Disorder and symmetry classes in cold atom systems

Jonas Larson

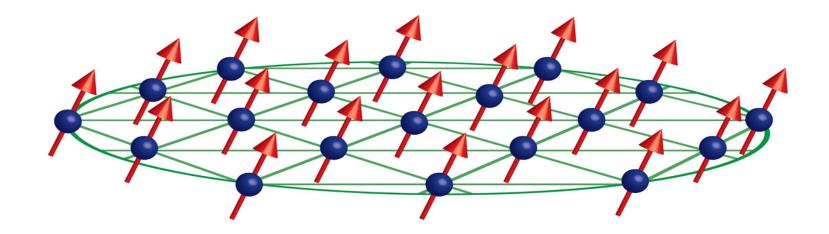
with Fernanda Pinheiro

Stockholm University and Universität zu Köln

Lund 11/5-2015

Motivation

Optical lattices + control → quantum simulators.



- Hubbard models, spin models (magnetism), topological models (quantum computing), new models,...
- Controlled disorder. Study paradigm problems from cond-mat, fundamental questions about dynamics,...

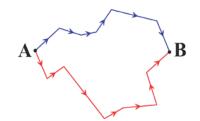
Outline

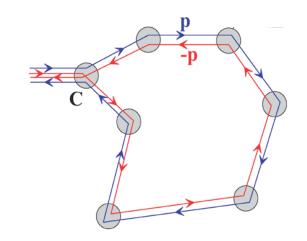
- 1. Anderson localization: idea.
- 2. Symmetry classes.
- 3. Anderson localization: realization with cold atoms.
- 4. Beyond current experiments.
- 5. Order vs. disorder.
- 6. And then...

Anderson localization: idea

Weak localization

- Imagine a lattice model with onsite disorder.
- Random phase contributions.
- Going from A to B, sum all paths coherently.
- Amplitude to "stay", C to C. Closed loops, clockwise and anti-clockwise.
- Time-reversal symmetry; constructive interference if $\mathcal{T}^2=+1$, destructive interference if $\mathcal{T}^2=-1$.





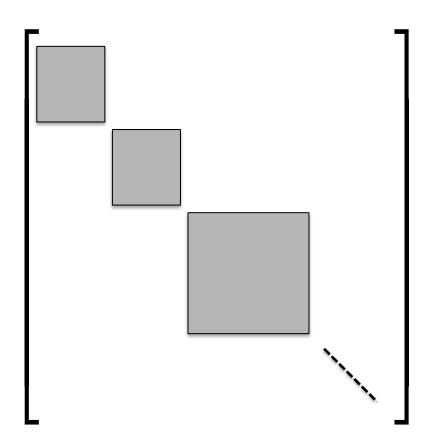
Strong localization

- Anderson 1958: sufficently strong disorder may fully prohibit conduction.
- Destructive interference quantum effect.
- Single-particle case no interaction.

Theory:

- ➤ 1D, all eigenstates are localized.
- 2D, all eigenstates are localized, or...
- \triangleright 3D, a *mobility edge:* some energy E_c separates localized from delocalized eigenstates.

- Symmetry: unitary $[\hat{U}, \hat{H}] = 0$.
- Hamiltonian on block form, each block an 'irreducible' Hamiltonan.
- Should look for 'different' symmetries.



• Time-reversal symmetry \mathcal{T} :

$$\hat{U}_{\mathcal{T}}^{\dagger} \hat{H}^* \hat{U}_{\mathcal{T}} = +\hat{H}$$

• Particle-hole symmetry ${\cal C}$:

$$\hat{U}_{\mathcal{C}}^{\dagger} \hat{H}^* \hat{U}_{\mathcal{C}} = -\hat{H}$$

Furthermore we may have

$$\mathcal{T}^2 = \pm 1, \qquad \mathcal{C}^2 = \pm 1$$

■ Finally $\mathcal{T} \cdot \mathcal{C}$ is non-trivial and called *chiral symmetry* \mathcal{S} :

$$\left[\hat{U}_{\mathcal{S}}, \hat{H}\right]_{+} = 0$$

In this work:

Label	\mathcal{T}	С	S
A (unitary)	0	0	0
AI (orthogonal)	+1	0	0
AII (symplectic)	-1	0	0
AIII (chiral unitary)	0	0	
BDI (chiral orthogonal)	+1	+1	
CII (chiral symplectic)	-1	-1	1
D (BdG)	0	+1	0
C (BdG)	0	-1	0
DIII (BdG)	-1	+1	1
CI (BdG)	+1	-1	1

Symmetry classes and localization

- Focus on A, AI, AIII, and BDI (2D).
 - Class A *unitary*. All states localized, potentially topological.
 - 2) Class AI Wigner-Dyson orthogonal. All states localized, topologically trivial.
 - Class AIII chiral unitary. State at E=0 may be extended, other states localized, topologically trivial.
 - Class BDI chiral orthogonal. Same as for AIII.
- Renormalization group calculation gives localization length

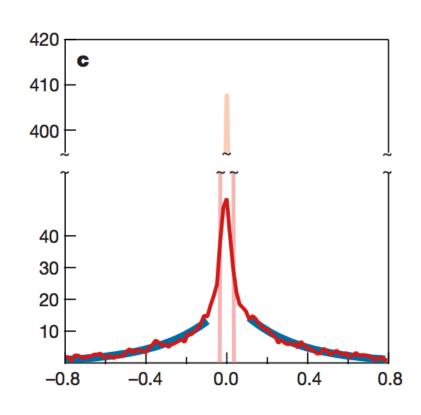
$$\lambda(E) \propto e^{g^{-1}\sqrt{\log(\Delta/|E|)}}$$

Here, Δ is a band "width" of clean system, and g^{-1} is proportional to the conductance.

Anderson localization: realization with cold atoms

Anderson in the atomic lab

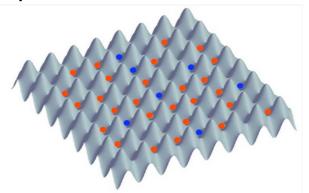
- 1. 2008: 1D, localization and localization length (Nature **453**; 891 & 895).
- 2. 2009: 3D, suppression of superfluidity (PRL **102**, 055301).
- 3. 2010: 3D, *Bose glass* (Nature Phys. **6**, 677).
- 2011/2012: 3D, presence of a mobility edge (Science 334, 66; Nature Phys. 8, 398).
- All experiments use a standard optical potential → class AI.



Beyond current experiments

Model Hamiltonian

2D isotropic square optical lattice + two atomic species.



• Tunneling t, chemical potentials μ_a and μ_b , and random (onsite) coupling between the species $h_{\bf i}e^{i\varphi_{\bf i}}$.

$$\hat{H} = -t \sum_{\langle \mathbf{i} \mathbf{j} \rangle} \left(\hat{a}_{\mathbf{i}}^{\dagger} \hat{a}_{\mathbf{j}} + \hat{b}_{\mathbf{i}}^{\dagger} \hat{b}_{\mathbf{j}} \right) + \sum_{\mathbf{i}} \left(\mu_a \hat{n}_a + \mu_b \hat{n}_b \right) + \sum_{\mathbf{i}} h_{\mathbf{i}} \left(e^{i\varphi_{\mathbf{i}}} \hat{a}_{\mathbf{i}}^{\dagger} \hat{b}_{\mathbf{i}} + h.c. \right)$$

 Aternative: Bilayer single species model with random hopping between layers.

Model Hamiltonian

■ Idea: control $\mu = \mu_a - \mu_b$ and $\varphi_i = 0$ or $\varphi_i \neq 0$. Different symmetry classes.

$h_{f i}$	μ	Class
Real-valued	Zero	BDI
Complex-valued	Zero	AIII
Real-valued	Non-zero	Al
Complex-valued	Non-zero	Α

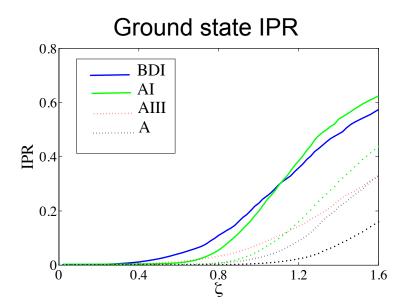
Onset of localization

- Divergent $\lambda(E=0)$ highly debated hard to see numerically (too small systems) and never experimentally seen.
- Inverse partition ratio *IPR*

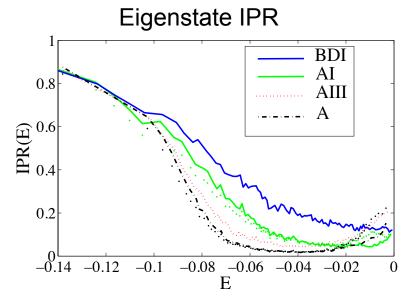
$$IPR(E) = \sum_{i,j} |\psi_E(i,j)|^4$$

$$IPR(E) = \begin{cases} \sim 1 & \text{localized} \\ N^{-1} & \text{extended} \end{cases}$$

Onset of localization



The IPR for the different models and as a function of the coupling strength (disorder). Chiral models localize earlier. Dotted lines *b* species.



The IPR for the different models and energies. The flattening indicates that the localization length ~ system size (30x30).

Effective model for non-chiral cases

- Assume large μ , i.e. adiabatically elliminate (integrate out) a-species.
- Heisenberg equations of motion

$$\partial_t \hat{a}_{\mathbf{i}} = -ih_{\mathbf{i}}\hat{b}_{\mathbf{i}} - i\mu_a \hat{a}_{\mathbf{i}} + it\sum_{\mathbf{j}} \hat{a}_{\mathbf{j}},$$

$$\partial_t \hat{b}_{\mathbf{i}} = -ih_{\mathbf{i}}\hat{a}_{\mathbf{i}} - i\mu_b \hat{b}_{\mathbf{i}} + it \sum_{\mathbf{j}} \hat{b}_{\mathbf{j}}.$$

- Set $\partial_t \hat{a}_i = 0$ giving $\hat{\mathbf{a}} = \mathbf{M}^{-1}\mathbf{hb}$ with \mathbf{h} diagonal and \mathbf{M} tight-binding.
- Effective long range hopping for b-species

$$\left(\frac{t}{\mu_a}\right)^{-|\mathbf{i}-\mathbf{j}|}$$

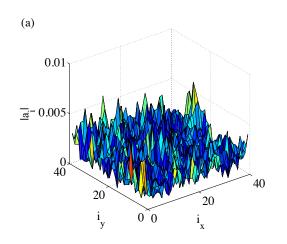
Not enough to kill localization!!

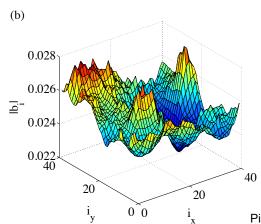
Effective model for non-chiral cases

$$\partial_t \hat{a}_{\mathbf{i}} = -ih_{\mathbf{i}}\hat{b}_{\mathbf{i}} - i\mu_a \hat{a}_{\mathbf{i}} + it\sum_{\mathbf{j}} \hat{a}_{\mathbf{j}},$$

$$\partial_t \hat{b}_{\mathbf{i}} = -ih_{\mathbf{i}}\hat{a}_{\mathbf{i}} - i\mu_b \hat{b}_{\mathbf{i}} + it \sum_{\mathbf{i}} \hat{b}_{\mathbf{j}}.$$

- Large population in one species gives large disorder for the other.
- If $\|\hat{b}_i\| \gg \|\hat{a}_i\|$, the "small" species minimizes the disordered potential energy while the "large" species minimizes the kinetic energy.





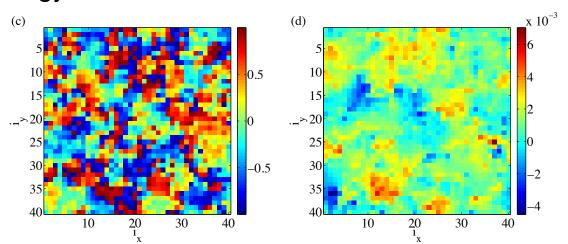
7

Effective model for non-chiral cases

$$\partial_t \hat{a}_{\mathbf{i}} = -ih_{\mathbf{i}}\hat{b}_{\mathbf{i}} - i\mu_a \hat{a}_{\mathbf{i}} + it \sum_{\mathbf{j}} \hat{a}_{\mathbf{j}},$$

$$\partial_t \hat{b}_{\mathbf{i}} = -ih_{\mathbf{i}}\hat{a}_{\mathbf{i}} - i\mu_b \hat{b}_{\mathbf{i}} + it \sum_{\mathbf{i}} \hat{b}_{\mathbf{j}}.$$

- Large population in one species gives large disorder for the other.
- If $\|\hat{b}_i\| \gg \|\hat{a}_i\|$, the "small" species minimizes the disordered potential energy while the "large" species minimizes the kinetic energy.



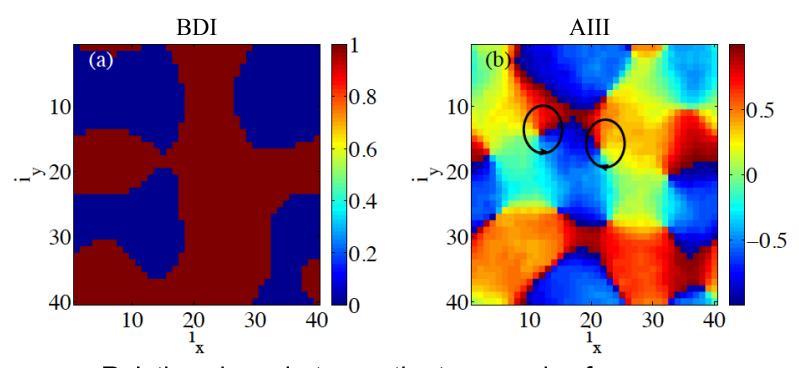
In the middle of the spectrum $\|\hat{b}_i\| = \|\hat{a}_i\|$ and for the most excited states $\|\hat{a}_i\| \gg \|\hat{b}_i\|$

Characterizing excitations

$$\hat{H} = -t \sum_{\langle \mathbf{i} \mathbf{j} \rangle} \left(\hat{a}_{\mathbf{i}}^{\dagger} \hat{a}_{\mathbf{j}} + \hat{b}_{\mathbf{i}}^{\dagger} \hat{b}_{\mathbf{j}} \right) + \sum_{\mathbf{i}} \left(\mu_a \hat{n}_a + \mu_b \hat{n}_b \right) + \sum_{\mathbf{i}} h_{\mathbf{i}} \left(e^{i\varphi_{\mathbf{i}}} \hat{a}_{\mathbf{i}}^{\dagger} \hat{b}_{\mathbf{i}} + h.c. \right)$$

- If $\varphi_i = 0$, the last term favors a phase locking $\phi = 0$, π between the onsite species.
- If $\varphi_i \neq 0$, the the phase locking should compensate the random phase.
 - 1) First case (time-reversal symmetric, AI and BDI), excitations in terms of domain walls.
 - Second case (A and AIII), excitations in terms of vortices.
- Long domain walls (many vortices) costly in terms of kinetic energy.

Characterizing excitations



Relative phase between the two species for eigenstate 20. Time-reversal model (left) → domain walls, complex Hamiltonian (right) → vortices.

Order vs disorder

"Random field induced order"

- Mermin-Wagner theorem: critical lower dimension were the system cannot order (too large fluctuations). Classical:
 - 1) Continuous symmetry, possible order for D>2.
 - 2) Discrete symmetry, possible order for D>1.
- Add a random field such that a continuous symmetry is broken down to a discrete one. Order not forbidden due to Mermin-Wagner - Random-field induced order (RFIO).

"Random field induced order"

Niederberger et al. (PRL 100, 030403 (2008)):

$$E = \int d\mathbf{r} [(\hbar^2/2m)|\nabla\psi_1|^2 + V(\mathbf{r})|\psi_1|^2 + (g_1/2)|\psi_1|^4$$

$$+ (\hbar^2/2m)|\nabla\psi_2|^2 + V(\mathbf{r})|\psi_2|^2 + (g_2/2)|\psi_2|^4$$

$$+ g_{12}|\psi_1|^2|\psi_2|^2 + (\hbar\Omega(\mathbf{r})/2)(\psi_1^*\psi_2 + \psi_2^*\psi_1)],$$

- The two BEC fields build up a $\pi/2$ phase locking due to RFIO.
- Do we see RFIO?
- No numerical evidence!
 - RFIO not well understood, even less now
 - Is interaction crucial?
 - Interacting random systems very different from "Anderson systems". Role of excitations?

And then...

Work in progress...

- Interaction:
 - 1) RFIO
 - 2) Excitations.
- Change of basis: phase of coupling appears on the tunneling terms – synthetic gauge field. Hall physics, Hofstadter butterfly,...
- Four species, can we get the symplectic class or the BdG classes?

