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Motivation 
“Take-home-message” 

 Scenario 1: A quantum wire described by a Heisenberg 𝑋𝑌𝑍 

chain in an external field 

 

𝐻 𝑋𝑌𝑍 =  𝐽𝑥𝜎 
𝑥
𝑖𝜎 

𝑥
𝑖+1 + 𝐽𝑦𝜎 

𝑦
𝑖𝜎 

𝑦
𝑖+1 + 𝐽𝑧𝜎 

𝑧
𝑖𝜎 

𝑧
𝑖+1 + ℎ𝜎 𝑧𝑖𝑖 . 

 

Local perturbation/quench. How is entanglement building up? 

 

 DMRG and MPS is doing the job for us… Up till some point! 

After that….  
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Motivation 
“Take-home-message” 

 Scenario 2: Map out the phase diagram of the 3D Heisenberg 

𝑋𝑌𝑍 model in an external field. Determine the critical exponents! 

 

 𝑁 sites → Hilbert space dimension 𝐷 = 2𝑁. 𝑁 = 1000 gives 

𝐷 = 300000000000000000000000000000000! 
 

Exponential growth of memory resources! 

(Record 2007: 𝑁 = 36) 
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FORGET 

IT!!! 



Motivation 
“Take-home-message” 

 Scenario 3: Ground state of the Fermi-Hubbard model in 2D 

and 3D. ”Sign problem” causes a mess for Monte-Carlo. 
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Motivation 
“Take-home-message” 
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Think twice which quantum problem you tell your 

student to solve/simulate! 



Motivation 
“Take-home-message” 
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”Let the computer itself be built of quantum 

mechanical elements which obey quantum 

mechanical laws.” 

Richard Feynman 

[1] R. P. Feynman, Int. J. Theor. Phys. 21, 467 (1982). 



Motivation 
“Take-home-message” 
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 ”Quantum simulators” outrun classical computers (today!). 

 

 We will learn ”new physics” thanks to quantum simulators 

(soon). 

 

 ”There’s more to the picture than meets the eye”. There are not 

only quantum simulators that will result from this story… 

 

 

 

 
 

 

 

 



Outline 

1. Quantum computers. 

 

2. Quantum simulators.  

 

3. Realizations – State-of-the-art. 

 

4. Proposal for simulating spin models. 
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Quantum 

computers 
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The idea 

Digital quantum computer 
 

 Bits ”0” and ”1” → qubits |0  and |1 . 
 

”01001100101110…” → |ψ =  𝑐𝑖|𝑖1𝑖2…𝑖𝑁 𝑖 =0,1  
 

 Logic gates → quantum logic gate operations  
 

|ψ𝑜𝑢𝑡 =  𝑈 (𝑖)𝑖 |ψ𝑖𝑛 . 
 

Analog (continuous) quantum computer 
 

ψ𝑜𝑢𝑡 𝒙 , 𝑡𝑓 = 𝑈 𝒙 , 𝒑 , 𝑡𝑓 ψ𝑖𝑛 𝒙 , 0 = 𝑒−𝑖𝐻
 𝑡𝑓ψ𝑖𝑛 𝒙 , 0 . 

 

Adiabatic quantum computer 
 

𝜓0 𝑡 ;          
 

𝐻 𝑡 𝜓0 𝑡 = 𝐸0 𝑡 𝜓0 𝑡 ,         𝐻 𝑡 = 𝑡𝐻 1 + (1 − 𝑡)𝐻 2. 
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What we need 

Loss-DiVencezo criteria 
 

i. Well-defined  qubits, 

ii. State preparation, 

iii. Low decoherence/scaleability, 

iv. Gate operations, 

v. Measurement protocols. 
 

When does it become practical? 
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Factorizing 

(Shor) 

Classical computer 

(laptop) 

Quantum 

computer 

193 digits few months. 0.1 second 

500 digits 1012 years 2 minutes 

2048 digits Supercomputer; size of 

Sweden, 106 trillion $, 

consumes world’s supply of 

fossil fuels in on day. 10 

years.  

16 hours 

(106 qubits, 108 $) 



What we need 

Loss-DiVencezo criteria 
 

i. Well-defined  qubits      – Quantum dots, ions,…        

ii. State preparation – questionable. 

iii. Low decoherence/scaleability – No! Ions: 8-14 qubits (Blatt), 

Qdots: 5 qubits (Martinis). 

iv. Gate operations      (to some degree).  

v. Measurement protocols – questionable. 

 

 Quantum error correction. Encode the qubit in collective 

states of many ”phyical” qubits. → Increasing number of qubits. 

 

 Fault tolerance. How much errors do we afford and still achieve 

the goal? (> 99% gate fidelities). 
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Never say never 

14 

 Topological 

quantum 

computing. 

 

 Topological 

quantum 

computing. 

 

 Circuit QED. Fault 

tolerance single 

gates. 

 



Quantum 

simulators 
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Digital quantum computers → 

quantum simulators 
 Seth Lloyd:  
 

Any (local) Hamiltonian many-body evolution can be effectively simulated 

on a digital quantum computer via Trotter-decomposition. 
 

 A digital quantum computer with a universal set of gates → 

Universal digital quantum simulator (unitary Hamiltonian 

evolution). 
 

 Quantum error correction possible but costly (number of gate 

operations increases and simulations become slow, state-of-the 

art systems can imply time-scales of years!). 
 

 Non-local interactions problematic. 
 

 Generalizations to non-universal digital and open quantum 

simulators. Error corrections? 

 

 

 
 

 

 

 

16 S. Lloyd, Science 1996. 



Definition - quantum simulators 

Relevance – Simulated systems/models should have physical 
applications. Address open questions. 

Controllability – System parameters tunable, contol of 
preparation/initialization, evolution/manipulation and detection. 

Reliability – Measured results should be trustworthy. 

Efficiency – The solved problem should be difficult to solve on 
a classical computer.  

17 P. Hauke et al., Rep. Prog. Phys. 2012. 



Analog quantum simulators 

 Simulate time-evolution: 𝜌 (0) → 𝜌 (𝑡). 
 

 Closed quantum system, engineer 𝐻  such that |ψ(𝑡) =

𝑒−𝑖𝐻 𝑡|ψ(0) .  
 

 Continuous time-evolution, no Trotter-decomposition but also no 

error correction. 

 

 Note, we imagine also ground-state simulations 𝑡 → −𝑖𝑡. 
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Realizations – 

State-of-the-art 
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Trapped ions 

 Singled trapped ion, dressed with a laser 
 

𝐻 𝐼𝑜𝑛 = 𝜔𝑎 +𝑎 +
𝛥

2
𝜎 𝑧 + 𝑔 𝜎 +𝑒−𝑖𝜂 𝑎 ++𝑎 + 𝜎 −𝑒𝑖𝜂 𝑎 ++𝑎  

 

 Single out certain transions (Lamb-Dicke regime, 𝜂 ≪ 1) 

 

i. 𝐻 𝐽𝐶 = 𝜔𝑎 +𝑎 +
𝛥

2
𝜎 𝑧 + 𝑔 𝜎 +𝑎 + 𝑎 +𝜎 − ,    Red sideband 

ii. 𝐻 𝑎𝐽𝐶 = 𝜔𝑎 +𝑎 +
𝛥

2
𝜎 𝑧 + 𝑔 𝜎 +𝑎 + + 𝜎 −𝑎 ,   Blue sideband 

iii. 𝐻 𝑐𝑎𝑟 = 𝜔𝑎 +𝑎 +
𝛥

2
𝜎 𝑧 + 𝑔 𝜎 + + 𝜎 − ,      Carrier. 

 

 

 Enormous control! Gate fidelities of 99.9%. 
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Trapped ions 

 Quantum simulators → many ions. 

 

 Paul trapps → linear ion chains. 

 

 

 

 

 

 

 

 Blatt’s Insbruck-group. Controlled entanglement generation of 

up to 14 qubits! Full state tomography of 8 qubits (600 000 

experimental repetitions!). 
 

 

 

 
21 H. Häffner et al., Nature 2005. 



Trapped ions 

 Coloumb interaction → collective vibrational modes. 
 

 Eliminate vibrational modes: 
 

𝐻 𝑒𝑓𝑓 =  𝐽𝛼𝑖𝑗𝜎 
𝛼
𝑖𝜎 

𝛼
𝑗

𝛼,𝑖,𝑗

,                𝐽𝛼𝑖𝑗 ∝
1

𝑞𝑖 − 𝑞𝑗
𝛾 

 

 The power 0 ≤ 𝛾 ≤ 3 is in general controlable. 
 

 Monroe group: Frustration and signatures of phase transitions in 

3-16 ion chains (𝛾 = 1).   
 

 

 

 

22 D. Porras and I. J. Cirac., PRL 2004. 

Relevance – Probably. 

Controllability – Not fully. 

Reliability – Yes. 

Efficiency – No.  



Trapped ions 

 NIST group: ~300 ions in a Penning trap, 0 ≤ 𝛾 ≤ 1.4. 

 

 

 

 

 

 

 Coherent evolution by measuring 𝑀 =  𝜎 𝑧𝑖𝑖 . 

 

 

 
 

 

 

 

23 J. W. Britton et al, Nature 2013. 

𝛾 = 0 𝛾 = 3/2 𝛾 = 3 

Relevance – Probably. 

Controllability – No. 

Reliability – Yes. 

Efficiency – No.  



Cold atoms in optical lattices  

 Optical lattices: 
 

a. Ultracold atoms, bosons, fermions or mixtures. 

b. Standing wave laser fields → dipole coupling → periodic Stark 

shift potentials. 

c. Single-band approximation: atoms populate one energy band. 

d. Tight-binding approximation: tunneling to nearest neighbour. 

e. Onsite atom-atom interaction. 

 

 

 

 

 
 

 

 

 

24 I. Bloch et al., Rev. Mod. Phys. 2008. 

p-band 

𝑈 𝑡 

𝐻 𝐵𝐻 = −𝑡 𝑎 +𝑖𝑎 𝑗 + ℎ. 𝑐.

𝑖𝑗

+
𝑈

2
 𝑛 𝑖 𝑛 𝑖 − 1

𝑖

− 𝜇𝑁  Bose-Hubbard 

model 

s-band 

𝜇 = chemical potential 



Cold atoms in optical lattices  

 ”Mott-superfluid phase transition”. Ground state: 
 

𝑈 ≫ 𝑡   →    |ψ0(𝜇) ≈ |𝑛, 𝑛, … , 𝑛        ”Mott-insulator state” 
 

𝑡 ≫ 𝑈   →    |ψ0(𝜇) ∝ 𝑎 +𝑘=0
𝑁|0        ”Superfluid state” 

 

 “Time-of-flight”  measurements. 
 

 

25 M. Greiner et al., Nature 2002. 

Relevance – Maybe. 

Controllability – Yes. 

Reliability – Yes. 

Efficiency – No.  



Cold atoms in optical lattices  

 Initialize 

 

 

 

 

 
 

 Single-site-addressing – population of every even site. 
 

 DMRG calculations, no fitting parameters! 
 

 

 

26 A. Flesch et al., Nature 2012. 

|ψ(0) = |1,0,1,0,1,…   

Relevance – Maybe. 

Controllability – Yes. 

Reliability – Yes. 

Efficiency – Yes.  



Proposal for 

simulating spin 

models 
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Cold atoms in excited bands  

 Spin models → we need quasi degenerate (atomic) levels. 
 
 

1) Internal Zeeman levels (L.-M. Duan et al., PRL 2003). Typically 

𝑋𝑋𝑍–models. 
 

2) Tilted lattices. Transverse Ising-model (J. Simon et al., Nature 

2011). One dimension. 
 

3) Polar molecules in optical lattices (A. Micheli et al., Nature 

2006). Inherently “long-range”. 

 

 Use the quasi degenerate states of excited bands, p-bands. 
 

 

 

28 F. Pinheiro et al., PRL 2013. 

p-band 

𝑡 

s-band 



Cold atoms in excited bands  

 Two dimensional square isotropic lattice, bosons. 

 

 p-band: Two degenerate atomic orbitals, 𝑝𝑥-orbital and 𝑝𝑦-

orbital.  
 

 

 

 

 

 

 

 

 

 

 

 

 Tunneling anisotropic due to orbital shape. 
 

 29 F. Pinheiro et al., PRL 2013. 



Cold atoms in excited bands  

 Kinetic part 

 

𝐻 𝑘𝑖𝑛 = −  𝑡𝛼𝛽𝑎 
+
𝛼𝑖𝑎 𝛼𝑗𝑖𝑗𝛼,𝛽 . 

 

 Interaction parts 

 

𝐻 𝑑𝑒𝑛𝑠 =   
𝑈𝛼𝛼

2
𝑛 𝛼𝑖 𝑛 𝛼𝑖 − 1𝑖𝛼 +   𝑈𝛼𝛽𝑛 𝛼𝑖𝑛 𝛽𝑖𝑖𝛼≠𝛽 , 

 

𝐻 𝑜𝑐 =   
𝑈𝛼𝛽

4
𝑎 +𝛼𝑖𝑎 

+
𝛼𝑖𝑎 𝛽𝑖𝑎 𝛽𝑖 + ℎ. 𝑐.𝑖𝛼≠𝛽 . 

 

 𝐻 𝑜𝑐 - “orbital changing term” (Two 𝛼-orbital atoms scatter into 

two 𝛽-orbital atoms). 
 

 

30 F. Pinheiro et al., PRL 2013. 



Cold atoms in excited bands  

 Recepie: 

 
1) Mott-insulator (𝑛𝑖 = 1). 

2) Perturbation theory in 𝑡 𝑈 . 

3) Schwinger spin-boson mapping. 

 

 Result: Heisenberg 𝑋𝑌𝑍-model 

 
𝐻 𝑋𝑌𝑍 = 𝐽 1 + 𝛾 𝜎 𝑥𝑖𝜎 

𝑥
𝑗 + 1 − 𝛾 𝜎 𝑦𝑖𝜎 

𝑦
𝑗 +𝑖𝑗 ∆ 𝜎 𝑧𝑖𝜎 

𝑧
𝑗𝑖𝑗 + ℎ 𝜎 𝑧𝑖𝑖 . 

 

 Non-integrable in the general case → promising quantum simulator. 
 

 

31 F. Pinheiro et al., PRL 2013. 



Cold atoms in excited bands  

 Comments: 

 
1. Phase diagram in 1D fairly known. 

 

2. Beyond tight-binding → 

Dzyaloshinskii-Morya terms. 
 

3. Different lattice configurations → 

Dzyaloshinskii-Morya terms. 
 

4. Three dimensions → 𝑆𝑈(3) models. 
 

5. Spinor atoms  →  𝑆𝑈(𝑛) × 𝑆𝑈(𝑚) 
models. 
 

6. d-band →  spin-1 models (also for 

𝑛 = 2 Mott on the p-band). 
 

7. Including s-band atoms → disordered 

models (many-body localization). 

 

 
32 F. Pinheiro et al., PRL 2013. 



Summary 

 Classical vs. Quantum choas. 
 

 Possibilities to study closed quantum dynamics. 
 

 Equilibration and thermalization. 
 

 Not well understood: 
i. Criteria for equilibration/thermalization. 

ii. Mechanism behind thermalization. 

iii. Definition for “Quantum integrability”. 

iv. Open systems… 

33 

Thanks! 


