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Motivation

= Long time evolution of closed quantum systems not
fully understood.

= Cold atom system — Not only of academic interest.

* Open questions Iin closed system quantum dynamics:

l. Criteria for equilibration/thermalization.
Il.  Mechanism behind thermalization.

. Properties of equilibrated states.

Iv. Definition for “quantum integrability”.
V. Many-body localization...

vi. Open systems...



Outline

1. Quantum Thermalization.
2. Integrability. Problems.
3. Chaos. Problems.

4. Localization and absence of ETH.



Quantum
Thermalization
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Quantum Thermalization

= Characteristics of p for long times.
1) Weak coupling. Open system

2) Infinite degrees of freedom (bath).

3) Delta correlated in time (bath): Markov approximation (no
memory).

4) Factorizable system-bath state (Born approximation).

Thermalization of system.

THERMAL BATH

prn(T)

0tp = i[ﬁ» ﬁsys] + E[ﬁ]

Breuer, Open Quantum Systems (OUP).
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Quantum Thermalization

Equilibration

= Characteristics of g (t) for long times. Closed system

= No clear separation “system/bath”, no Born-Markov nor rotating-
wave approximations.

System p(t)

Srednicki, Phys. Rev. E (1994).
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Quantum Thermalization

Equilibration

= Characteristics of p(t) for long times. Closed system

= Equilibration:

(/T) _ Tr[/iﬁ(t)], { t — independentast — o

A local observable.

= Thermalization:

(4) = (4),, atlong times
<A>Th — Tr[AﬁTh]’

where pr;, = thermal state. “Temperature” determined from (ﬁ )
No memory of initial state.

Srednicki, Phys. Rev. E (1994).
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Quantum Thermalization

ETH — Eigenstate Thermalization Hypotesis

= W) = By G E ) —

A

VIGIEDI Cs"C el(EsEtiny Asy = (Us]4|wy)

= |f thermalization (long-time limit)

(A" = Jim ~ [ dt{A®) = Zy IC, 174y,

T — oo

= ETH: A, Is approximately constant in the "energy window” of the
state V.

= ETH: For ally, ps = Trg[|y, (U, |] is thermal.

Rigol, Nature 2008.
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Quantum Thermalization

Thermalization

= Which systems thermalize?
Possible candidates:

1) Quantum non-integrable systems.

2) Chaotic systems.



Integrability
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Integrability

101 Quantum Integrability

» (Classical systems:

Definition: A system is integrable if the number of degrees of
freedom N is smaller than or equal to the number K of
Independent constants of motion.

{Q,H} =0, n=12 .. K, {0,,0,,} =0 Vnm

Arnold, Mathematical Methods in Classical Mechanics
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Integrability

101 Quantum Integrability

= Quantum systems:

Definition 1: Replace { , } - i[ ,]/h. Fails, take B, =
Wy MWy |

Definition 2: Use definition 1, but consider relevant constants
of motion - that is operators with classical counterparts. Fails,
not all operators have any classical corresponding observable.

Definition 3: Poissonian level statistics (P(S) = e~ ) implies
iIntegrability.

Definition 4: Level crossings implies integrability.

Definition 64: A quantum system is integrable if it is exactly
SOlvable - Caux, J. Stat. Mech. 2011
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Integrability vs thermalization

Spin-orbit coupled particle

= Rabi Hamiltonian of quantum optics

Hy = wa*ta +— az+v(&+ + a)o,.

= Z,-parity symmetry

= Drive term breaks Z, (total energy only preserved quantity)

/\

H;r = wata + , +v@* + a)é, + yé,.

Scully & Zubary, Quantum Optics (CUP)
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Integrability vs thermalization

Spin-orbit coupled particle

* |s the driven Rabi model integrable?

= Definition 1-2: "Two” degrees of freedom, only one (relevant)
constant of motion (energy) — Non-integrable.

Larson, J. Phys. B (2013) (JC issue)
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Integrability vs thermalization

Spin-orbit coupled particle

= |s the driven Rabi model integrable? 4,
o » . . %,
= Definition 3: Level-statistics. Two branches, neither Poissonian

— Non-integrable.

Level statistics of the Rabi model.

Larson, J. Phys. B (2013) (JC issue)
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Integrability vs thermalization

Spin-orbit coupled particle

* |s the driven Rabi model integrable?

= Definition 4: Avoided crossings. No vissible crossings — Non-
Integrable.

Energies of the Rabi model.

Larson, J. Phys. B (2013) (JC issue)
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Integrability vs thermalization

Spin-orbit coupled particle

* |s the driven Rabi model integrable?

= Definition 64: Solvable. Braak (PRL 2011) says it might be
solvable but not integrable, others say it is quasi solvable —
iIntegrable?

Larson, J. Phys. B (2013) (JC issue)
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Integrability vs thermalization

Spin-orbit coupled particle

= Does the driven Rabi model thermalize?

= |f quantum non-integrability implies thermalization a qualified
guess would be yes.

Scaled variance of (7i(t)). Thermalization — §,, = 0. No
thermalization!

Larson, J. Phys. B (2013) (JC issue)



Chaos
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Classical chaos

Butterfly effect

Hamilton equations:

dp;  0H dqj _ 0H
dt aq]" dt apj

= Asolution R1(t) = (¢:V(0), .. G P (), 01V (©), ..., 2, P (1)) lives
on a surface in 2n-dimensional phase space.

= Chaotic system — exponential spreading:
|IRT(t) — R?(t)| x e*t, A> 0.
Lyapunov exponent A

Gutzwiller, Chaos in Classical and Quantum mechanics (Springer)
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Classical chaos

KAM Theory

= Regular motion: Any solution
R (t) =
(. P@®), e ¢ P ), 21 V), s 22 (D)
lives on a tori in the 2n-dimensional
phase space.

= Add a perturbation VV that beaks
integrability. KAM describes how the
tori i1s gradually deformed.

= Cranking up V: Going from regular to
full blown chaos.

Poincaré section

Gutzwiller, Chaos in Classical and Quantum mechanics (Springer)
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Quantum chaos

Butterfly effect

Schrodinger equation:

L =i[p,A].

= Trace distance

1 1
T(p1(6), p2(8)) = 5 Tr V®.® = 5,)%] = E

u; eigenvalues of (p,(t) — p,(t))
= Quantum mechanics — linear theory.

= No Butterfly effect! Or...

Peres, Quantum Theory, Concepts and Methods (Kluwer)



B
Quantum chaos

Butterfly effect
= Perturbation: A, = Hand H, = H +T.
= Evolution, dd—ﬁtl = i|py, H; | and dd—ﬁtz = i|p, H, |-
= Trace distance

T(p1(2), p2(t)) o< et
= Quantum butterfly effect!
= Non-unitary evolution — butterfly effect,
ap

Zurek, Rev. Mod. Phys. (2003).
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Quantum chaos

Characteristics of guantum chaotic systems
= Spectrum E,,.
= Energy separation s, = E,,,; — E,,.
= Normalized distribution P(S).

= Regular motion: P(S) = e~° (Poisson distribution).

= Chaotic motion: P(S) = %Sﬁe‘”sz/4 (Wigner distribution).

Level repulsion

iy
Kicked top

Haake, Quantum Signatures of Chaos (Springer).


http://www.google.se/url?sa=i&rct=j&q=chaos+level+repulsion&source=images&cd=&cad=rja&docid=-0wz92pt7bdOYM&tbnid=c5k6fcAw_xp3zM:&ved=0CAUQjRw&url=http://www.scholarpedia.org/article/Kicked_top&ei=wdKsUZzVFMzzsgbfiYHADw&bvm=bv.47244034,d.Yms&psig=AFQjCNGP3c9xuYkolK4K8zZkrCP6uyFpSg&ust=1370366964465937
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Quantum chaos

Characteristics of guantum chaotic systems

= Level repulsion — varying time-scales.
= Level repulsion — ergodicity.

= Level repuslion — avoided crossings.

Driven Rabi model

Haake, Quantum Signatures of Chaos (Springer).
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Chaos vs thermalization

Spin-orbit coupled particle

= Mean-field for the bosons, parametrize the atom by

2
|6) = ,
| /(1—2) /e

=  Semi-classical Hamiltonian

5 5 Poincaré section.
Hy="+—+>Z+ (gxv2 +y)V1 - Z2 cos §.

= This Hamiltonian is chaotic in a classical sense — thermalization.

Larson, J. Phys. B (2013) (JC issue)
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Chaos vs thermalization

Spin-orbit coupled particle

= 2D SO coupling.

A2
Ty _ p 1 222 LS A A
Hgp = P + Smwr + Uy Dy Ox + Vy Dy 0y,

* = 0 — dispersions

Es(popy) = 5= (02 +1,2) £ J ap2)? + (vypy) "

Larson, Phys. Rev. A (2009)
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Chaos vs thermalization

Spin-orbit coupled particle

" v, = vy, — U(1) symmetry
[j, ﬁso] - O

Larson, Phys. Rev. A (2009).
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Chaos vs thermalization

Spin-orbit coupled particle

" v, = vy, — U(1) symmetry
[j, Hso] - O

* v, =v,and w # 0 — Hyy equals
dual E X £ —Jahn-Teller model.

Larson, Phys. Rev. A (2009).



-y B
Chaos vs thermalization

Spin-orbit coupled particle

= v, =1, — U(1) symmetry " v # v, — Z, symmetry [J, Hso| #
[], HSO ] — 0 0

* v, =v,andw # 0 — Hy, equals | * Hso equals dual E x
dual E x ¢ —Jahn-Teller model. (B; + B2) —Jahn-Teller model.

Larson, Phys. Rev. A (2009).
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Chaos vs thermalization

Classical dynamics

= Poincare sections (v, # vy).

Larson, Phys. Rev. A (2013).
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Chaos vs thermalization

Quantum dynamics

= Distributions (v, # v,,).

Full e i
Quantum Scars

Remnants of periodic
classical solutions.

Heller, Phys. Rev. Lett. (1984).

Truncated Wigner
(Semi-classical)

Larson, Phys. Rev. A (2013).
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Chaos vs thermalization

KAM theory

Poincaré sections

Larson, Phys. Rev. A (2013).



-y B
Chaos vs thermalization

KAM theory

= |nitiate a state in one island.

Distribution after
long time when
Initial state in a
regular island.

= No thermalization: Not all eigenstates obey ETH.

Larson, Phys. Rev. A (2013).
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ETH revisited

Ergodicity

* Thermalization — ergodicity.

= Quantum information spreads over
the whole accessible phase space.

* The information about a subsystem
A Is shared in the whole system S:

p4(t) diagonal/mixed.

= p,(t) obeys a "volume law”.

= Can ergodicity be lost in quantum
non-integrable/chaotic systems?
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Anderson localization

Quantum interference

= Add disorder to your system.

= Time inversion symmetry.

/5/\/—‘ |LIJ,>
|¥)

= Enhance probability to scatter into

the same state (factor 2) than an

arbritary state.
= Quantum interference effect. |¥)
= No counterpart in classical systems

(particles).

Anderson, Phys. Rev. (1058).
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| ocalization vs thermalization

= Spin models good for studying Lieb-Robinson
many-body localization '

X3CKHh chain

ZUxAxla-le +]y LG i+1
+]z Azlé-\zl+1 + hia-zi)

= Clean XXX and XXY solvable, ' 10
XYZ + h non-integrable. ——

= | ocalization with strong enough
disorder h; € [—W,+W].

» |Localized eigenstates are not
thermal, no thermalization!

Larson, In progress.






