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Motivation 

 Long time evolution of closed quantum systems not 

fully understood. 
 

 Cold atom system → Not only of academic interest. 
 

 Open questions in closed system quantum dynamics: 
 

i. Criteria for equilibration/thermalization. 

ii. Mechanism behind thermalization. 

iii. Properties of equilibrated states. 

iv. Definition for “quantum integrability”. 

v. Many-body localization… 

 

vi. Open systems… 
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Outline 

1. Quantum Thermalization. 

 

2. Integrability. Problems. 

 

3. Chaos. Problems. 

 

4. Localization and absence of ETH. 
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Quantum 

Thermalization 
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System 𝜌   THERMAL BATH 

𝜌 𝑇ℎ(𝑇) 

Quantum Thermalization 
 

 

 Characteristics of 𝜌  for long times. 
 

1) Weak coupling. 

2) Infinite degrees of freedom (bath). 

3) Delta correlated in time (bath): Markov approximation (no 

memory). 

4) Factorizable system-bath state (Born approximation). 
 

Thermalization of system. 
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Open system 

𝜕𝑡𝜌 = 𝑖 𝜌 , 𝐻 𝑠𝑦𝑠 + 𝐿 𝜌  

Breuer, Open Quantum Systems (OUP).  



Quantum Thermalization 

Equilibration 
 

 

 Characteristics of 𝜌 𝑠(𝑡) for long times. 
 

 No clear separation “system/bath”, no Born-Markov nor rotating-

wave approximations. 
 

 

6 Srednicki, Phys. Rev. E (1994).  

Closed system 

System 𝜌 (𝑡) 

𝜌 𝐴(𝑡) 

System 𝜌 (𝑡) 

𝜌 𝐵(𝑡) 



Quantum Thermalization 

Equilibration 
 

 

 Characteristics of 𝜌 (𝑡) for long times. 
 

 Equilibration:  
 

𝐴 = 𝑇𝑟 𝐴 𝜌 (𝑡) ,        
𝑡 − independent as 𝑡 → ∞

 𝐴    local observable.                 
  

 
 

 Thermalization: 
 

𝐴 = 𝐴 
𝑇ℎ

     at long times 
 

𝐴 
𝑇ℎ

= Tr 𝐴 𝜌 𝑇ℎ , 

 

where 𝜌 𝑇ℎ = thermal state. “Temperature” determined from 𝐻 . 

No memory of initial state. 

 

7 Srednicki, Phys. Rev. E (1994).  

Closed system 



Quantum Thermalization 

ETH – Eigenstate Thermalization Hypotesis 

 

 

 |Ψ(𝑡) =  𝐶𝛾𝑒−𝑖𝐸𝛾𝑡/ħ|ψ𝛾 𝛾   → 

 

𝐴 (𝑡) =  𝐶𝛿
∗𝐶𝛾𝑒𝑖 𝐸𝛿−𝐸𝛾 𝑡/ħ𝐴𝛿𝛾𝛾,𝛿 ,         𝐴𝛿𝛾 = ψ𝛿 𝐴 ψ𝛾  

 

 If thermalization (long-time limit) 

 

𝐴 
𝐿𝑇

= lim
𝑇→∞

1

𝑇
 𝑑𝑡 𝐴 (𝑡)

𝑇

0
=  |𝐶𝛾|2𝐴𝛾𝛾𝛾 . 

 

 ETH: 𝐴𝛾𝛾 is approximately constant in the ”energy window” of the 

state Ψ . 
 

 ETH: For all γ, 𝜌 𝐴 = Tr𝐵 |ψ𝛾  ψ𝛾|  is thermal. 

 

 

8 Rigol, Nature 2008.  



Quantum Thermalization 

Thermalization 

 

 

 Which systems thermalize? 

 

Possible candidates: 

 

1) Quantum non-integrable systems. 
 

2) Chaotic systems. 
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Integrability 
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Integrability 

101 Quantum Integrability 

 

 

 Classical systems: 

 

Definition: A system is integrable if the number of degrees of 

freedom N is smaller than or equal to the number K of 

independent constants of motion. 

 

 

 

𝑸𝒏, 𝑯 = 𝟎, 𝒏 = 𝟏, 𝟐, … , 𝑲,            𝑸𝒏, 𝑸𝒎 = 𝟎    ∀𝒏, 𝒎 

 

 

11 Arnold, Mathematical Methods in Classical Mechanics  



Integrability 

101 Quantum Integrability 
 

 

 Quantum systems: 
 

Definition 1: Replace   , → 𝑖   , /ħ. Fails, take 𝑃 𝛾 =

|ψ𝛾  ψ𝛾|. 
 

Definition 2: Use definition 1, but consider relevant constants 

of motion - that is operators with classical counterparts. Fails, 

not all operators have any classical corresponding observable. 
 

Definition 3: Poissonian level statistics (𝑃 𝑆 = 𝑒−𝑆 ) implies 

integrability. 
 

Definition 4: Level crossings implies integrability. 
 

⋮ 
 

Definition 64: A quantum system is integrable if it is exactly 

solvable. 

 

 

12 Caux, J. Stat. Mech. 2011 



Spin-orbit coupled particle 
 

 

 Rabi Hamiltonian of quantum optics 

 

𝐻 𝑅 = 𝜔𝑎 +𝑎 +
Ω

2
𝜎 𝑧 + 𝑣 𝑎 + + 𝑎 𝜎 𝑥. 

 

 𝑍2-parity symmetry 

 

𝑈 𝑝, 𝐻 𝑅 = 0,         𝑈 𝑝 = 𝑒
𝑖𝜋 𝑎 +𝑎 +

𝜎 𝑧
2 . 

 

 Drive term breaks 𝑍2 (total energy only preserved quantity) 

 

𝐻 𝑑𝑅 = 𝜔𝑎 +𝑎 +
Ω

2
𝜎 𝑧 + 𝑣 𝑎 + + 𝑎 𝜎 𝑥 + 𝛾𝜎 𝑥. 

 

 

 
13 Scully & Zubary, Quantum Optics (CUP) 

Integrability vs thermalization 



Spin-orbit coupled particle 
 

 

 Is the driven Rabi model integrable? 

 

 Definition 1-2: ”Two” degrees of freedom, only one (relevant) 

constant of motion (energy) → Non-integrable.  

 

14 Larson, J. Phys. B (2013) (JC issue)  

Integrability vs thermalization 



Spin-orbit coupled particle 
 

 

 Is the driven Rabi model integrable? 

 

 Definition 3: Level-statistics. Two branches, neither Poissonian 

→ Non-integrable.  

 

15 
Level statistics of the Rabi model. 

Integrability vs thermalization 

Larson, J. Phys. B (2013) (JC issue)  



Spin-orbit coupled particle 
 

 

 Is the driven Rabi model integrable? 

 

 Definition 4: Avoided crossings. No vissible crossings → Non-

integrable.  

 

16 
Energies of the Rabi model. 

Integrability vs thermalization 

Larson, J. Phys. B (2013) (JC issue)  



Spin-orbit coupled particle 
 

 

 Is the driven Rabi model integrable? 

 

 Definition 64: Solvable. Braak (PRL 2011) says it might be 

solvable but not integrable, others say it is quasi solvable → 

integrable?  
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Integrability vs thermalization 

Larson, J. Phys. B (2013) (JC issue)  



Spin-orbit coupled particle 
 

 

 Does the driven Rabi model thermalize? 

 

 If quantum non-integrability implies thermalization a qualified 

guess would be yes. 

 

 

 

 

 

 

 

 

    Scaled variance of 𝑛 (𝑡) . Thermalization → 𝛿𝑛 = 0. No        

thermalization!  

 
18 

Integrability vs thermalization 

Larson, J. Phys. B (2013) (JC issue)  



Chaos 
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Classical chaos 

Butterfly effect 

Hamilton equations: 
 

𝑑𝑝𝑗

𝑑𝑡
= −

𝜕𝐻

𝜕𝑞𝑗
,   

𝑑𝑞𝑗

𝑑𝑡
=

𝜕𝐻

𝜕𝑝𝑗
,    𝑗 = 1,2, … , 𝑛. 

 

 

 A solution 𝑅1(𝑡) = 𝑞1
1 (𝑡), … , 𝑞𝑛

1 (𝑡), 𝑝1
1 (𝑡), … , 𝑝𝑛

1  (𝑡)  lives 

on a surface in 2𝑛-dimensional phase space. 

 

 Chaotic system – exponential spreading: 

 

𝑅1 𝑡 − 𝑅2(𝑡) ∝ 𝑒λ𝑡,     λ> 0. 

 

Lyapunov exponent    λ 

20 Gutzwiller, Chaos in Classical and Quantum mechanics (Springer) 



Classical chaos 

KAM Theory 

 

 Regular motion: Any solution 

𝑅1(𝑡) =

𝑞1
1 (𝑡), … , 𝑞𝑛

1 (𝑡), 𝑝1
1 (𝑡), … , 𝑝𝑛

1  (𝑡)  

lives on a tori in the 2𝑛-dimensional 

phase space. 
 

 Add a perturbation 𝑉 that beaks 

integrability. KAM describes how the 

tori is gradually deformed.  
 

 Cranking up 𝑉: Going from regular to 

full blown chaos. 

 

21 Gutzwiller, Chaos in Classical and Quantum mechanics (Springer) 

Poincaré section 



Quantum chaos 

Butterfly effect 

Schrödinger equation: 
 

𝑑𝜌 

𝑑𝑡
= 𝑖 𝜌 , 𝐻 .     

 

 

 Trace distance 

 

𝑇 𝜌 1 𝑡 , 𝜌 2 𝑡 ≡
1

2
Tr 𝜌 1 𝑡 − 𝜌 2 𝑡 2 =

1

2
 𝜇𝑖

𝑖

= const. 

 

𝜇𝑖   eigenvalues of   𝜌 1 𝑡 − 𝜌 2(𝑡)  
 

 Quantum mechanics – linear theory. 

 

 No Butterfly effect! Or… 

22 Peres, Quantum Theory, Concepts and Methods (Kluwer)  



Quantum chaos 

Butterfly effect 
 

 

 Perturbation Γ : 𝐻 1 = 𝐻  and 𝐻 2 = 𝐻 + Γ . 

 

 Evolution, 
𝑑𝜌 1

𝑑𝑡
= 𝑖 𝜌 1, 𝐻 1  and 

𝑑𝜌 2

𝑑𝑡
= 𝑖 𝜌 2, 𝐻 2 .     

 

 Trace distance 
 

𝑇 𝜌 1 𝑡 , 𝜌 2 𝑡 ∝ 𝑒λ𝑡 
 

 

 Quantum butterfly effect!  

 

 Non-unitary evolution → butterfly effect, 
 

𝑑𝜌 

𝑑𝑡
= 𝑖 𝜌 , 𝐻 + 𝐿 𝜌 . 

23 Zurek, Rev. Mod. Phys. (2003).  



Quantum chaos 

Characteristics of quantum chaotic systems  

 

 Spectrum 𝐸𝑛. 
 

 Energy separation 𝑠𝑛 = 𝐸𝑛+1 − 𝐸𝑛. 
 

 Normalized distribution 𝑃(𝑆). 
 

 Regular motion:  𝑃 𝑆 = 𝑒−𝑆  (Poisson distribution). 
 

 Chaotic motion:  𝑃 𝑆 =
𝜋

2
𝑆𝛽𝑒−𝜋𝑆2/4   (Wigner distribution). 

24 Haake, Quantum Signatures of Chaos (Springer).  

Level repulsion 

Kicked top 

http://www.google.se/url?sa=i&rct=j&q=chaos+level+repulsion&source=images&cd=&cad=rja&docid=-0wz92pt7bdOYM&tbnid=c5k6fcAw_xp3zM:&ved=0CAUQjRw&url=http://www.scholarpedia.org/article/Kicked_top&ei=wdKsUZzVFMzzsgbfiYHADw&bvm=bv.47244034,d.Yms&psig=AFQjCNGP3c9xuYkolK4K8zZkrCP6uyFpSg&ust=1370366964465937


Quantum chaos 

Characteristics of quantum chaotic systems 
 

 

 Level repulsion → varying time-scales. 
 

 Level repulsion → ergodicity.  
 

 Level repuslion → avoided crossings. 

 

 

 

 

 

 

 

 

 

 

 

 
 

  

25 Haake, Quantum Signatures of Chaos (Springer).  

Driven Rabi model 



Spin-orbit coupled particle 
 

 

 Mean-field for the bosons, parametrize the atom by 

 

|𝜃 =

(1+𝑍)
2 

(1−𝑍)
2 𝑒𝑖𝛿

 , 

 

 Semi-classical Hamiltonian 

 

𝐻𝑐𝑙 =
𝑝2

2
+

𝑥2

2
+

𝜔

2
𝑍 + 𝑔𝑥 2 + 𝛾 1 − 𝑍2 cos 𝛿. 

 

 This Hamiltonian is chaotic in a classical sense → thermalization. 
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Poincaré section. 

Chaos vs thermalization 

Larson, J. Phys. B (2013) (JC issue)  



Spin-orbit coupled particle 
 

 

 

 2D SO coupling. 

 
 

    𝐻 𝑆𝑂 =
𝑝 2

2𝑚
+

1

2
𝑚𝜔2𝑟 2 + 𝑣𝑥𝑝 𝑥𝜎 𝑥 + 𝑣𝑦𝑝 𝑦𝜎 𝑦. 

 

 𝜔 = 0 → dispersions 

 

    𝐸± 𝑝𝑥, 𝑝𝑦 =
1

2𝑚
𝑝𝑥

2 + 𝑝𝑦
2 ± 𝑣𝑥𝑝𝑥

2 + 𝑣𝑦𝑝𝑦
2

. 
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Chaos vs thermalization 

Larson, Phys. Rev. A (2009)   



Spin-orbit coupled particle 
 

 

 

 𝑣𝑥 = 𝑣𝑦 → 𝑈(1) symmetry  

𝐽 , 𝐻 𝑆𝑂 = 0. 
 

 

 

 

28 Larson, Phys. Rev. A (2009).  

Chaos vs thermalization 



Spin-orbit coupled particle 
 

 

 

 𝑣𝑥 = 𝑣𝑦 → 𝑈(1) symmetry  

𝐽 , 𝐻 𝑆𝑂 = 0. 
 

 𝑣𝑥 = 𝑣𝑦 and 𝜔 ≠ 0 → 𝐻 𝑆𝑂 equals 

dual 𝐸 × 𝜀 −Jahn-Teller model. 
 

 

 

29 Larson, Phys. Rev. A (2009).  

Chaos vs thermalization 



Spin-orbit coupled particle 
 

 

 

 𝑣𝑥 = 𝑣𝑦 → 𝑈(1) symmetry  

𝐽 , 𝐻 𝑆𝑂 = 0. 
 

 𝑣𝑥 = 𝑣𝑦 and 𝜔 ≠ 0 → 𝐻 𝑆𝑂 equals 

dual 𝐸 × 𝜀 −Jahn-Teller model. 
 

 

 

30 Larson, Phys. Rev. A (2009).  

 

 

 

 𝑣𝑥 ≠ 𝑣𝑦 → 𝑍2 symmetry 𝐽 , 𝐻 𝑆𝑂 ≠

0. 
 

 𝐻 𝑆𝑂 equals dual 𝐸 ×
𝛽1 + 𝛽2 −Jahn-Teller model. 

 

 

Chaos vs thermalization 



Classical dynamics 

 

 

 Poincaré sections (𝑣𝑥 ≠ 𝑣𝑦). 
 

 

 

 

 

31 Larson, Phys. Rev. A (2013).  

𝒚 = 𝟎 𝒑𝒚 = 𝟎 

x x 

Classical chaos 

Chaos vs thermalization 



Quantum dynamics 

 

 

 Distributions (𝑣𝑥 ≠ 𝑣𝑦). 
 

 

 

 

 

32 Larson, Phys. Rev. A (2013).  

Full Quantum  

Truncated Wigner  

(Semi-classical) 

Quantum Scars 

Remnants of periodic 

classical solutions. 

Heller, Phys. Rev. Lett. (1984).  

Chaos vs thermalization 



KAM theory 

 

 

 ”Islands” may survive large integrability breaking perturbations. 
 

 

 

 

 

33 Larson, Phys. Rev. A (2013).  

Chaos vs thermalization 

Poincaré sections 



KAM theory 

 

 

 Initiate a state in one island. 

 

 

 

 

 

 

 

 

 

 

 

 No thermalization: Not all eigenstates obey ETH.  
 

 

 

 

 

34 Larson, Phys. Rev. A (2013).  

Chaos vs thermalization 

Distribution after 

long time when 

initial state in a 

regular island. 



Localization 
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Ergodicity 

 

 

 Thermalization → ergodicity. 
 

 Quantum information spreads over 

the whole accessible phase space.  
 

 The information about a subsystem 

A is shared in the whole system S:  
 

𝜌 𝐴(𝑡)  diagonal/mixed. 
 

 𝜌 𝐴(𝑡) obeys a ”volume law”. 
 

 Can ergodicity be lost in quantum 

non-integrable/chaotic systems? 
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ETH revisited 



Quantum interference 

 

 

 Add disorder to your system. 
 

 Time inversion symmetry. 
 

 Enhance probability to scatter into 

the same state (factor 2) than an 

arbritary state. 
 

 Quantum interference effect. 
 

 No counterpart in classical systems 

(particles). 
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Anderson localization 

Anderson, Phys. Rev. (1058).  

|Ψ  

|Ψ  

|Ψ′  



 

 

 Spin models good for studying 

many-body localization 
 

𝐻 =  (𝐽𝑥𝜎 𝑥
𝑖𝜎 

𝑥
𝑖+1 + 𝐽𝑦𝜎 𝑦

𝑖𝜎 
𝑦

𝑖+1

𝑖

 

+𝐽𝑧𝜎 𝑧
𝑖𝜎 

𝑧
𝑖+1 + ℎ𝑖𝜎 

𝑧
𝑖) 

 

 Clean 𝑋𝑋𝑋 and 𝑋𝑋𝑌 solvable, 

𝑋𝑌𝑍 + ℎ non-integrable. 
 

 Localization with strong enough 

disorder ℎ𝑖 ∈ −𝑊, +𝑊 . 
 

 Localized eigenstates are not 

thermal, no thermalization! 
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Localization vs thermalization 

Larson,  In progress.  

Lieb-Robinson 



Summary 

 Classical vs. Quantum choas. 
 

 Possibilities to study closed quantum dynamics. 
 

 Equilibration and thermalization. 
 

 Not well understood: 
i. Criteria for equilibration/thermalization. 

ii. Mechanism behind thermalization. 

iii. Definition for “Quantum integrability”. 

iv. Open systems… 

39 

Thanks! 


