the (t/U, µ/U)-plane. In one dimension, the transition is of Berezinskii-Kosterlitz-
Thouless type, in higher dimensions, continuous.

In cold atom realizations of the Bose-Hubbard model, the atoms are always
confined by a potential, which is wide enough to vary slowly over the scale of the
optical lattice spacing. In the local density approximation [PSanB+13], the potential
is viewed as a local shift in the chemical potential V (x) ≈ −∑j µ(j)n̂j, which is
permissible since the spatial variation between sites is negligible. At the center of the
trap, the chemical potential is large, favoring a large occupation number, while µ(j)
is small at the edges of the condensate. Radially, the system then describes vertical
line through the phase diagram 3.5 with concentric regions of Mott phases with
integer density, with a compressible superfluid phase in between. The occupation
number as a function of µ forms integer plateaus in the Mott phases, with the SF
phase interpolating in between. An image of this “wedding cake” structure is shown
in figure 4.2.
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Chapter 4

Optical lattices

When it comes to atoms, language
can be used only as in poetry.

Niels Bohr

In this chapter, I describe the experimental techniques involved in optical lattices.
The description is useful both for understanding optical lattices and for understand-
ing the constraints that the theoretical physicist has to work with.

4.1 Trapping
Atoms are electrically neutral but can interact with electric and magnetic fields
through the distribution of its electrons. The simplest example of this is the electrical
dipole moment d. The magnitude of this vector describes the degree to which the
atom has a positive and negative pole and the direction describes the orientation of
the poles. In an external electric field, the resulting dipole interaction [PS08, p. 51]
can be written as

Hd = −d · ~E , (4.1)

where ~E is the external electric field. A spatial variation of the electrical field shifts
the ground-state energy of the atoms differently at different positions, leading to a
lower ground state energy at certain positions. This effectively acts as a potential,
pushing the atom states into minima or maxima of the field, depending on the sign
of the dipole vector. By perturbation theory, the shift in the ground state energy
Eg for a weak oscillating field ~E(x, t) = ~Eωe−iωt + ~E−ωeiωt is [Sak94, p. 285]

∆Eg ≈
∑
e

〈
g
∣∣∣d · ~Eω ∣∣∣e〉 1

Eg − Ee + h̄ω

〈
e
∣∣∣d · ~E−ω ∣∣∣g〉+

+
∑
e

〈
g
∣∣∣d · ~E−ω ∣∣∣e〉 1

Eg − Ee − h̄ω
〈
e
∣∣∣d · ~Eω ∣∣∣g〉 =

=
∑
e

|〈e|d · ~ε |g〉|2
(

1
Eg − Ee − h̄ω

+ 1
Eg − Ee + h̄ω

)
|Eω|2 =

= −1
2α(ω)

〈
E(x, t)2

〉
t
, (4.2)
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where the angle brackets denote a time average of the electrical field, ω is the
frequency of oscillation, |e〉 , |g〉 denotes the first excited and ground states and
Ee, Eg the energies of these states. ∆Eg is sometimes called the alternating-current
Stark shift. Note that ∆Eg has a spatial variation. The atom, “dressed” in its
perturbations by the oscillating field, experiences a force towards the regions where
∆Eg is minimal. To create a standing-wave potential, it suffices to superimpose two
lasers in opposite directions, for example by reflecting on a mirror:

E = E0ẑ [cos(qx− ωt) + cos(−qx− ωt)] , (4.3)〈
E2
〉
t

=
∫ 2π/ω

0
dtE(x, t)2 = 2E2

0 cos2(qx), (4.4)

⇒ V (x) = V0 cos2(πx/d), (4.5)

for V0 = −α(ω)E2
0 , d = π/q = λ/2. This potential varies spatially in the x-direction.

By superposition of such standing waves, it is possible to create many kinds of
periodic potentials in one, two or three dimensions.

The Zeeman effect is superficially similar to the Stark effect, but due to a mag-
netic field, which shifts the energy levels of the atom [PS08, p. 45]. A spatial vari-
ation of the energy levels acts as an effective potential for the atoms. By creating
a region with lower strength in the magnetic field it is possible to trap atoms mag-
netically1. Magnetic trapping potentials are often symmetric and weak enough that
they can be described as roughly harmonic V (x) ≈ V0(1 +ωxx

2 +ωyy
2 +ωzz

2). It is
important to note that even if the optical lattice is perfectly regular, the magnetic
trap distorts it somewhat. Unless tunneling is completely suppressed, this leads to
a spatial structure known as the “wedding cake” of concentric layers of isolating and
superfluid phases [PS08, p. 439] [BDZ08, p. 24]. An image of such a structure in an
optical lattice is shown in figure 4.2, see section 4.4 for details of how the image was
created. The effect has already been discussed in section 3.4.

4.2 Cooling
The lattice potential will only be relevant if the thermal excitation energy of the
atoms is less than the potential barrier height V0. Historically, optical lattice systems
could not be realized until efficent cooling techniques were developed. The cooling
is done in steps, with more and more refined techniques being used in later stages.
First, a beam of atoms is emitted from a hot oven and slowed down from 700 K to
1 K by applying a laser beam in the opposite direction [PS08, p. 78] [Mey01, p. 27].
Atoms spontaneously absorb and then re-emit photons in random directions. This
irreversible process may be seen as an entropy pump which transfer heat from the
atoms by the randomly re-emitted radiation2.

Then, a magneto-optical trap (MOT) traps the atoms through an EM field cre-
ated from magnetic fields and lasers. Further laser cooling slows down the atoms to

1According to the mean value theorem, it is not possible to create a local extremum of a static
magnetic field B. It is however possible to create a local extremum of the absolute field strength
|B|, and such a magnetic potential can trap atoms with a negative magnetic moment [PS08, p. 62]

2The lowered temperature of course also leads to lower average speeds for the atoms. Such a
deceleration leads to a Doppler effect in the beam, which means that transition frequencies are
different along the beam as the atoms are successively cooled. This is remedied by, e.g., use of the
Zeeman effect which shifts the transition frequencies so as to counteract the Doppler shift.
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100 µK. At this stage they can be confined by a pure magnetic trap. The atoms are
then cooled by further techniques (such as evaporative cooling or Sisyphos cooling,
[Mey01, p. 30]) until kBT ∼ Er. Lasers and mirrors can then be used to create the
optical lattice, as described in the last section.

4.3 Relevant scales
The optical lattice system has some characteristic energy scales for trapping and
interactions [PS08, p. 407]. The recoil energy is defined as Er = 2h̄2π2/m`2 =
(h̄q)2/2m, which may be interpreted in two separate ways: either as the energy
of a particle trapped in a box potential of length ` (the lattice spacing), or as
the energy which is transferred when a light quantum is absorbed by an atom. The
second interpretation comes from considering the “naked” atom interacting with the
photon field, while the first comes from considering the “dressed” atom in an effective
potential from the Stark shift of the optical lattice. Often the lattice potential has
an amplitude V0 ∼ 1 − 30Er. V0/Er small leads to a weak effective potential, with
a higher rate of tunneling between potential wells. The tunneling can be expected
to become “weak” if the width of the near-isolated wavefunctions at each site is
smaller than the lattice spacing. In this situation the overlap of wavefunctions on
neighboring sites is small [PS08, p. 408].

To first order, a well-isolated wavefunction can be considered Gaussian, since
V (x) = V0 cos (2πx/`) ≈ (V0/2)(1 − (2πx/`)2), where ` is the lattice spacing. This
potential is parabolic and has solutions in the form of a Gaussian multiplied by
a Hermite polynomial. Since H0 = 1, to a first approximation the ground state
wavefunction is Gaussian with a characteristic width3

aosc =
(

h̄

mωosc

)1/2

, (4.6)

where the oscillations in reciprocal space have a frequency

ωosc =
(

1
m

d2V

dx2

)1/2

≈
(2V0

m

)1/2 π

`
, (4.7)

Combining the above two equations, I obtain

a2
osc
`2 = 1

π2

(
V0

Er

)−1/2
. (4.8)

For 87Rb and a 852 nm laser, the condition that the left hand is small is given by
V0 > 10Er.

The effective two-body interaction energy [PS08, p. 408] determines the types of
processes which will be dominant in the lattice. In terms of the recoil energy it is

Eint/Er = 8
π
na`2, (4.9)

where a is the scattering length and n is the atom density. The scattering length
gives the intercept of an asymptotic approximation of the wavefunction of a scat-
tered particle at large separations and low scattering energies. The wavefunction

3This harmonic oscillator approximation of the wavefunction will be described in section 5.1.2.
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of two particles one scattering length apart, has a wavelength comparable to that
separation. At smaller distances, the wavefunction oscillates more rapidly, while it
becomes that of two separate atoms for large separations [PS08, p. 111, p. 115]. a
is of order 10−6 cm while ` ∼ 10−4 cm and the atom density n = 1013 − 1015 cm−3,
so that Eint = 10−3 − 10−5Er. Since three-body interactions are characterized by
energies with leading terms which are higher order in a, it is usually safe to ignore
anything beyond two-body interactions in optical lattices [PS08, p. 109].

4.4 Measurement and manipulation
An important measurement technique in optical lattices is time-of-flight measure-
ments [BDZ08, p. 14]. If the trapping potential and optical lattice are suddenly
turned off, the atoms will not have time to change adiabatically. Because it is no
longer confined, the cloud will experience free fall and expand from its trapped state.
Neglecting any interaction during the fall, the expansion will be ballistic, so that
h̄kt = Mx in the reference frame of the cloud. Because of this relation, the density
distribution of the expanding cloud will be proportional to the momentum distribu-
tion in the lattice. A Bloch state with crystal momentum q can be described under
expansion by a Fourier expansion of plane waves with momenta pn = h̄q + 2nh̄k,
where n is an integer, q is the crystal momentum of the lattice and k is a primitive
vector of the reciprocal lattice. This is due to the fact that Bloch states consist
of Fourier components periodic in the lattice multiplied by plane waves with the
crystal momenta. After letting the cloud expand for a certain time (the “time of
flight”), the density distribution is measured using absorption imaging (measuring
the absorption of a laser through the cloud by a CCD chip). The resulting data is
a density profile n(x) which (under the current approximations) is given by

n(x) = 〈n̂(x)〉tof =
〈
â†tof(x)âtof(x)

〉
≈
〈
â†(k)â(k)

〉
trap

= 〈n̂(k)〉trap , (4.10)

where âtof(k) annihilates a state in mode k of the cloud at the time of measurement,
and âtrap(x) annihilates a state at position x before expansion. (4.10) shows that
the expectation value of the number operator in the trap (before expansion) can be
approximated by the expectation value of the number operator after the expansion,
which again is due to the ballistic expansion of the cloud. Momentum-momentum
correlations also manifest themself in noise correlations of the cloud:

〈n̂ρ(x)n̂ρ(x′)〉tof ≈
〈
â†(k)â(k)â†(k′)â(k′)

〉
trap

=

=
〈
â†(k)â†(k′)â(k′)â(k′)

〉
trap

+ δkk′ 〈n̂(k)〉trap . (4.11)

Figure 4.1 shows absorption images of a series of time-of-flight measurements
for increasing lattice depth which is a striking example of the usefulness of this
measurement technique [BDZ08, p. 24]. With the potential off, all atoms lie close to
the zero momentum state (at the origin in the figure). As the potential is gradually
increased, interference peaks become visible around k = 0. The peaks are related to
the long-range order in the SF phase. The momentum density distribution (related
to the density distribution in figure 4.1 through h̄kt = Mx) is given by

n(k) ∝
∣∣∣ψ̃(k)

∣∣∣2∑
R
eik·RG(1)(R) (4.12)
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Figure 4.1: Absorption imaging of a cubic lattice with amplitude V0 = 0, 3Er, 7Er,
10Er, 13Er, 14Er, 14Er, 16Er and 20Er in order from left to right, top to bottom.
Source: [BDZ08].

where ψ̃(k) is the Fourier transform of the Wannier function of the atoms, {R}
are the full set of lattice vectors and G(1)(R) is the one-particle density matrix
which is related to the correlation function at radius R. As mentioned in sec-
tion 3.4, the superfluid phase is characterized by long-range correlations so that
lim|R|→∞G(1)(R) 6= 0. For V0 = 0, the Fourier transformation of the Wannier func-
tion should be almost like a Dirac delta function, since only the long-wavelength
Bloch states are occupied. For V0 6= 0 but less than some critical value, the Fourier
transform is non-zero in a larger region, around k = 0 since the particles have a
somewhat higher density at lattice minima but are still not fully localized. G(1)(R)
also has a peak close to the origin reflecting short-range correlations, but for R
large enough it will approach a constant. The sum in (4.12) will then look much
like a delta distribution if the one-particle density matrix approaches its constant
limit fast enough. Qualitatively then, one can understand that the momentum dis-
tribution will have peaks at k ·R = 2πn for integers n, which leads to the observed
interference peaks. For large enough lattice depth, the system leaves the BEC phase
and undergoes a phase transition to the Mott phase where atoms are isolated in
their sites4. Since there is no long-range correlation in the Mott phase, G(1)(R)
goes to zero exponentially in R, leaving only a peaked Gaussian around k = 0.The
Gaussian distribution in the last sub-figure is the Fourier transform of the Gaussian
shape of the atom wavefunctions at each site.

A useful tool for manipulation is stimulated Raman transitions. With the help of
two counter-propagating lasers, it is possible to couple the populations of two atomic
levels such as the s and p bands. Each laser will drive a cyclic Rabi process, consisting
of absorption and re-emission of photons, tuned in such a way as to couple the s and
p bands with a third state, far detuned from the rest of the system. The combined
process leads to a Raman coupling between s and p states which constitutes an
inelastic scattering process (since the atoms absorb and re-emit photons of different
frequency). Stimulated Raman transitions was used in [TSAI07] to load atoms in
the p-band of a one-dimensional optical lattice. By tuning the two laser beams with

4The Mott phase can thus be reached in two ways: by increasing the onsite interaction strength
and by increasing the lattice depth.
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wavevectors k1,k2, they obtaned a spatially dependent effective Rabi frequency

Ωsp,eff = Ω1Ω∗2
2∆

∣∣∣〈2
∣∣∣ ei(k1−k2)·x

∣∣∣1〉∣∣∣2 , (4.13)

where Ω1,Ω2 denotes the Rabi frequencies of the two lasers and ∆ the detuning of
the lasers to the atomic transitions which they drive. |1〉 , |2〉 denote two Raman
levels of a 87Rb atom, which is held isolated in a single site during loading by a
strong potential V0 ∼ 40Er which is lowered after the loading process. The authors
found that, for lattice depths of V0 ≤ 25Er, such p-band lattices had long lifetimes,
on the order of hundreds of characteristic tunneling times. The system then has
time to “delocalize” and reach a stable state before decaying. If not, there would be
no p-band orbital physics to talk of, at least not any equilibrium. Raman processes
may also be used to tune the value of coupling constants via laser-assisted tunneling.
Since the tunnelings are functionally dependent on the potential and the Wannier
functions, it is also possible to change the tunnelings by directly modifying the
potential. Consider a part of the expression for the tunnling in the separable square
lattice, in the harmonic oscillator approximation

V0

∫
dx(x−Xi)α(x−Xj)β sin2(πx)e− 1

2ω(x−Xi)2− 1
2ω(x−Xi)2

. (4.14)

By the coordinate transformation x→ y = x + (Xi + Xj) /2 = x + X̃, the integral
can be rewritten as

V0

2 e
−ω∆2/4

∫
dy
(
yαyβ −∆α∆β/4

) (
1− cos(2π(y − X̃))

)
e−ωy2 =

= V0

2 e
−ω∆2/4

∫
dy
(
yαyβ −∆α∆β/4

) (
1− cos(2πX̃) cos(2πy)

)
e−ωy2

. (4.15)

Since [II15]
∫∞

0 xne−ωx
2
dx ∼ ω−(n+1)/2 and ω is large (it has the dimension of

length−2), the largest term in this integral will be proportional to ∆α∆β and some
power of V0. By squeezing, the distance between sites ∆ = Xi−Xj may be changed.
The shape of the potential further affects the value of the tunneling. While this is
only an approximation and a particular kind of lattice, the argument holds in gen-
eral. In section 5.2.3, this is shown by computing the tunnelings for zig-zag lattices
of varying shapes.

Feshbach resonances [PS08, p. 143, p. 148] may be used to tune the effective
interactions between atoms. It is even possible to make atom-atom interactions
attractive. This has been tried in an experiment and led to the collapse of the
condensate [PS08, p. 151]! In chapter 8, it will be shown that physics in the Mott
phase can be described by an effective Hamiltonian, the coupling constants of which
depend on the tunnelings and interaction terms, the strengths of which may be
varied through Feshbach resonance.

One of the most important features of the optical lattice technology is the ability
to control individual atoms in the lattice. Such single-site addressing involves using
lenses to focus laser beams onto a specific lattice site [TSAI07]. Single-site imaging
involves stimulating fluorescent emissions from one site at a time, which are then
captured by a CCD chip (i.e. a camera). A direct image of an optical lattice can
then be composed from the individual pieces for each site. An interesting limitation
in single-site imaging is that the laser pulse ejects atoms in pairs from each site, so
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Figure 4.2: Single-site images of a wedding-cake structure as described in section
3.4. The pixels show occupation number modulo 2 of each lattice site in a quadratic
lattice. Source: the Greiner group website (link)

that only information about the parity (even or odd) can be gathered. The technique
may be seen as a projection of the many-particle wavefunction onto number states
of a site [WAM+10]. Figure 4.2 has a number of pictures compiled with single-site
imaging, showing the wedding cake structure mentioned in section 3.4. Regions with
exact integral occupation number appear in black and green concentric circles. In
principle there should be a superfluid phase “interpolating” between the Mott levels,
but here the number of atoms is too small for the effect to be seen. If the number of
atoms were large enough, regions with some odd and some even occupation would
appear between the Mott phases (remember that only eigenstates of the number
operator can be measured!).
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Chapter 5

From potentials to overlap
integrals

The only simplicity to be trusted is
the simplicity to be found on the
far side of complexity.

Alfred North Whitehead

A quantum mechanical many-body problem can be said to be specified by the
potential function, the particle masses and the interaction potential between the
particles. There may also be some internal states of the particles. In the process
of second quantization, this information is encoded in the coupling constants of
the problems - the coefficients which sets the strength of each term in the second-
quantized Hamiltonian. In this chapter, I will describe and perform the procedure of
how to derive them for two types of optical lattice potentials: the square lattice and
the zig-zag lattice. The resulting many-body Hamiltonian for the second potential
is the subject of the rest of this thesis.

5.1 The square lattice

5.1.1 Wannier functions in the square lattice
The square lattice potential is, in rescaled variables, defined as

V (x, y) = V0
(
sin2(πx) + sin2(πy)

)
. (5.1)

This potential is separable, since it is a sum of functions of each coordinate. This
holds in any number of dimensions for a hypercubic lattice. For a separable potential,
the single-particle Schrödinger equation is reduced to a one-dimensional problem by
the ansatz1 ψ(x) = ψx(x)ψy(y). The Schrödinger equation, in its rescaled form, is(

−∂2
x − ∂2

y + V0 sin2(πx) + V0 sin2(πy)
)
ψ(x) = Eψ(x), (5.2)

1This also implies that the wavefunction is constant in z, and all dependence on this coordinate
disappears from the Schrödinger equation, which can therefore be treated as two-dimensional.
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which can be separated into two Mathieu equations as(
−∂2

x − ∂2
y + V0 sin2(πx) + V0 sin2(πy)

)
ψx(x)ψy(y) = (Ex + Ey)ψx(x)ψy(y)

⇒

(−∂2
x + V0 sin2(πx))ψx(x) = Exψx(x)(

−∂2
y + V0 sin2(πy)

)
ψy(y) = Eyψy(y)

, (5.3)

which can be converted into the standard form by the substitution πx = z:

ψ′′ + [a− 2q cos(2z)]ψ = 0, (5.4)

where

a =
( 1
π

)2 (
E − V0

2

)
(5.5)

q = −
( 1
π

)2 V0

4 . (5.6)

The solutions can then be found in terms of plane waves by employing a Fourier
transformation. This yields a recursion relation for the modes:

ψ = eirz
1
N

∑
k

cke
ikz (5.7)

⇒
∑
k

{
−(r + k)2 + a− q

(
e2iz + e−2iz

)}
cke

ikz = 0 (5.8)

⇒
[
a− (r + k)2

]
ck − q (ck+2 + ck−2) = 0 (5.9)

⇒

 ... ... ... ... ... ... ...
... −q a−(r+1)2 −q ... ... ...

... 0 −q a−r2 −q 0 ...

... 0 0 −q a−(r−1)2 −q ...

... ... ... ... ... ... ...

( ...
c2
c0
c−2
...

)
= 0. (5.10)

Only the even modes have been represented in the matrix, since only these are cou-
pled. Truncating the Fourier expansion yields a finite band-diagonal matrix which
can be diagonalized numerically for each crystal momentum r. The coefficients cn
of the resulting eigenvectors give the Bloch eigenstates of the problem via equa-
tion (5.7). Furthermore, the one-dimensional Wannier functions can then be found
by summing Bloch functions from the first Brillouin zone, according to the defi-
nition (3.17). For a system with very many lattice sites, the number of allowed
quasimomenta, by the definition (3.11), is very large. It is then permissible to ap-
proximate the sum with an integral. This integral may in turn be approximated
numerically by sampling. The ground state is non-degenerate and can be written
as ψs(x) = ψxs(x)ψys(y), a product of one-dimensional s orbitals. In this case of
an isotropic cubic lattice, the first excited band is doubly degenerate (the degen-
eracy is d for a d-dimensional hypercubic lattice), and the states denoted as px,
py in analogue with the atomic orbital states. Such wavefunctions are of the form
ψpx(x) = ψxp(x)ψys(y), i.e. the product of one p- and one s-orbital wavefunction.
Figure 5.1 shows the one-dimensional Wannier functions in the p band and figure
5.2 the separable two-dimensional Wannier functions px, py for V0 = 25Er.

5.1.2 The harmonic oscillator approximation
Since sin2(πx) = (πx)2 + O(x4), the potential is approximately parabolic around
each site. It is therefore reasonable to expect that the solutions should resemble the
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Figure 5.1: One-dimensional Wannier functions in one dimension, calculated for
V0 = 25Er. Note that they are not positive-definite.
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Figure 5.2: Separable Wannier functions in two dimensions, calculated for V0 =
25Er.
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solutions for a parabolic potential in the vicinity of the sites [PS08, p. 411]. The
Schrödinger equation for a wavefunction in a parabolic potential is the quantum
harmonic oscillator (QHO) and have solutions in terms of the Hermite polynomials
Hn(x):

(
− ∂2

∂x2 + V0(πx)2
)
ψx(x) = Exψx(x)⇒ ψnx(x) = NHn(x)e−ωxx2/2, (5.11)

where ωx =
√
V0π, H0 = 1, H1 = 2x and N is a normalizing factor. Higher Hermite

polynomials are only relevant for higher bands. One common measure of how well
the harmonic approximation works is the fidelity, defined as

F [φ, ψ] =
√∣∣∣∣∫ dxφ∗(x)ψ(x)

∣∣∣∣, (5.12)

where φ, ψ are assumed to be normalized functions and the integration is over the
whole domain of φ and ψ. Note that both the normalization and the fidelity involve
overlap integrals, integrals which are inner products in function space:

O(φ, ψ) =
∫
dxφ∗(x)ψ(x) = 〈φ, ψ〉 . (5.13)

The fidelity can be seen as a measure of how big the projection of the function φ
on function ψ is, but this has a somewhat more complicated meaning in infinite-
dimensional spaces [Bal10, p. 26]. Figure 5.3 shows the fidelity of the harmonic
oscillator approximation with the true Wannier function, calculated for a range of
potential depths. Note that for V0 = 25Er, the fidelity is already > 0.99 for the
s-band, while the p-band Wannier function requires a potential depth of almost
V0 = 100Er for the harmonic approximation to have such a fidelity. This lower
fidelity for the higher orbital derives from the fact that it is much less ‘bound’ to a
lattice site, i.e. its width is larger. It can also be understood from the fact that for
a higher energy, the state ‘feels’ the anaharmonicity of the sinusoid potential more
than for the ground state.

Figure 5.4 shows that, even for V0 = 100Er, the oscillatory character of the “tail”
of the Wannier function is significant. The behavior is not captured by the harmonic
approximation and the fidelity apparently provides no information about this error.
This is an indication of that the true Wannier functions do not converge uniformly
to the harmonic oscillator approximation even as V0/Er → ∞. Instead, some os-
cillatory character always remains [BDZ08, p. 14] (remember that the asymptotic
behaviour is exponential and not gaussian). This means that tunnelings in particu-
lar cannot be reliably calculated with the harmonic approximation even in the limit
of very deep lattices.

One striking example of how the harmonic oscillator approximation can fail is in
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Figure 5.3: Logarithmic plot of the fidelity for a range of V0/Er for the s and p
orbital states. Note that the fidelity is almost 1 for V0 = 25Er while the p band
requires much deeper potential wells.

the approximation of the onsite interactions, which are given by

Uαβ = U0

∫
dx |ψpα(x)|2

∣∣∣ψpβ(x)
∣∣∣2

⇒ Uxx = Uyy = U0N
4
0N

4
1

∫
dxx4e−2ωx2

∫
dye−2ωy2 =

= U0
4ω4

π2

( 3
16ω2

√
π

2ω

)(√
π

2ω

)
= 3ω

8π (5.14)

Uxy = U0N
4
0N

4
1

(∫
dxx2e−2ωx2

)2
=

= U0
4ω4

π2

( 1
4ω

√
π

2ω

)2
= U0

ω

8π = Uxx/3, (5.15)

where ω =
√
V0/2π. For V0 = 25Er, the harmonic approximation yields Uxx/U0 ≈

1.30, Uxy ≈ 0.43. A computation with the full Wannier functions instead gives
Uxx/U0 ≈ 1.44, Uxy/U0 ≈ 0.60, which has a ratio of Uxx/Uxy ≈ 2.4 and not 3. The
ratio 3 turns out to be close to a critial value, leading to a qualitatively different
prediction [PSanB+13, CLM10].

5.1.3 Analytic overlap integral
As an illustration of why the harmonic approximation gives the wrong answers when
computing overlap integrals, let me compute

O =
∫ ∞
−∞

dxfk(x+ d)∂2
xfk(x) (5.16)

fk(x) = N cos(kx)e−ax2/2, (5.17)
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Figure 5.4: The Wannier function (solid blue line) and its harmonic approximation
(dashed red line), for the p orbital, at V0 = 100Er. Note the periodic “wiggles” in
the tail, which is the feature which makes the Wannier functions orthogonal between
different lattice sites.

which here serves as a model of an oscillatory integrand. While this model decays
in a gaussian fashion for large x, this should not affect the discussion about non-
uniform convergence here. Proceeding, we have

∂2
xfk(x) =

{(
a2x2 − a− k2

)
cos(kx) + 2akx sin(kx)

}
e−ax

2/2

⇒ O = N 2
∫ ∞
−∞

dx cos(k(x+ d))
{(
a2x2 − a− k2

)
cos(kx) + 2akx sin(kx)

}
e−a((x+d)2+x2)/2.

(5.18)

A change of variables is appropriate: x + d/2 = x + λ = y. I made use of the
trigonometric identities

cos(a+ b) cos(a− b) = 1
2 (cos(2a) + cos(2b)) , (5.19)

cos(a+ b) sin(a− b) = 1
2 (cos(2a) + cos(2b)) , (5.20)

so that

O = N 2e−aλ
2
∫ ∞
−∞

dy cos(k(y + λ))
{(
a2(y − λ)2 − a− k2

)
cos(k(y − λ))+

+2ak(y − λ) sin(k(y − λ))} e−ay2 =

= N 2 1
2e
−aλ2

∫ ∞
−∞

dy
{(
a2y2 − 2a2λy + a2λ2 − a− k2

)
(cos(2ky) + cos(2kλ)) +

+2ak(y − λ) (sin(2ky) + sin(2kλ))} e−ay2
.

(5.21)

Every part of this integrand is either even or odd. The odd parts vanish when
integrated over. The remaining four integrals are computed using integral tables
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from [II15]. Consider ∫ ∞
−∞

dye−ay
2 =

√
π

a
(5.22)∫ ∞

−∞
dyy2e−ay

2 =
√
π

a

1
2a

(5.23)∫ ∞
−∞

dy cos(2ky)e−ay2 = 1
2

∫ ∞
−∞

dy
[
e−ay

2+2iky + e−ay
2−2iky

]
=
√
π

a
e−k

2/a

(5.24)∫ ∞
−∞

dy cos(2ky)y2e−ay
2 = 1

2

∫ ∞
−∞

dy
[
e−ay

2+2iky + e−ay
2−2iky

]
y2 =

√
π

a

(a− 2k2)
2a2 e−k

2/a

(5.25)∫ ∞
−∞

dy sin(2ky)ye−ay2 = 1
2i

∫ ∞
−∞

dy
[
e−ay

2+2iky − e−ay2−2iky
]

=
√
π

a

k

a
e−k

2/a.

(5.26)

Using these identities, the overlap integral can be written as

O(λ) = N
2

2

√
π

a
e−aλ

2 {(
a2λ2 − a/2

)
e−k

2/a+

+
(
a2λ2 − a/2− k2

)
cos(2kλ) + 2akλ sin(2kλ)

}
. (5.27)

The oscillations can be assumend to be periodic in the lattice spacing, so that
2kλ = πn ⇒ k = πn/2λ for some integer n and the last term vanishes while the
second term will contribute with a negative or positive sign:

O(λ) = N
2

2

√
π

a
e−aλ

2
{(
a2λ2 − a/2

)
e−(nπ2λ )2

/a + (−1)n
(
a2λ2 − a/2−

(
nπ

2λ

)2
)}

.

(5.28)

The normalization is important:

N−2 =
∫ ∞
−∞

dx cos2(kx)e−ax2 = 1
2

∫ ∞
−∞

dx (1 + cos(2kx)) e−ax2 = 1
2

√
π

a

(
1 + e−(nπ2λ )2

/a
)
.

(5.29)

For n even I find:

O(λ) = e−aλ
2

(a2λ2 − a/2)−
(
nπ

2λ

)2 1

1 + e−(nπ2λ )2
/a

 . (5.30)

For a given a and large n, O ∼ n2. If O is seen as part of a Fourier series, it
would be suppressed by n or n2 but would still be important. Note that the part
multiplied by n2 is not multiplied by any power of a. As a → ∞ corresponds to
small lattice separation, n will have to be correspondingly larger to make that term
significant. For a real Wannier function I would expect some connection between a
and the amplitudes of the Wannier modes, which may or may not make oscillatory
integrands relevant. It is precisely the non-uniform convergence of fk(x) as a→∞
that is the reason that the oscillatory character is important for the value of the
integral. I conclude that at least in this model, the oscillatory character can be
important even for small a.
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5.1.4 Overlaps in the quadratic lattice
For V0 = 25Er, the “self-energies” were computed as txxii = tyyii ≈ −49.8, confirming
that the px and py states are degenerate in the quadratic lattice. Furthermore,
txyii = tyxii = 0 because of the symmetries of the potential and states. In fact, txyij = tyxij
for any pair of neighbor sites i, j. I found txx ≈ −7.1, tyy ≈ 2.4 between horizontal
pairs, while txx ≈ 2.4, tyy ≈ −7.1 for vertical pairs. Hence px, py orbitals are more
likely to tunnel in the direction of their nodes, which, of course, is a result of the
orbitals being more extended in these directions. All orbital-changing tunneling is
suppressed and thus only the onsite interaction converts pairs in one orbital states
into the other.

In section 7.3, I discuss the solution of the quadratic lattice in terms of a mean-
field approximation, starting from a coherent-state ansatz. The interaction Hamil-
tonian is

V̂ =
∑
iα

Uαα
2 n̂iα (n̂iα − 1) +

∑
iα 6=β

Uαβn̂iαn̂iβ + Uαβ
2
(
â†iαâ

†
iαâiβâiβ + h.c.

)
. (5.31)

The first two term favor singly occupied and unoccupied sites while the third term
mixes x and y states, so the solution can be expected to be some singly occupied
mix of x and y states. In section 7.3, I show that the solution, in first-quantized
notation, is a vortex state with a wavefunction

ψj,±(x) = ψjx(x)± iψjy(x), (5.32)

where ψjα(x) are the α = x, y Wannier functions. These functions are eigenstates of
the z component of L̂ = x̂×p̂, the angular momentum operator, with eigenvalues±h̄.
They therefore have a non-zero angular momentum and violate time-reversal sym-
metry! The wavefunction (5.32) seems to violate Feynmans no-node theorem [C.09],
which suggests that it should always be possible to write the ground state of a
many-body boson system with a real wavefunction. But we must remember that
the Wannier functions are not the energy eigenfunctions, and neither does the no-
node theorem hold for excited bands. Figure 5.5 shows a plot of the the phase and
absolute value of a vortex state in “physical space”. The solution is referred to as a
vortex solution because it has a winding number n = ±1. The winding number is
defined by ∮

dx arg [ψj,±(x)] = 2πn, (5.33)

where the integral is any closed path around the center of the wavefunction. Note
that the vortex solution has a discontinuity in phase around the central minimum
which precisely reflects the non-zero winding number: this is a feature of the plotting
software which always chooses the first branch of the Riemann surface.

If the tunneling is small but non-zero, the Hamiltonian will couple these states
into a pattern. This means that it is not permissible to treat individual sites as
independent. The tunneling constrains how neighbouring site are connected, creat-
ing coherence between sites. For the quadratic lattice, the bipartite nature of the
lattice leads to a “checkerboard” pattern of vortex or “anti-vortex” states on each
of the two sublattices [AS05] [JJ12]. Again, see chapter 7 for a full treatment of this
problem.
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Figure 5.5: Vortex solution. The left plot shows the phase (in units of 2π), while
the right plot shows the density |wx(x) + wy(x)|2. Note the central vortex structure,
surrounded by smaller vortices in an intricate pattern. Notice the branch cuts, which
are lines where the phase has turned a full 2π. All branch cuts are connected to
centers, where the wavefunction has to be zero to avoid being singular (this effect
is most clearly visible as the center hole of the density plot). A spatially varying
phase implies that the superfluid host some persistent current - the vortex.

5.2 The zig-zag lattice
The zig-zag lattice potential consists of repeated ladders of potential wells. The
ladders are separated by potential maxima so strong that the atoms can be said
to be confined to each chain. In the third direction, the system is limited by an-
other optical lattice with an amplitude so high that tunneling is also completely
suppressed. Indeed, using large potential amplitudes in the transverse directions,
experiments have demonstrated [BDZ08, p. 13] that the atoms will form regular
tubular structures in the z-direction. The goal of choosing this particular lattice is
to create a quasi-one-dimensional system where the interaction between sites on the
“angles” of the chain cannot be ignored. The system can be effectively modelled
as a one-dimensional system with interactions between nearest-neighbor (diagonal)
and next-nearest-neighbor (horizontal) sites.

5.2.1 Constructing the zig-zag lattice
The zig-zag potential can be created by superimposing four standing waves:

V (x) = V0
[
sin2(k1 · x/2) + sin2(k2 · x/2)+

+ sin2((k1 − k2) · x/2) + g sin2(ks · x/2− π/4)
]
, (5.34)

where V0, the strength of the lattice, and g > 0 are free parameters. The fourth
term proportional to g is called the superlattice. As mentioned in the end of section
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4.4, it is neccessary to set V0 ≤ 25Er for the system to have time to delocalize. The
reciprocal vectors are2

k1 = kyŷ,

k2 = kxx̂ + 1
2kyŷ,

ks = 1
2kyŷ, (5.35)

where

kx = 2π
2 cos(θ) ,

ky = 2π
sin(θ) .

The third free parameter is θ, the angle between the horizontal rows and the diagonal
of the lattice.

Setting g = 0 corresponds to a regular triangular lattice of angle θ. Depending
on the angle, this lattice will have a number of symmetries: it will at the very least
be invariant under translation by any integer-coefficient linear combination of lattice
vectors a1 = 2 cos(θ)x̂, a2 = cos(θ)x̂ + sin(θ)ŷ. Thus the lattice is a Bravais lattice
as described in section 3.1.2, and there is one site per primitive cell. There will be
an additional reflection symmetry in the x and y plane and, for θ = π/3, rotation
symmetry by angles π/3.

As soon as the superlattice is turned on, a number of symmetries are inevitably
broken. This will have profound consequences on the solutions. The first and
most important consequence is that discrete translation invariance is broken. The
primitive cell now contains two sites, which can be taken as a diagonal pair of sites
in each row.

⇒

Figure 5.6: Symmetries of the triangular lattice and symmetry breaking in the
transition to a zig-zag lattice. The nodes mark the minima of the zig-zag potential for
g = 0 (left) and g > 0 (right). The triangular lattice has 60◦ rotation symmetry (blue
angles), three reflection axes through any triangle (red, dotted) and reflection axes
along all sides of triangles (green). Of course, there is also a translation symmetry by
any lattice vector X. The zig-zag lattice keeps axes of reflection symmetry through
(red) and between (green) every triangle in the direction of the superlattice. There is
still horizontal translation symmetry by one lattice spacing and a vertical translation
symmetry by two lattice periods.

Another important effect of the superlattice is that it changes the positions of the
minima of the potential. Qualitatively, each zig-zag strip has its minima squeezed

2I choose to work in rescaled coordinates, in which the lattice spacing ∼ 1.
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towards the middle of the strip in the y-direction. Figure 5.6 illustrates the symmetry
reduction and shift schematically. Since I will later assume the Wannier functions
to be centered at the minima of the potential, it is convenient to have the distances
and angles between the sites in closed-form expressions. I therefore introduce an
affine transformation y → y′ = ay+ b which brings the first minimum back to x = 0
and the second minimum to x = a2, a1, a1 + a2 and so on. The coefficients a, b were
found numerically by optimization of the position of the minima. Physically, the
affine transformation could be implemented by a shifting of the phase of all lasers
in the y-direction and a tuning of the parameter ky as defined above. The shifted
potential is shown in figure 5.7 in a heatmap plot and a 3D projection.

Figure 5.7: Two different views of the zig-zag potential with θ = π/3 and g = 2. To
the left: a heatmap plot where minima are light and maxima are blue. To the right:
a color-coded 3D projection: minima are red, maxima are blue.

5.2.2 Wannier states in the zig-zag lattice
The potential (5.34) is non-separable. To obtain the full energy eigenfunctions would
be numerically challenging, and finding the full Wannier functions would involve
integrating over a hexagonal Brillouin zone. As is common, I chose to work with
the two-dimensional Wannier functions for a square lattice, which are more easily
obtained since the Schrödinger equation for this potential is separable. Whether the
full Wannier states, the single-site separable states or their harmonic approximation
are used, they are all in the end functional bases. There is no guarantee however, that
this subspace of all functions are enough to describe the solution. At least for the
triangular lattice, the true Wannier functions resemble the separable ones[WC03].
Recall equation (3.20) for the tunnelings:

tαβij =
∫
dxψ†Xiα

(x)
[
−∇2 + V (x)

]
ψXjβ(x). (5.36)

The values of the tunnelings will obviously depend on the functional basis. tαβii ,
the onsite-energies, are conventionally absorbed into the interaction, so that the
values of certain couplings in the interaction, as well as tunnelings, will depend on
the choice of basis. Even though the mathematics may be easier or harder for a
particular single-site basis, they must in the end give the same physical predictions.
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td
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Figure 5.8: Illustration of what is meant by diagonal and horizontal hopping in
the lattice, denoted td and th respectively. The probability for tunneling between
different zig-zag ladders is so small that it may be ignored in calculations.

One interesting variation on the theme of p-band Wannier functions are rotated
states. Imagine rotating the nodes of the Wannier functions relative to the lattice,
mathematically described by

ψiα =
∑
β

Uαβψ̃iβ, (5.37)

where U is an orthogonal matrix with determinant 1. Especially interesting from
symmetry considerations are those Wannier bases which has nodes in the x/y direc-
tion (such as those obtained from the quadratic lattice) and those states rotated by
45◦. While this has some interesting consequences for the form of the Hamiltonian,
the rotated Wannier functions were not used for the results of this thesis.

5.2.3 Overlap integrals
The tunneling and interaction strength are couplings determined by the overlap
of the single-particle states in the Fock basis. Figure 5.8 illustrates the types of
tunnelings which are involved schematically.

Note that the Hermitian property of the Hamiltonian

∑
ij,αβ

tαβij â
†
iαâjβ =

∑
ij,αβ

tαβij â
†
iαâjβ

† =
∑
ij,αβ

(
tαβij
)∗
â†jβâiα (5.38)

leads to the constraint
(
tβαji
)∗

= tαβij . Moreover, in the absence of external gauge
fields, it is possible to choose the tunnelings to be real [JFJO11] [Aue94, p. 23]. If
txxo = tyyo , the Hamiltonian will not favor any of the orbital states, while if they are
different this will act as a kind of chemical potential, favouring one of the orbital
states. txyo , tyxo correspond to terms in the Hamiltonian which convert a single px state
to a py state, “on-site”. The interaction does have a term converting px ↔ py but only
convers pairs (therefore this part of the interaction conserves particle number modulo
2). The Hamiltonian has a local Z2 parity symmetry provided that txyo = tyxo = 0.
The symmetry only holds locally because of the fact that tunneling can convert
orbital states between sites.

Computation of the overlap integrals is not such a simple integration routine as
it may seem. This problem stems from the fact that the integrand is often
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Figure 5.9: Comparison between the overlap integrals, computed with the full sepa-
rable Wannier functions (green) and with the harmonic approximation (red), com-
puted for a range of V0. What is found is that even for relatively large potential
amplitudes, the harmonic approximation fails to qualitatively reproduce the overlap
integrals.

• (almost) antisymmetric, leading to large performance losses for relatively small
changes in integration grid size and integration area.

• not well localized because of the “wiggly” nature of the Wannier states, which
is the very feature which make them an orthonormal basis.

Both these reasons motivated extensive convergence tests of the integrals in all nu-
merical parameters: the truncation of the Fourier series for the Mathieu equation,
the number of quasimomenta used for the integral approximating the Wannier func-
tions and the region of integration. Just as for the quadratic lattice, the harmonic
approximation gives the wrong results when calculating overlap integrals. Figure
5.9 compares the harmonic approximation with a calculation made with the “full”
Wannier functions. At least for V0 < 30Er, the true Wannier states give strikingly
different predictions.

It is interesting to understand how θ and g, the free parameters of the lattice,
influence the physics. After second quantization, all physical information about
the system should be contained in the choice of single-particle basis, and in the
couplings. Figure 5.10 shows a plot of the overlap integrals computed for a range
of θ with g = 2 held fixed. For each point in each subplot, a lattice potential was
generated and optimized as described above. Depending on θ, the minima of the
potential will be more or less elongated. It is reasonable to take this into account
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Figure 5.10: Self-energies and tunnelings computed for a range of values of θ, where
V0 = 25Er. The first row shows the onsite energies txxo , tyyo . Note that txyo , tyxo are
negligible. The second and third row show the diagonal and horizontal tunnelings
respectively. The angles θ = π/4. and θ = π/3. have been marked with vertical
lines.

when calculating the separable Wannier functions: this was done by setting the
lattice constants used in the calculations equal to `x = cos(θ), `y = sin(θ). θ = π/4
then leads to Wannier functions such as in the quadratic lattice but with lattice
constant `x = `y = 1/

√
2. Other angles squeezes the lattice in the x- or y-direction.

Note that for θ = π/4, txxh is negligible. txxd and tyyd are also unimportant compared
to the large terms: tyyh , t

xy
d and txyd are the significant couplings.

Fixing g = 2, θ = π/4, I obtain the set of tunneling coefficients in table 5.1. Due
to the superlattice, the difference between self-energies 2µ = txxo − tyyo ≈ 20, which
breaks degeneracy of the px and py states. If µ is one order of magnitude larger than
the tunnelings, it will be the dominant term, leading to a state with only one orbital
populated. As will be seen in chapter 8, the chemical potential can be interpreted
as an external magnetic field in the Mott phase: a strong chemical potential leads to
a simple polarized spin model. Since the superlattice is also necessary to uncouple
the different chains, it seems like the zig-zag potential would show no interesting
dynamics.

However, there is a way out. By use of a Raman coupling as described in section
4.4, tunnelings and self-energies may be tuned at will. While this make experimental
realization harder, it enables us to tune µ as well as the other couplings. It is nec-
cessary to shift µ and all the horizontal tunnelings to generate interesting behavior
in a spin model, as will be shown in chapter 8.

53



Even Odd
Diagonal (nearest-neighbor) txxd 0 0

txyd 1.5 −1.5
tyxd 1.5 −1.5
tyyd 0 0

Horizontal (next-nearest neighbor) txxh 0 0
txyh 0.1 −0.1
tyxh −0.1 0.1
tyyh −1 −1

Table 5.1: Tunneling coeffiencts calculated for a zig-zag lattice with g = 2, V0 = 25Er
and θ = π/4, for even and odd sites. As was already shown, txyij = tyxji . Note the
pattern of alternating signs of the diagonal and horizontal xy tunnelings.

As argued, the phases of the tunneling coefficients play an important role for the
properties of model. More precisely, if we imagine a particle hopping around in the
lattice in such a way that it forms a loop (often referred to as Wilson loop), then we
can define the Peierls phase [JFJO11]

φ = 6 [tαβij t
γδ
jk ...t

εα
li ], (5.39)

where tαβij the corresponding tunneling coefficients form a closed loop, and it is
understood that the phase is defined modulo 2π. This phase is gauge invariant, i.e.
no local unitary transformation will alter its value, and can be seen as a synthetic
magnetic flux penetrating the loop. Thus, for a non-zero φ the model is equivalent to
the one of a charged particle in a magnetic field. Noting that some of the tunneling
coefficients are negative in the present model, the natural question arises whether
it is possible to find loops such that φ = π. It is, however, easy to convince oneself
that the Peierls phase actually vanishes for any loop in the zig-zag lattice.

5.2.4 The second-quantized Hamiltonian
From the overlap integrals, I obtain a Hamiltonian of the form

Ĥ = T̂ + V̂ , (5.40)

where the kinetic part of the Hamiltonian is

T̂ = −
∑
j,α,β

tαβd
(
â†jαâ(j+1)β + h.c.

)
−
∑
j,α,β

tαβh
(
â†jαâ(j+2)β + h.c.

)
, (5.41)

where the sums are over nearest- and next-nearest neighbors, and the interaction
part of the Hamiltonian is

V̂ = V̂nn + V̂FD, (5.42)

V̂nn =
∑
j,α

Uαα
2 n̂jα (n̂jα − 1) +

∑
j,α6=β

Uαβn̂jαn̂jβ, (5.43)

V̂FD =
∑
j,α6=β

Uαβ
2
(
â†jαâ

†
jαâjβâjβ + h.c.

)
. (5.44)
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V̂nn couples density fluctuations to each other and favors a constant density. V̂FD
represents scattering of pairs of pα states into a pair of pβ states, and couples the
two orbital states at each site in competition with the hopping and density terms.
Note the similarity between (5.40) and (3.42). The zig-zag chain may be seen as an
extension of the Bose-Hubbard model to two “flavors” or internal states and next-
nearest neighbor interaction. The interaction term in (5.40) will also lead to a Mott-
superfluid quantum phase transition. In the following chapters, this Hamiltonian
and its phases will be investigated in the limits of strong and weak interactions.
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Chapter 6

Exact diagonalization

Physics is actually too hard for
physicists.

David Hilbert

The Hamiltonian (5.40),

Ĥ = T̂ + V̂ , (6.1)

has terms which are quartic in creation and annihilation operators. It is these quar-
tic terms which makes the Hamiltonian impossible to diagonalize exactly. If exact
diagonalization was accessible, all expectations and correlation functions could be
computed readily. Hamiltonians with interaction terms generally can only be di-
agonalized numerically, for a truncated number of sites. In fact, this can only be
done for a few sites1, which is not helpful since we are interested in the thermo-
dynamic limit. To make progress, it is necessary to use approximations and study
the problem in certain regimes of parameter space. In the limiting case of U = 0,
corresponding to an extreme case of the superfluid phase, the Hamiltonian consists
only of its ideal or kinetic part,

T̂ = −
∑
j,α,β

tαβd
(
â†jαâ(j+1)β + h.c.

)
−
∑
j,α,β

tαβh
(
â†jαâ(j+2)β + h.c.

)
− µ

∑
j

(n̂jx − n̂jy) ,

(6.2)

which can be diagonalized analytically. In this chapter, the chemical potential has
been included in the kinetic Hamiltonian since it has the same bilinear form. Di-
agonalizing the Hamiltonian makes it possible to compute expectation values and
correlation function.

In the parameter regime considered, txxd = tyyd = txxh = 0 to a good approximation
and txyd = tyxd = 1.5, tyyh = −1 and txyh = −tyxh = 0.1. The sum in T̂ repeats in a
period of two sites, since this is the number of sites in a primitive cell. A Fourier
transformation would not make the problem easier, since the alternating signs would

1Since the Hilbert space grows exponentially with the system size, numerical diagonalization is
intractable even for 10 sites.
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couple modes via a mechanism like

∑
j

(−1)j â†j âj+1 =
∑
k,q

 1
N 2

∑
j

(−1)je−iπ(k−q)

 â†kâq =

∑
k,q

 1
N 2

∑
j

e−iπ((k+1)−q)

 â†kâq =
∑
k,q

δk+1,qâ
†
kâq =

∑
k

â†kâk+1 (6.3)

Note that the alternating signs repeat in a period of two sites, corresponding to the
primitive cell of the zig-zag lattice. Define the vector annihilation operator as

~̂vj =
 âjx1
âjy1
âjx2
âjy2

 , (6.4)

where j labels the cells and 1, 2 denotes the two sites within each cell. This is
just a convenient notation to rewrite the tunnelings within and between the cells as
tunnelings between internal states of the cells. In terms of the vector operators, the
Hamiltonian can be rewritten as a sum over a number of matrix quadratic forms:

T̂ = −
∑
j

(
~̂v†jA~̂vj+1 + ~̂v†j+1A

†~̂vj + ~̂v†jB~̂vj
)
, (6.5)

where

A =


0 −txyh 0 0
txyh tyyh 0 0
0 −txyd 0 txyh
−txyd 0 −txyh tyyh

 , (6.6)

B =


µ 0 0 txyd
0 −µ txyd 0
0 txyd µ 0
txyd 0 0 −µ

 , (6.7)

Now, the form (6.5) can be put in a diagonal form by Fourier transform over the
cells:

~̂vj = 1
N
∑
k

~̂vke
iπkj, (6.8)

so that the Hamiltonian can be written as

T̂ = −
∑
k

~̂v†k
(
Aeik + A†e−ik +B

)
~̂vk = −

∑
k

~̂v†kT (k)~̂vk. (6.9)

The 4× 4 matrix

−T (k) = −


µ −2itxyh sin(k) 0 (1− e−ik)txyd

2itxyh sin(k) 2tyyh cos(k)− µ (1− e−ik)txyd 0
0 (1− eik)txyd µ 2itxyh sin(k)

(1− eik)txyd 0 −2itxyh sin(k) 2tyyh cos(k)− µ

 (6.10)

was then diagonalized numerically for a set of k ∈ [−π, π]. The tunneling txyh and
the chemical potential µ were treated as free parameters and varied. The reason for
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this is that these tunnling controls next-nearest neighbor couplings. Any physics
related to the number of sites in the Wigner-Seitz cell should be controlled by these
tunnlings.

Because the Fourier transformation is over the cells of the primitive lattice, the
four elements of the eigenvectors may be interpreted as the linear combination of
Fourier coefficients for each orbital state and site in each cell. The spectrum and
solutions for the four bands, are plotted in figure 6.1 for txyh = 0 and µ = 0, in
figure 6.2 for txyh = 0.1 and µ = 0. Figure 6.3 shows the spectrum and solutions
for txyh = 0.1, µ = 10. The “solutions” schematically shown below the spectrum are
convenient representations of the eigenvectors of −T (k) for the minimal value of k.
This eigenvector consists of four complex elements, related to the x, y components
at the two sites in each cell. Each element is represented as an arrow where the
magnitude and direction of the vector corresponds to the absolute value and phase.
In section 7.3 it will be seen that there is a connection between the mean-field order
parameter and the coefficients of the eigenvectors.

For txyh = 0, figure 6.1 shows that the minimal-energy excitations in the first
band have kmin = ±π but with a slight “density” imbalance in favor of py. Remem-
bering the form of the Fourier transformation, this means that the solutions for each
primitive cell repeat with alternating sign giving a pattern with periodicity 4. This
is interesting since it is twice the size of the primitive cell - in a loose sense the so-
lution is “anti-ferromagnetic” over primitive cells. For txyh 6= 0, the solution changes
abruptly. This indicates that there is a quantum phase transition to a vortex-like
solution - but the phase is in fact not extended to any finite range of txyh and it is
therefore not correct to talk of a phase transition. For txyh 6= 0, kmin is no longer
a multiple of π, leading to a “wave-like” solution, still with a slight density imbal-
ance in favor of py. Furthermore, four values in the “Brillouin zone” are allowed,
suggesting that the solution can be any linear combination of these waves. In the
limit of txyh → ∞, kmin = (2n + 1)π/2 for n integer are all solutions. For µ = 10
and generally for µ 6= 0, the wavelike pattern survives but populations between the
orbitals are shifted. In figure 6.3, the ground state only populates the px orbital,
which has nodes along the direction of the chain. Otherwise, the periodicity of the
solution is not changed.
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Figure 6.1: Spectrum and solutions for the ideal Hamiltonian for txyh = 0, µ = 0.
The four bands are shown from lowest to highest energy from left to right. Note
that the two lower and two upper bands are degenerate.
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Figure 6.2: Same as figure 6.1, but with txyh = 0.1. The four bands are shown from
lowest to highest energy from left to right. Note that the second band now has
density variation while the first band is actually a vortex-antivortex configuration
with a quasimomentum not a multiple of π. In the limit txyh →∞, k = (2n+ 1)π/2.
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Figure 6.3: Spectrum and solutions for the ideal Hamiltonian for txyh = 0.1, µ = 10.
The four bands are shown from lowest to highest energy from left to right. Note
that the wavelike pattern survives as µ→∞.
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Chapter 7

Mean-field approximations

The shortest path between two
truths in the real domain passes
through the complex domain.

Jacques Hadamard

In this chapter, I will first demonstrate the use of a coherent state mean-field ap-
proximation for a Hubbard-like toy model. It is shown that the sign of the tunneling
coefficients (referred to as the couplings, a term in statistical physics and quantum
field theory) determine the phase of the system. The mean-field theory will then
further be applied to investigate the phase transition in the quantum Ising chain
and the vortex-antivortex order in the quadratic lattice, as described in section 5.1.
Finally, the technique will be applied to the zig-zag lattice to further understanding
of the order and phase transitions. This is a technique which is useful for under-
standing the system in the superfluid phase.

For any mean-field Hamiltonian which is a sum of terms, if it is possible to
minimize each term independently, this is also a global minimum as, obviously,

Min[H] ≥
∑
j

Min[Hj]. (7.1)

While some mean-field approximations are soluble exactly, one often has to resort
to numerical methods to find the global minimum configuration of a mean-field
Hamiltonian. For this purpose, I wrote a software package for efficent mean-field
minimization. Given a Hamiltonian represented as a function of the couplings and
order parameters, the software returns the mean-field configuration and energy as a
function of the order parameters. This higher-order function technique is useful for
then finding the phases in coupling constant space. The algorhitm uses the BFGS
quasi-Newton method [JS06, p. 136] included in the scipy package for Python.
Since the algorithm uses only first derivatives, it may get stuck in a local minimum.
To reduce this risk, M random configurations {ψiα} are generated and HMF is then
minimized from each initial guess. As M becomes very big, it is reasonable to assume
that some random configuration will be “close” to the global minimum configuration.
While M will depend on the dimensionality of the system (the number of sites),
it is possible to find a reasonable value by comparing the energy and minimum
configuration for each iteration, as M becomes very big. The minimum energies for
each configuration were saved and plotted in a histogram. One would expect that

61



the global minimum would appear as a cut in the lower end of the histogram for
large enough M . For 16 sites, M = 100−1000, a significant fraction of the iterations
found the ground state energy.

7.1 Toy model of next-nearest neighbor tunnling
I will now investigate the effects of next-nearest tunnling in a mean-field approx-
imation. Consider a one-dimensional Hubbard-like toy model with non-negligible
tunneling between nearest neighbors and next-nearest neighbors:

Ĥ = −td
∑
i

(
â†i âi+1 + h.c.

)
− th

∑
i

(
â†i âi+2 + h.c.

)
+ U

∑
i

n̂i (n̂i − 1) . (7.2)

The actual values of td and th will depend on the lattice geometry. This model
differs from the zig-zag Hamiltonian (5.40) in that it only has one “orbital”, or one
type of particle. A coherent state variational ansatz, as described in section 2.5,
|Ψ〉 ({αj}) = ∏

j |α〉j yields the mean-field Hamiltonian

HMF = 〈H〉 =
= −td

∑
i

(α∗iαi+1 + transp.)− th
∑
i

(α∗iαi+2 + transp.) + U
∑
i

|αi|4 . (7.3)

Additionally, the particle number of the system is fixed, so that N = ∑
j |αj|

2 =
constant. The interaction term is minimized by a constant density on each site
|αj|2 = n. Assuming that the interaction can be minimized independently of the
kinetic part, I set |αj|2 = n. The onsite order parameter can then be written as
αj =

√
neiθj and the mean-field Hamiltonian as

HMF/n = −2td
∑
i

cos(θi − θi+1)− 2th
∑
i

cos(θi − θi+2), (7.4)

where I have dropped the last term since it only shifts the energy under the assump-
tion of constant density. First, note that the system is invariant under multiplication
by a pure phase, since it only depends on the differences of phases. This will show
up as an overall phase in the numerical solutions.

In (td, th)-space, i.e. the plane of possible values of the coupling constants, there
will be regions where different mean-field solutions dominate. These regions are the
phases of the model, characterized by some order parameter containing information
about the systems physical properties. For th = 0, the system is just a chain with
nearest-neighbor interactions. Depending on the sign of td, the chain will be in
the “ferromagnetic” or “anti-ferromagnetic” phase. Note that in the classical Ising
model, the individual spins are ±1, while here the order parameters can assume
any complex phase. The terminology here means that the order parameters all
have the same phase (ferromagnetic) or an alternating phase (anti-ferromagnetic).
For td = 0, the chain can be separated in two nearest-neighbor chains, since even
sites only interact with even and odd sites only interact with odd. The sign of
th determines if the chain is ferro- or anti-ferromagnetic. In the whole td, th > 0
quadrant the system is ferromagnetic, while it is anti-ferromagnetic in the quadrant
td < 0, th > 0. This is because for th > 0, the second sum in (7.4) can be minimized
on both the even and odd sublattice simultaneously. Only the sign of td determines
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if the Hamiltonian is minimized by a ferro- or anti-ferromagnetic phase. For th < 0,
the situation is different. Here there is necessarily some conflict between the terms,
leading to some other phase difference between the sites.

Analytically, let me make the ansatz θj = kj, where kN = 2πm⇒ k = 2πm/N
for any integer m. Then:

HMF/n = −2td
∑
i

cos(k)− 2th
∑
i

cos(2k) = −2N (td cos(k) + th cos(2k)) (7.5)

dHMF

dk
= 0⇒ td sin(k) = −2th sin(2k)⇒ td/th = −4 cos(k), (7.6)

with the solution k = arccos(−td/4th) which has the domain −4th ≤ td ≤ 4th.
In the thermodynamic limit, a spiral order is expected to dominate in the wedge
−4th ≤ td ≤ 4th in the th < 0 half-plane. Note that on the td = 0 and th < 0
line, k = π/2 forming a texture of length 4. This texture can also be interpreted as
an anti-symmetric configuration on the two sublattices. td = 4th and th < 0 corre-
sponds to k = π, which is the anti-ferromagnetic configuration already found in the
lower right quadrant of the (th, td)-plane. I therefore expect the anti-ferromagnetic
configuration to extend out to the wedge. td = −4th, th < 0 corresponds to k = 0,
the ferromagnetic configuration. I expect the ferromagnetic phase to extend out
from the upper right quadrant. Figure 7.1 shows the expected phase diagram. The
pattern was verified by numerically minimizing the mean-field energy for a chain of
20 sites with periodic boundary conditions. The results are shown in nine selected
plots of the order in figure 7.2.

The ferromagnetic phase has the energy per site HMF/Nn = −2(td + th), while
the anti-ferromagnetic phase has energy HMF/Nn = −2(−td+th). The spiral phase
has energy per site

HMF/Nn = −2
[
−t2d/4th +

(
2(td/4th)2 − 1

)
th
]

= − r

4 cos θ
(
8 cos2 θ − sin2 θ

)
(7.7)

where r, θ defines the point (th, td) in polar coordinates. Figure 7.3 shows the energy
and its first derivative, which depends linearly on the radius, as a function of angle
θ in the (th, td)-plane. At θ = 0 = 2π, corresponding to td = 0, th > 0, the energy
has a cusp and its first derivative is discontinuous. This indicates a discontinuous or
first-order phase transition as discussed in section 3.2. The transition to the spiral
phase is marked with dashed, red lines. At these values of θ, both the energy and its
first derivative is continuous, but the derivative has a cusp indicating a discontinuous
second derivative. Hence the transition to the spiral phase is a continuous phase
transition!
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FM

AFM

Spiral

arctan(4)

th

td

Figure 7.1: Phase diagram for the NNN toy model. For td, th > 0 and in a wedge
around the positive td-axis, a ferromagnetic (FM) phase persists, while the system
is anti-ferromagnetic (AFM) in a region mirrored in the th-axis. In a wedge of angle
2 arctan(4) around the negative th-axis, the system has a spiral order parameter,
with a period which is dependent on the angle to the origin. Note that the color is
only drawn in a circle, while the full phase diagram fills the whole plane within the
angles indicated!
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1, -1 1, 0 1, 1

0, -1 0, 1

-1, -1 -1, 0 -1, 1

Figure 7.2: Minimum energy configurations for the NNN toy model with nearest
and next-nearest neighbor couplings, for a range of couplings td and th. Note the
spiral order parameter for td < 0
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Figure 7.3: Energy divided by site, density and radius r =
√
t2h + t2d for a range of

angles in the phase diagram for the NNN toy model. The dotted lines mark the
border between the spiral phase and the ferro-/anti-ferromagnetic phases.
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Figure 7.4: Energy per site for the mean-field approximation of the quantum Ising
model and the first derivative, plotted as functions of g.

7.2 Mean-field treatment of the quantum Ising
model

Using an ansatz which is a product state of spin coherent states [Aue94, p. 72], the
Hamiltonian (3.27) can be semi-classically approximated as

Hmf/S = −J
∑
j

cos(θj) cos(θj+1)− Jg
∑
j

sin(θj) cos(ϕj) =

=
∑
j

[−J cos(θj) cos(θj+1) + h sin(θj) cos(ϕj)] (7.8)

where Szj = S cos(θj), Sxj = S sin(θj) cos(ϕj) and Syj = S sin(θj) sin(ϕj) are the
mean-field order parameters. This Hamiltonian can be numerically minimized for
different ratios of g. The minimum energy and its first derivative is plotted in figure
7.4. Since the first derivative of the energy is continuous, mean-field energy claims
that the quantum phase transition is a continuous phase transition.

7.3 Mean-field derivation of vortex-antivortex struc-
ture

In section 5.1 I claimed that, in the limit where the hopping is weak, bosons in
the p band loaded in a square lattice show a vortex-antivortex structure which is
a product state of wavefunctions of the form (5.32). With mean-field theory, it is
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possible to derive this solution. For the first excited orbital states, the appropriate
coherent state ansatz is a product state |Ψ〉 = ∏

j

∣∣∣ψxj , ψyj 〉j where

∣∣∣αxj , αyj〉j = exp

−
∣∣∣αxj ∣∣∣2 +

∣∣∣αyj ∣∣∣2
2

 ∑
nx,ny

(
αxj
)nx (

αyj
)ny√

nx!ny!
|nxny〉j . (7.9)

Writing the complex order parameters in polar form as ψjx =
√
njxe

iθjx ,

V̂ =
∑
jα

Uαα
2 n̂jα (n̂jα − 1) +

∑
jα6=β

Uαβn̂jαn̂jβ + Uαβ
2
(
â†jαâ

†
jαâjβâjβ + h.c.

)

⇒ HMF =
∑
jα

Uαα
2 njα +

∑
jα6=β

Uαβ
√
njα
√
njβ + Uαβ

2
(
ψ∗jαψ

∗
jαψjβψjβ + h.c.

)

=
∑
jα

Uαα
2 njα +

∑
jα6=β

Uαβ
√
njα
√
njβ + Uαβ

2
√
njα
√
njβ cos(2(θjα − θjβ)). (7.10)

In the quadratic lattice, it is possible to minimize the interaction Hamiltonian and
the kinetic part simultaneously [AS05]. Assuming constant density nj = n

T̂ = −
∑
〈ij〉αβ

tαβ (ψ∗iαψjβ + conj.) = −2n
∑
〈ij〉,αβ

tαβ cos(θiα − θjβ). (7.11)

Here the arbitrary site-indexing i has been replaced by a vector i = ix, iy meant
to stand for the row and column of the site, and txy = 0 which is the reason
that the phases in x and y can be set independently by the interaction term. For
txx > 0, tyy < 0 horizontally and txx < 0, tyy > 0 vertically, as is the case in the
quadratic lattice, the kinetic Hamiltonian is minimized term by term if the phase is
locked in a checkerboard pattern, which is shown in figure 7.5, given by the single-site
mean-field solution

ψix = (−1)iy , (7.12)
ψiy = (−1)ixi. (7.13)

This pattern ensures that all terms in the sum in the kinetic Hamiltonian have
negative sign, since the product of two horizontal neighbors in the px state (in the
py state) is positive (negative) and the opposite holds in the vertical direction. Hence
the kinetic hamiltonian is minimized.

To find the spatial many-body wave function which the mean-field solution cor-
responds to, expand the expectation value of the position operator (2.10) in terms
of Wannier functions as

〈ψj(x)〉 =
∑
j

(wxj(x) 〈âxj〉+ wyj(x) 〈âxj〉) =

=
∑
j

(
ψ′xjψxj(x) + ψ′yjψyj(x)

)
, (7.14)

where ψ′αj are here the mean-field order parameters, ψαj(x) are the Wannier func-
tions and the dash has been added to avoid confusion. Hence the wavefunction
at each site can be said to be in the vortex-antivortex pattern as was described in
section 5.1.4.
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Figure 7.5: The checkerboard pattern which minimizes energy in a mean-field ap-
proximation of the quadratic lattice. The clockwise vortices indicate vortex solutions
|ψ+〉 and the anti-clockwise anti-vortex solutions |ψ−〉. The phase on each site is
not indicated in the figure.

7.4 Mean-field approximation of the zig-zag chain
The zig-zag Hamiltonian will now be solved in a mean-field approximation. Assum-
ing a coherent state ansatz in the form (7.9), the normal ordered expectation value
of the Hamiltonian (5.40) is:

HMF =
〈
:Ĥ:

〉
= −

∑
iαβ

ti,d
(
ψ∗iαψ(i+1)β + ψ∗(i+1)αψiβ

)
−
∑
iαβ

ti,h
(
ψ∗iαψ(i+2)β + ψ∗(i+2)αψiβ

)
+

+
∑
iα

Uαα
2 |ψiα|4 +

∑
iα 6=β

Uαβ

{
|ψiα|2 |ψiβ|2 + 1

2

[
(ψ∗iα)2 (ψiβ)2 +

(
ψ∗iβ

)2
(ψiα)2

]}
,

(7.15)

where the index i = 0, . . . , N − 1. N has to be a multiple of 2 if periodic boundary
conditions are applied (i = 0 identified with i = N), since there is no other way to
fit the tunnelings in a consistent way. The mean-field Hamiltonian is a function of
the 2N complex variables ψiα. Conservation of particle number means that the or-
der parameters additionally satisfy N = ∑

i

(
|ψix|2 + |ψiy|2

)
. This constraint can be

handled either by introducing a Lagrange multiplier to constrain the Hamiltonian or
by finding coordinates where the constraint is “built-in”, so called hyperspherical co-
ordinates. For this thesis, periodic boundary conditions and constrained coordinates
were used.

Figure 7.6 shows the minimum energy configuration of M = 1000 iterations.
The complex order parameters are shown as arrows located at each site, with the
magnitude and direction proportional to the absolute value (density) and phase of
the order parameter, as in chapter 6. For U0 = 0 and txyh = 0, the solution agrees
with the exact solution found in chapter 6. For U0 = 0 and txyh = 2 however, the
mean-field solution is a variation in densities, which was not the result found by
exact diagonalization. However, recall that the exact solution for any value of txyh
has a spectrum with minima kmin symmetrically around k = 0. Thus, any linear
combination of these states are solutions. If two “wave” solutions for kmin = ±π/2
are added, the result is the density pattern observed for U0 = 0, txyh = 2.

For any U0 > 0, there is a spontaneuos symmetry breaking into one of the two
values of kmin since the pattern needs to minimize the onsite interaction, which can
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U=0, t xyh =0 U=0, t xyh =2

U=2, t xyh =0 U=2, t xyh =2

Figure 7.6: Minimum energy configuration for 16 sites, found byM = 1000 optimiza-
tion iterations and periodic boundary conditions. The complex order parameters are
visualized as arrows where ψxj are red and ψyj are blue. For U0 = 0, the upper row,
the solutions do not have to be in a vortex configuration, numerically choosing the
minimum as a linear combination of two waves of opposite direction. For U0 > 0,
the lower row, there solution has to choose either direction of the wave. Note the
periodicity of four for txyh = 0 and eight for txyh = 2.
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be done independently as shown in section 7.3. This is visible for both txyh = 0 and
txyh = 2, where the solution otherwise follows the results from exact diagonalization.
Since the “phase” without vortex structure only appears for U0 = 0 exactly, this is
not a proper phase transition. The periodicity of the solutions is four for txyh = 0
and sixteen for txyh = 2. The latter is related to the limited size of the simulation
- which was checked numerically by varying the number of sites in the simulation.
With open boundary conditions or in the thermodynamic limit, the results should
agree with the exact solution.

In section 8.4, a coherent state ansatz is tried for an effective Hamiltonian in the
Mott phase. This should in principle give the same results as the full mean-field
treatment in this section, but the results are hard to check for numerical reasons: as
U0 � t the first derivative of the energy is much steeper in certain directions. The
order between sites becomes impossible to find for the numerical algorithm and so
far, I have not succeeded in finding a useful closed-form expression where the Mott
phases are visible.
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Chapter 8

The Mott insulator phase

The problems of the real world are
primarily those you are left with
when you refuse to apply their
effective solutions.

Edsger W. Dijkstra

In the strongly interacting regime, the zig-zag lattice will undergo a quantum
phase transition to the Mott insulator phase. Assuming that the number of particles
matches the number of sites, the system will be in a state with one particle at
each site. The sites are not completely isolated however: the atoms can interact
quantum mechanically via “virtual” processes where two or more atoms interact.
These processes are low-energy quantum fluctuations around the ground state which
can be described by a simplified, effective Hamiltonian. In this chapter, an effective
Hamiltonian for the Mott1 phase will be developed by second-order perturbation
theory. It will then be shown that this effective Hamiltonian can be interpreted as
a one-dimensional spin problem with next-nearest neighbor coupling.

8.1 Perturbation theory
It is possible to partition the Fock space of the system in singly occupied states and
states where at least one site is occupied by more than one boson. [Aue94, p. 25].
Define the projection operator P̂ as the operator projecting onto the subspace of
states with only one atom per site1. Define Q̂ = 1 − P̂ as the complimentary
projector onto the subspace of states with at least one double occupancy. The
Hamiltonian for the full state |ψ〉 can then be written with block matrices as

(
P̂ ĤP̂ P̂ ĤQ̂

Q̂ĤP̂ Q̂ĤQ̂

)(
P̂ |ψ〉
Q̂ |ψ〉

)
= E

(
P̂ |ψ〉
Q̂ |ψ〉

)
⇔(

P̂ ĤP̂ + P̂ ĤQ̂
)
|ψ〉 = EP̂ |ψ〉 (8.1)(

Q̂ĤP̂ + Q̂ĤQ̂
)
|ψ〉 = EQ̂ |ψ〉 , (8.2)

1P̂ =
∑
s |s〉 〈s|, where the sum is over all singly occupied states.
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where I have used P̂ 2 = P̂ , Q̂2 = Q̂ which holds for any projection operator. For-
mally, it is always possible to eliminate Q |ψ〉 from the first equation by rewriting
the second as

Q̂ |ψ〉 =
(
E − Q̂ĤQ̂

)−1
Q̂ĤP̂ |ψ〉 . (8.3)

Inserting this expression into (8.1) yields(
P̂ ĤP̂ + P̂ ĤQ̂(E − Q̂ĤQ̂)−1Q̂ĤP̂

)
|ψ〉 = E |ψ〉 . (8.4)

This is so far an exact expression. The first term describes self-interaction within the
singly occupied subspace. In the form (5.40), P̂ T̂ P̂ = 0 since the chemical potential
has been absorbed in the interaction part, but P̂ V̂P̂ 6= 0. The second term describes
interaction via virtual processes with the multiply occupied subspace. In the Mott
phase, that strong interaction leads to a large energy gap between states with one
atom per site and states with some double occupancy. Thus one would expect
Ĥ22 � E which makes it possible to expand the second term to zeroth order in
E/U

(E − Q̂ĤQ̂)−1 = −
(
Q̂ĤQ̂

)−1
+O(E/U), (8.5)

so that the effective Hamiltonian may be written as

Ĥeff = P̂ ĤP̂ − P̂ ĤQ̂
(
Q̂ĤQ̂

)−1
Q̂ĤP̂ +O(E/U). (8.6)

Furthermore, in our case, P̂ V̂Q̂ = 0 since a state in the doubly occupied subspace
cannot be brought to the singly occupied by the interaction, which is on-site. Also
Q̂V̂P̂ = 0 by a similar argument. I find P̂ ĤQ̂ = P̂ T̂ Q̂ and Q̂ĤP̂ = Q̂T̂ P̂ so that
the effective Hamiltonian can be simplified to

Ĥeff = P̂ V̂P̂ − P̂ T̂ Q̂
(
Q̂V̂Q̂

)−1
Q̂T̂ P̂ +O(E/U). (8.7)

The first term describes the process of an atom interacting with itself. The second
term describes the virtual process of an atom jumping from one site to another
atom, interacting and jumping back. Note that the second term is smaller: it
is proportional to t2/U since it includes two kinetic terms and the inverse of the
interaction. Higher terms in the expansion would be multiplied by higher powers of
t/U since this is the only dimensionless small parameter that can be formed. This
is the reason for calling this a second-order perturbation theory.

While this seems like an arbitrary trick, it is in fact the simplest case of Kato-
Takahashi perturbation theory [D.10, p. 63], a type of perturbation theory which is
suitable for dealing with Hamiltonians with degenerate spectra. One could expand
the resolvent operator G(E) = (E−Ĥ)−1 in powers of E/U , a process which leads to
the t-J Hamiltonian and the Heisenberg model in the Bose-Hubbard model [Aue94,
p. 25]. This could in principle be used to find the energy and effective Hamiltonian
to any order in E/U . Let me also note that the expansion treats the ideal part
of the Hamiltonian as a perturbation, which is sometimes called a strong coupling
expansion.
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8.2 The effective Hamiltonian
Equation (8.7) only involves processes where one or two sites are involved at a time.
Because of this, it is possible to treat single sites in the first term and pairs of sites
for the second term. The first term of the effective Hamiltonian is easily found to
be

P̂ V̂P̂ = µ
∑
j

1
2 (n̂xj − n̂yj) . (8.8)

For each pair, the second term can be represented by a 4 × 4 matrix in a sub-
space of Fock space since there are four possible states for each pair of sites: S =
{|xx〉 , |xy〉 , |yx〉 , |yy〉}. The notation |αβ〉 simply means that there is a Wannier
pα-state at site A, and a Wannier pβ-state at site B. For doubly occupied states in
the pair there are D = {|xx; 〉 , |xy; 〉 , |yy; 〉 , |; yy〉 , |;xy〉 , |;xx〉} where everything
to the left of the semi-colon is at site A, and everything to the right at site B.
Transitions between these states may be described in both matrix notation and by
second-quantized operators. Since it is in this second-quantized form I want to be
able to write the effective Hamiltonian, the correspondence between the representa-
tions has to be found. The matrix elements in the effective Fock Hamiltonian above
must correspond to c-number2 prefactors to these strings of creation and annihila-
tion operators. The only allowed transitions in the second-order perturbation will
be quadratic in creation and annihilation operators. The correspondence is:


Axxij Exy

ij Exy
ji Fij

Exy∗
ij Axyij Sij Eyx

ji

Exy∗
ji S∗ij Ayxij Eyx

ij

F ∗ij Eyx∗
ji Eyx∗

ij Ayyij

↔

n̂ixn̂ix n̂ixf̂jyx f̂iyxn̂jx f̂iyxf̂jyx
n̂ixf̂jxy n̂ixn̂iy f̂iyxf̂jxy f̂ixyn̂jy
f̂ixyn̂jx f̂ixyf̂jyx n̂iyn̂jx n̂iyf̂ixy
f̂ixyf̂jxy f̂iyxn̂jy n̂jyf̂jyx n̂iyn̂iy

 . (8.9)

where the “flip” operator f̂jαβ = â†jαâjβ has been introduced for convenience. The
site indices ij indicate that this gives the contribution to the effective Hamiltonian
from one of the pairs. Observe that the self-adjoint property of the Hamiltonian
means that all diagonal elements of the matrix to the left are real. Also note the
x↔ y symmetry along the upper right-lower left diagonal. The latter (and of course
the first) property holds for any number of single-atom states.

To solve this problem, I chose to write a software tool to find effective Hamil-
tonians such as (8.7) generally. The tool was written using the sympy library for
Python and is capable of finding the effective Hamiltonian for any geometry and
dimension, type of interaction, number of orbital states and set of tunneling coef-
ficients. This could be useful for finding the effective Hamiltonians of systems in
higher excited bands or higher Mott phases. However, for the moment the program
is not yet capable of calculating some of the higher-order corrections which may be
important for some lattice geometries. This will be implemented in later versions
but could not be finished for this thesis. It could be used for searching a large set of
tunneling coefficients and geometries for interesting effective Hamiltonians, making
quantum engineering of spin models simpler and more efficient. Since second-order
perturbations from and to Mott1 cannot involve more than a pair of sites at a time,

2c-number is quantum field theory slang for anything that is not a second-quantized operator,
usually a complex number.
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the diagonal and horizontal pairs lead to contributions of similar form, except that
td has to be replaced with th. For this thesis, the calculation was also done by hand.
In matrix notation, the contribution from one pair to the second-order perturbation
can be written as TV −1T † where

T =


txx+ tyx+ 0 0 tyx− txx−
txy+ tyy+ 0 tyx− txx− 0
0 txx+ tyx+ 0 tyy− txy−
0 txy+ tyy+ tyy− txy− 0

 (8.10)

where +,− is shorthand for ij, ji denoting the direction (since tunneling may not
be the same in both directions, as is the case for the orbital changing next-nearest
neighbor tunneling) and

V =



Uxx + µ 0 Uxy/2 0 0 0
0 Uxy 0 0 0 0

Uxy/2 0 Uyy − µ 0 0 0
0 0 0 Uyy − µ 0 Uxy/2
0 0 0 0 Uxy 0
0 0 0 Uxy/2 0 Uxx + µ


, (8.11)

which is block-diagonal and has the inverse

V −1 =


−4(Uyy−µ)/U2 0 2Uxy/U2 0 0 0

0 1/Uxy 0 0 0 0
2Uxy/U2 0 −4(Uxx+µ)/U2 0 0 0

0 0 0 −4(Uxx+µ)/U2 0 2Uxy/U2

0 0 0 0 1/Uxy 0
0 0 0 2Uxy/U2 0 −4(Uyy−µ)/U2

 . (8.12)

where U2 = U2
xy − 4 (Uxx + µ) (Uyy − µ). Note that the second-order correction will

have two poles at µ = ±
√
U2
xx − U2

xy/4 (assuming Uxx = Uyy which is true for this
lattice). From the perspective of Kato-Takahashi perturbation theory, the poles
could be interpreted as indications that the assumption E � Ĥ22 breaks down
so that the perturbation theory is no longer valid. This could be because large
absolute values of µ increases the energy in the singly occupied state. The effective
Hamiltonian can now be written as

Ĥeff = µ
∑
j

1
2 (n̂jx − n̂jy)−

∑
ijαβ

Aαβij n̂iαn̂jβ+

−
∑
ijα6=β

{
Fij f̂iαβ f̂jαβ + Sij f̂iαβ f̂jβα + 2Eαβ

ij n̂iαf̂jαβ + h.c.
}
, (8.13)
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where

Axx = 1
UxyU2

(
−4Uxy

∣∣∣txx− ∣∣∣2 (Uyy − µ)− 4Uxy
∣∣∣txx+

∣∣∣2 (Uyy − µ) + U2
(
|tyx− |

2 + |tyx+ |
2
))

,

(8.14)

Ayy = 1
UxyU2

(
−4Uxy |tyy− |2 (Uxx + µ)− 4Uxy |tyy+ |

2 (Uxx + µ) + U2
(
|txy− |

2 + |txy+ |
2
))
,

(8.15)

Axy = 1
UxyU2

(
−4Uxy |txy+ |

2 (Uyy − µ)− 4Uxy |tyx− |2 (Uxx + µ) + U2
(∣∣∣txx− ∣∣∣2 + |tyy+ |

2
))

,

(8.16)

Ayx = 1
UxyU2

(
−4Uxy |txy− |2 (Uyy − µ)− 4Uxy |tyx+ |

2 (Uxx + µ) + U2
(∣∣∣txx− ∣∣∣2 + |tyy+ |

2
))

,

(8.17)

Exy = 1
UxyU2

(
2U2

xyt
xx
− t

yx
− − 4Uxytxx+ t

xy
+ (Uyy − µ) + U2

(
txx− t

yx
− + tyx+ t

yy
+

))
,

(8.18)

Eyx = 1
UxyU2

(
2U2

xyt
xy
+ t

yy
+ − 4Uxytyx− tyy− (Uxx + µ) + U2

(
txx− t

xy
− + txy+ t

yy
+

))
,

(8.19)

F = 1
UxyU2

(
2U2

xy

(
txx− t

yy
− + txx+ t

yy
+

)
+ U2 (txy− tyx− + txy+ t

yx
+ )
)
,

(8.20)

S = 1
UxyU2

(
2U2

xy (txy− tyx− + txy+ t
yx
+ ) + U2

(
txx− t

yy
− + txx+ t

yy
+

))
,

(8.21)

As demonstrated in chapter 5, the orbital-changing tunnelings alternate in sign
between sites, and the tunnelings are different between diagonal and horizontal pairs.
From the above equations, it is then clear that only the terms Exy, Eyx, F and S
alternate along the chain.

8.3 Schwinger spin-boson mapping
Because of the fixed density, the orbital degrees of freedom may be intepreted as
a spinor3 and the effective Hamiltonian as a spin Hamiltonian. This is known as
a Schwinger spin-boson mapping. For a larger number of orbital states the system
can be mapped to higher spin models. The map for spin 1/2 states is [AS10, p. 88]

Ŝzi = 1
2
(
â†ixâix − â

†
iyâiy

)
= 1

2 (n̂ix − n̂iy) , (8.22)

Ŝ+
i = Ŝxi + iŜyi = f̂xy, (8.23)
Ŝ−i = Ŝxi − iŜ

y
i = f̂yx, (8.24)

(8.25)

3In the sense of non-relativistic 2-spinors here, not the full relativistic spinors.
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and additionally, the constraint n̂x + n̂y = 1 holds, as the system is in the Mott1
phase. Also note that the self-adjoint property of the Hamiltonian in the Fock basis
means that any diagonal terms (only involving number operators) must be real, and
any orbital-changing terms must appear with their hermitian conjugate (so that the
sum is hermitian).

Using the spin-boson mapping, I found

Ŝzi = 1
2 (n̂ix + n̂iy) = n̂ix −

1
2 = 1

2 − n̂iy ⇒

n̂ix = 1
2

(
1 + 2Ŝzi

)
n̂iy = 1

2

(
1− 2Ŝzi

) , (8.26)

which can be used to calculate

n̂αin̂αj = 1
4
(
1± 2Ŝzi

) (
1± 2Ŝzj

)
= 1

4
[
1± 2

(
Ŝzi + Ŝzj

)
+ 4Ŝzi Ŝzj

]
. (8.27)

The ± depends on if α is x or y. Furthermore

n̂αin̂βj = 1
4
(
1± 2Ŝzi

) (
1∓ 2Ŝzj

)
= 1

4
[
1± 2

(
Ŝzi − Ŝzj

)
− 4Ŝzi Ŝzj

]
, (8.28)

where again ± depends on if α is x or y (remember that the sum over orbitals is
only over α 6= β). Also

n̂αif̂αβj = 1
2
(
1± 2Ŝzi

) (
Ŝxj ± iŜ

y
j

)
= 1

2
(
Ŝxj ± iŜ

y
j

)
+ iŜzi Ŝ

y
j ± Ŝzi Ŝxj

⇒ n̂αif̂αβj + h.c. = Ŝxi ± 2Ŝzi Ŝxj , (8.29)

f̂αβin̂αj =
(
Ŝxi ± iŜ

y
i

) 1
2
(
1± 2Ŝzj

)
= 1

2
(
Ŝxi ± iŜ

y
i

)
+ iŜyi Ŝ

z
j ± Ŝxi Ŝzj

⇒ f̂αβin̂αj + h.c. = Ŝxi ± 2Ŝxi Ŝzj , (8.30)

f̂αβif̂αβj = Ŝ±Ŝ± =
(
Ŝxi ± iŜ

y
i

) (
Ŝxj ± iŜ

y
j

)
= Ŝxi Ŝ

x
j ± i

(
Ŝxi Ŝ

y
j + Ŝyi Ŝ

x
j

)
− Ŝyi Ŝ

y
j

⇒ f̂αβif̂αβj + h.c. = 2
(
Ŝxi Ŝ

x
j − Ŝ

y
i Ŝ

y
j

)
,

(8.31)
f̂αβif̂βαj = Ŝ±Ŝ∓ =

(
Ŝxi ± iŜ

y
i

) (
Ŝxj ∓ iŜ

y
j

)
= Ŝxi Ŝ

x
j ± i

(
Ŝyi Ŝ

x
j − Ŝxi Ŝ

y
j

)
+ Ŝyi Ŝ

y
j

⇒ f̂αβif̂βαj + h.c. = 2
(
Ŝxi Ŝ

x
j + Ŝyi Ŝ

y
j

)
,

(8.32)

where I have anticipated that Eαβ
ij , Sij and Fij are real, since all tunnelings can be

chosen to be real in the absence of external gauge fields[JFJO11]. Also note that
the first order perturbation from the chemical potential maps directly to a field in
the z-direction.
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8.4 The spin Hamiltonian
The spin Hamiltonian can be written as

Ĥspin = −
∑
j

ŜjJdŜj+1 −
∑
j

ŜjJhŜj+2 +
∑
j

Dj · Ŝj × Ŝj+2 + h ·
∑
j

Ŝj, (8.33)

where Jd, Jh are diagonal 3 × 3 matrices. The first two terms are called the spin-
spin interactions, respectively between nearest and next-nearest neighbors along
the chain. The third term is called a Dzyaloshinskii-Moriya interaction or anti-
symmetric exchange. Here Dj = (−1)jDŷ so that the term involves the anti-
symmetrized product of the x and z components of the spin operator as∑

j

Dj · Ŝj × Ŝj+2 = D
∑
j

(−1)j
(
Ŝxj Ŝ

z
j+2 − Ŝzj Ŝxj+2

)
. (8.34)

The fourth term is called an external field since it acts on the spins like an external
magnetic field in the h direction. It includes contributions from both the first-order
and second-order terms in the effective Hamiltonian.

The coupling constants were found by summing over the orbitals for each site as

Jxij = 4(Sij + Fij), (8.35)
Jyij = 4(Sij − Fij), (8.36)

Jzij = 2(Axxij + Ayyij − (Axyij + Ayxij )), (8.37)
Dxz
ij = 2(Exy

ij − E
yx
ij ), (8.38)

hxi =
∑
q

(Exy
iq + Eyx

iq ), (8.39)

hzi = µ+
∑
q

((Axxiq − A
yy
iq )− (Axxqi − A

yy
qi )). (8.40)

So that, for example, the diagonal elements of the matrix Jd are found by summing
over indices i, j = i, (i + 1). The sum over q is over nearest- and next-nearest
neighbors of site i. Its origin is the summation over pairs in the effective Hamiltonian.
Since txxd = tyyd = 0, Exy

d = Eyx
d = 0 cancelling the Dzyaloshinskii-Moriya interaction

between nearest neighbors. For horizontal pairs Eαβ
ij = −Eαβ

ji so that hxi = 0 for all
sites, but the anti-symmetric interaction does not vanish since Exy 6= Eyx.

It is not possible to directly vary the value of the coupling constant, but it
is possible to do so indirectly by tuning the interactions and tunnelings. Which
coupling constants are possible to realize in the zig-zag lattice? First, notice that
the x and z components of the Dzyaloshinskii-Moriya vector D are zero because
F, S and Eαβ are real. In general, for example,

Eαβ
ij n̂αif̂αβj + h.c. = <(Eαβ

ij )
(
Ŝxi ± 2Ŝzi Ŝxj

)
± i=(Eαβ

ij )
(
Ŝyj + 2Ŝyj Ŝzj

)
(8.41)

Since complex tunnelings correspond to artificial gauge fields[JFJO11], these compo-
nents of the anti-symmetric interaction are generally related to such fields. Trans-
verse magnetic fields given by hx 6= 0, are possible when there are pairs of sites
between which txx, txy, tyy 6= 0 and txy+ = tyx+ , which follows from the argument
about hx above.

77



The size of the spin-spin couplings can be calculated in the absence of a chemical
potential and by assuming tαα+ = tαα− . Then Jx, Jy are proportional to

S ± F ∝ txxtyy ± txy+ t
yx
+ , (8.42)

while

Jz ∝ 2 |txy|2 − |txx|2 − |tyy|2 , (8.43)
D ∝ (txx − tyy)txy+ . (8.44)

From these equations, one can see that it is possible to tune Jz to any positive
or negative value. Setting Jz = 0 corresponds to (for real tunnelings) 2 |txy|2 =
|txx|2 + |tyy|2 which leads to Jx ∝ (txx ± tyy)2 /2 and a similar positive-definite value
for Jy. Hence either Jx or Jy is as large as the anti-symmetric interaction, for any
tuned value of the tunnelings. Therefore, I conclude that the D-M term is never
large enough to dominate the solution in itself. Note that the term may still be
large enough to influence it, for example by breaking the parity symmetry.

From (8.42) and (8.43), it is clear that the relative strength of the nearest- and
next-nearest spin-spin couplings can be set by tuning the tunnelings. Because of
this, it should be possible to use the zig-zag model to simulate spin models with a
varying strength of next-nearest neighbor couplings. For the zig-zag lattice, txxh = 0
and txyh = 1.5 in the positive direction. From equation (8.43) it is then clear that Jzh
can be tuned to negative values by setting |tyyh | ≤ 2. Figure 8.1 shows a plot of the
next-nearest neighbor couplings for tyyh = −2, hz = hz0 and U0 = 100. The indicated
phases will be discussed in the next paragraphs.

Note that spin Hamiltonians such as (8.33) are often simplified by the application
of a Jordan-Wigner transformation [S.11, p. 46] [M.]. In this case, however, such
a transformation is not an alternative. The Jordan-Wigner transformation rewrites
the problem as a fermionic Hamiltonian by a non-local transformation

Ŝzj = âj â
†
j − â

†
j âj (8.45)

Ŝxj = −
j−1⊗
n=1

Ŝzn

(âj + â†j
)

(8.46)

Ŝyj = i

j−1⊗
n=1

Ŝzn

(â†j − âj) (8.47)

Because of the fact that

Ŝzj Ŝ
z
j = (âj â†j − â

†
j âj)(âj â

†
j − â

†
j âj) = âj â

†
j âj â

†
j + â†j âj â

†
j âj =

= (1− â†j âj)âj â
†
j + (1− âj â†j)â

†
j âj = âj â

†
j + â†j âj = 1, (8.48)

where the fermion anti-commutation rules {âj, âj} =
{
â†j, â

†
j

}
= 0 and

{
â†j, âj

}
= 1

were used,

Ŝxj Ŝ
x
j+1 =

j−1⊗
n=1

ŜznŜ
z
n

 (âj + â†j)Ŝzj (âj+1 + â†j+1) =

= (âj + â†j)(âj â
†
j − â

†
j âj)(âj+1 + â†j+1). (8.49)
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Figure 8.1: Magnitude of next-nearest neighbor coupling constants Jxh , J
y
h , J

z
h and D

for a range of values of txyh while keeping U0 = 100 and tyyh = −2 fixed. The dotted
cyan line shows the size of Jzd which is the largest nearest-neighbor coupling. The
left area marked in light gray shows where a two up-two down-phase dominates with
all spins pointing in the ±z direction. The right area marked in light gray shows
where a phase which is polarized in z spin component dominates. In between is a
phase which is anti-ferromagnetic in the y spin component.
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Since (âj+ â†j)(âj â
†
j− â

†
j âj) = â†j âj â

†
j− âj â

†
j âj = â†j− âj, the above expression reduces

to

Ŝxj Ŝ
x
j+1 =

(
â†j − âj

) (
âj+1 + â†j+1

)
. (8.50)

However, no such cancellation occurs for products Ŝxj Ŝzj+2 such as those in the anti-
symmetric term. Only a Dzyaloshinskii-Moriya component in the ẑ component can
be transformed to a local term of Fermi operators. Therefore, the Jordan-Wigner
transformation is of no use for this particular spin Hamiltonian. Note that it is
possible to “rotate” the Jordan-Wigner transformation as is done in [S.11, p. 47] so
that the anti-symmetric term becomes local, but this comes to the price of a non-
local term from the external field. Even in the the special case hz = 0, the fermionic
Hamiltonian have terms containing operators acting on three different sites, which
is a consequence of the next-nearest neighbor interaction.

8.5 Mean-field approximation of the spin model
The spin model was once again solved in a mean-field approximation. It is clear
that for spin-1/2 particles quantum fluctuations are typically very important (espe-
cially in lower dimensions). Nevertheless, a mean-field analysis is sufficient to give
insight into the phases of the spin system [JA10]. The phase diagram in the (txyh , µ)
plane was investigated for tyyh = −2, because of the interesting negative value of Jzh
discussed in the last section. Figure 8.2 shows a heatmap plot of the first derivative
of the energy. For clarity, four plots along lines txyh = constant were also produced,
showing the first derivative of the energy. These are shown in figure 8.3. Addi-
tionally, a plot of the first derivative along the hz = 0 axis is included in figure
8.4.

On the line txyh , the top left plot in figure 8.3 and the vertical axis in figure
8.2, there are a total of four phase transitions visible: two outer continuous phase
transitions and two inner discontinuous phase transitions. The inner discontinuous
phase transition is visible in the right plot in figure 8.2. The lines txyh = 1, txyh = 2
are characterized by two continuous phase transitions while for txyh > 2.8 the phase
transition is again discontinuous. A further plot along the line hz = 0, shown in
figure 8.4, indicate that there are two discontinuous phase transitions at txyh ≈ 0.4
and txyh ≈ 2.8.

In figure 8.2, it is also apparent that there are four phases: one in a smaller
semi-circle around txyh = hz = 0, one inside a larger “gothic arch” shape and outside
a third and fourth phase. Figure 8.6 shows three of these spin configurations. The
first phase, here called the 4-pattern, dominate in a semi-circle around txyh = hz =
0. This is the configuration expected from minimizing an anti-ferromagnetic next-
neighbor coupling −∑j J

z
hS

z
jS

z
j+2 where Jzh < 0. Then it holds that SzjSzj+2 =

−1 for every pair. Since this is not the only large term for these values of the
couplings, it has to result from competition between terms. In the wider “arch”-
shaped region, the spins are in the y-AFM phase. This is obviously a configuration
resulting from a nearest-neighbor spin-spin coupling Jyd < 0, but again has to result
from competition between terms. Note that it is not possible to continuously deform
the first phase into the second. The phase is polarized in the ±z direction for non-
zero values of µ. For large enough values of µ and/or large enough values of txyh the y
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Figure 8.2: Heatmaps of the first derivative of the minimized mean-field energy Hmf

for the spin Hamiltonian, in the txyh and hz direction (hz = µ−hz0 where hz0 ≈ 0.1).
The left plot shows ∂E

∂hz
while the right plot shows ∂E

∂txy
h

. tyyh = −2, txyd = 1.5 for both
figures. The “artefacts” are due to numerical errors in the minimization.
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Figure 8.3: Sweeps along lines in figure 8.2. ∂E
∂hz

as a function of hz at constant
txyh = 0, 1, 2 and 3 from left to right, top to bottom. Discontinuous transitions
are appearing symmetrically in the first and fourth figure. Additionally, continuous
phase transitions occur, also symmetrically, for txyh = 0, 1 and 2.
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Figure 8.4: Sweep along the line h = 0 in figure 8.2,showing ∂E
∂txy
h

as a function of txyh
with hz = 0. Two first order phase transitions are visible.
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Figure 8.5: Heatmap plot showing the different configurations of the spin Hamil-
tonian in the (txyh , hz) plane. The 4-pattern (dark red) dominates in two “lobes”,
around hz = 0 and txyh < 3. A phase which is anti-ferromagnetic in the y spin
component and with a varying, polarized z component surrounds this phase (the z
projection per site varies from −1 (yellow) to +1 (blue)). For large h the system is
entirely polarized in the ±z direction, since the external field term dominates.

component of the spin is zero. The second phase has deformed into a third and fourth
phase, which is polarized up or down in the z component, by a continuous phase
transition. These phases are referred to as the z-P phases. Figure 8.5 shows the
pattern of configurations, as found by comparing the order parameters at nearest-
and next-nearest sites. I also note that for |txyh | > 2, the phase diagram only has a
discontinuous phase transition between the z-P phases.

When translating back to the original bosonic variables, the polarized phases
correspond to a phase with only px or py occupied. The y − AFM phase for hz ≈
0 corresponds to the wavelike vortex-antivortex solution - but in the Mott phase
such long-range correlation is lost. The z − AFM phase corresponds to the zero-
momentum phase found for txyh = 0 and U = 0 in the exact diagonalization. It is
interesting that this phase can never exist in practice within the superfluid phase,
but becomes a stable phase “within” the Mott phase.

Figure 8.2 shows an interesting feature of the latter transition: as txyh approaches
≈ 2.8 from smaller values, the first derivative of the energy is always smooth but
approaches a sharp edge. At the edge, all first-order derivatives are discontinuous.
On the line segment hz = 0, txyh > 2.8, the y-AFM phase will undergo a spontaneous
symmetry breaking to either of the z-P phases. Such a spontaneous symmetry
breaking accompanying a first-order phase transition is rare but possible.
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Figure 8.6: Mean-field spin configurations shown as a projected 3D plot. The order
parameters are plotted as arrows, where the z component of the spin is up, the x
component is along the direction of the chain and the y component is perpendicular
to the chain. Note that this is only a method of plotting, and that the actual
order parameters are not spatially extended but are pseudo-spin representations
of populations of px and py atoms. Left: the first phase, anti-ferromagnetic in
every other site. Middle: the second phase, polarized in the z component and anti-
ferromagnetic in the y component. Right: the third and fourth phase is entirely
polarized in the z component.
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Chapter 9

Conclusions

In this thesis, physics of cold atoms loaded in the zig-zag lattice has been investigated
in four steps. First, overlap integrals were computed from a separable basis of
Wannier functions. I found that the tunnelings can be tuned by varying the angles in
the lattice and the strength of the superlattice. Second, the system was diagonalized
in the absence of interactions. This revealed wavelike solutions with a period longer
than the primitive cell of the lattice and dependent on the tunnelings. Third, an
approximation of the wavefunction in the superfluid phase was found by a variational
calculation, showing that the periodicity survives in the presence of interactions.
Fourth, in the Mott phase, perturbation theory was used to derive an effective
Hamiltonian. By a Schwinger spin-boson mapping, this was shown to be equivalent
to a spin Hamiltonian with next-nearest neighbor couplings. By tuning the coupling
constants of the spin model, it was shown that, on the mean-field level, the system
could be put in at least four different phases.

In conclusion, the zig-zag lattice has many interesting properties in both the
superfluid and the Mott phase. In the superfluid phase, the mean-field solution has
a periodicity larger than the primitive cell of the zig-zag lattice. This periodicity
may be varied by tuning the value of the tunnelings. Within the Mott phase,
it is possible to realize phases where nearest-neighbor and next-nearest neighbor
tunnelings dominate. This realizes spin models with solutions which are periodic
over two or four sites.

However, there remains work to be done on the zig-zag lattice. In the Mott
phase, the coupling constants of the spin Hamiltonian are determined by the values
of the tunnelings and the interaction parameters. I have suggested methods for cre-
ating anti-symmetric exchanges in other spin components and transverse magnetic
fields, but there may be other phases which might be found by parameter sweeps in
the tunnelings and interactions. The zig-zag lattice is in the end a potential quan-
tum simulator: it is therefore important to understand the full set of possible spin
Hamiltonians that can be realized in practice.

Another aspect that has not yet been investigated is the topology of the zig-
zag lattice [MAV12, p. 429]. There are also many possible extensions of the model
which have been tried for other lattice geometries: investigating Mott phases with
higher occupancy or including the effect of atoms in the pz state. It is also possible
to consider optical lattices with atoms in the d band or higher, as was done in
[FJPJ15].

The coherent state ansatz used throughout this thesis is one of many possible
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variational trial states. It has the disadvantage of being a simple product state which
cannot capture the effect of entanglement. The Gutzwiller trial states [DCI+98]

|ΨG〉 =
∏
i

|φi〉 ,

|φi〉 =
∞∑
n=0

f (i)
n |n〉i (9.1)

where |n〉i is the Fock state with n bosons at site i and {f (i)
n } is the set of variational

parameters. Expanding (9.1) yields a superposition where the size of every term
depends on f

(n)
i . By letting f

(n)
i → 0 for large n, it is possible to reduce the

entanglement with states with high occupancy at some sites, for example. This
could be useful for describing the order in the Mott phase.

The mean-field theoretical solutions may also be improved by considering per-
turbations around the mean-field solution, leading to what is sometimes called the
Bogoliubov equations[PS08, p. 191]. This is equivalent to rewriting the annihilation
operators in the form âjα = ψjα + δâjα, where ψjα is the mean-field order param-
eter. The Hamiltonian is then expanded in powers of δψ̂, which is assumed to be
a small perturbation. The Bogoliubov scheme would also make it possible to study
the stability of the mean-field approximations systematically.

Exact diagonalization is not possible due to the exponential size of Hilbert space
as mentioned in the introduction. However, there are several methods and numer-
ical schemes which could and should be tried on this system. One possibility is
using the diffusion Monte Carlo (DMC) method [JBK96], which propagates a first
guess of the solution with a Green’s function until the system has decayed to the
ground state. Since the Hamiltonian is one-dimensional, it is also a suitable candi-
date for the Density Matrix Renormalization Group (DMRG) method. The idea of
this method is to exclude the highly entangled subspace of Hilbert space from the
calculation and handle short-range correlations between sites in a computationally
efficient way [R.14]. Numerical diagonalization methods are left for future research,
since there is not space or time to include it in this thesis.
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loquium : Artificial gauge potentials for neutral atoms. Rev. Mod.
Phys., 83:1523–1543, Nov 2011.

[JJ12] Larson J. and Martikainen J.P. Multiorbital bosons in bipartite optical
lattices. Phys. Rev. A 86, 023611, 2012.

[JMB10] Eisert J., Cramer M., and Plenio M. B. Colloquium: Area laws for the
entanglement entropy. Rev. Mod. Phys. 82, 277, 2010.

[JS06] Nocedal J. and Wright S.J. Numerical Optimization. Springer, 2006.

[M.] Nielsen M. The fermionic canonical commutation relations and the
jordan-wigner transform. (link).

[Mah90] G.D. Mahan. Many-Particle Physics. Plenum Press, 1990.

[MAV12] Lewenstein M., Sanpera A., and Ahufinger V. Ultracold Atoms in Op-
tical Lattices. Oxford University Press, 2012.

[MB06] Plischke M. and Bergersen B. Equilibrium Statistical Physics. World
Scientific, 2006.

[MD95] Peskin M. and Schroeder D. An Introduction to Quantum Field Theory.
Westview Press, 1995.

[Mey01] P. Meystre. Atom optics. Springer, 2001.

[MOT+02] Greiner M., Mandel O., Esslinger T., Hänsch T.W., and Bloch I. Quan-
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