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Motivation 
§  Optical lattices + control → quantum simulators. 

§  Hubbard models, spin models (magnetism), topological models 
(quantum computing), new models,… 

§  Controlled disorder. Study paradigm problems from cond-mat, 
fundamental questions about dynamics,… 
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Outline 

1.  Anderson localization: idea. 

2.  Symmetry classes. 

3.  Anderson localization: realization with cold atoms. 

4.  Beyond current experiments. 

5.  Order vs. disorder. 

6.  And then… 
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Anderson 
localization: idea 
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Weak localization 
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§  Imagine a lattice model with onsite disorder. 

§  Random phase contributions. 

§  Going from A to B, sum all paths 
       coherently. 
 
§  Amplitude to ”stay”, C to C. Closed 
      loops, clockwise and anti-clockwise. 
 
§  Time-reversal symmetry; constructive 
      interference if             , destructive 
      interference if              .         . 
 



Strong localization 
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§  Anderson 1958: sufficently strong disorder may fully prohibit 
conduction.  

§  Destructive interference – quantum effect. 

§  Single-particle case – no interaction. 

 Theory: 
 

Ø  1D, all eigenstates are localized. 

Ø  2D, all eigenstates are localized, or… 

Ø  3D, a mobility edge: some energy      separates localized from 
delocalized eigenstates. 



Symmetry classes 
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Symmetry classes 

8 Rye et al., NJP 12, 065010 (2009) 

 

§  Symmetry: unitary              . 

§  Hamiltonian on block form, 
each block an ’irreducible’ 
Hamiltonan. 

§  Should look for ’different’ 
symmetries. 
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Symmetry classes 

9 Rye et al., NJP 12, 065010 (2009) 

 

§  Time-reversal symmetry     : 

§  Particle-hole symmetry    : 

§  Furthermore we may have 

 
§  Finally          is non-trivial and called chiral symmetry    :  
 



Label T C S 

A (unitary) 0 0 0 
AI (orthogonal) +1 0 0  
AII (symplectic) -1 0 0 

AIII (chiral unitary) 0 0 1 
BDI (chiral orthogonal) +1 +1 1 
CII (chiral symplectic) -1 -1 1 

D (BdG) 0 +1 0 
C (BdG) 0 -1 0 

DIII (BdG) -1 +1 1 
CI (BdG) +1 -1 1 

Symmetry classes 

10 Pinheiro & Larson, arXiv:1503.07777 

 

§  In this work: 



Symmetry classes and localization 

11 Evers & Mirlin, PRM (2008), König et al., PRB (2012). 

 

§  Focus on A, AI, AIII, and BDI (2D). 

1)  Class A - unitary. All states localized, potentially 
topological. 

2)  Class AI – Wigner-Dyson orthogonal. All states localized, 
topologically trivial. 

3)  Class AIII – chiral unitary. State at E=0 may be 
extended, other states localized, topologically trivial. 

4)  Class BDI – chiral orthogonal. Same as for AIII. 

§  Renormalization group calculation gives localization length 

Here,     is a band ”width” of clean system, and       is proportional to 
the conductance. 
 



Anderson 
localization: 

realization with 
cold atoms 
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Anderson in the atomic lab 
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1.  2008: 1D, localization and 

localization length (Nature 453; 
891 & 895). 

 

2.  2009: 3D, suppression of 
superfluidity (PRL 102, 055301). 

 

3.  2010: 3D, Bose glass (Nature 
Phys. 6, 677). 

 

4.  2011/2012: 3D, presence of a 
mobility edge (Science 334, 66; 
Nature Phys. 8, 398). 

§  All experiments use a standard 
optical potential        class AI.  →



Beyond current 
experiments 
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Model Hamiltonian 
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§  2D isotropic square optical lattice + two atomic species. 

§  Tunneling t, chemical potentials     and     , and random (onsite) 
coupling between the species          .  

§  Aternative: Bilayer single species model with random hopping 
between layers. 

Pinheiro & Larson, arXiv:1503.07777 



Model Hamiltonian 
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§  Idea: control                      and            or          . Different 

symmetry classes. 

Class 
Real-valued Zero BDI 

Complex-valued Zero AIII 
Real-valued Non-zero AI 

Complex-valued Non-zero A 

Pinheiro & Larson, arXiv:1503.07777 



Onset of localization 
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§  Divergent               highly debated – hard to see numerically (too 

small systems) and never experimentally seen. 

§  Inverse partition ratio IPR 

Pinheiro & Larson, arXiv:1503.07777 



Onset of localization 

18 Pinheiro & Larson, arXiv:1503.07777 
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Effective model for non-chiral cases 
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§  Assume large   , i.e. adiabatically elliminate (integrate out) a-

species. 

§  Heisenberg equations of motion 

§  Set              giving                    with h diagonal and M tight-
binding. 

§  Effective long range hopping for b-species 

§  Not enough to kill localization!! 
Pinheiro & Larson, arXiv:1503.07777 



Effective model for non-chiral cases 
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§  Large population in one species gives large disorder for the 
other. 

§  If               , the ”small” species minimizes the disordered 
potential energy while the ”large” species minimizes the kinetic 
energy. 
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Effective model for non-chiral cases 
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§  Large population in one species gives large disorder for the 
other. 

§  If               , the ”small” species minimizes the disordered 
potential energy while the ”large” species minimizes the kinetic 
energy. 

Pinheiro & Larson, arXiv:1503.07777 ix
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Characterizing excitations 
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§  If          , the last term favors a phase locking             between the 
onsite species.  

§  If           , the the phase locking should compensate the random 
phase. 

1)  First case (time-reversal symmetric, AI and BDI), 
excitations in terms of domain walls. 

2)  Second case (A and AIII), excitations in terms of 
vortices. 

 

§  Long domain walls (many vortices) costly in terms of kinetic 
energy. 

 
Pinheiro & Larson, arXiv:1503.07777 



Characterizing excitations 
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Relative phase between the two species for 
eigenstate 20. Time-reversal model (left)     domain 
walls, complex Hamiltonian (right)      vortices. 

Pinheiro & Larson, arXiv:1503.07777 
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Order vs disorder 
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“Random field induced order” 
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§  Mermin-Wagner theorem: critical lower dimension were the 
system cannot order (too large fluctuations). Classical: 

1)  Continuous symmetry, possible order for D>2. 
2)  Discrete symmetry, possible order for D>1. 

 
§  Add a random field such that a continuous symmetry is 

broken down to a discrete one. Order not forbidden due to 
Mermin-Wagner - Random-field induced order (RFIO).  

Abanin et al., PRL (2007). 



“Random field induced order” 
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§  Niederberger et al. (PRL 100, 030403 (2008)): 

§  The two BEC fields build up a         phase locking due to 
RFIO. 

§  Do we see RFIO? 

§  No numerical evidence!  

Ø  RFIO not well understood, even less nowJ 
Ø  Is interaction crucial? 
Ø  Interacting random systems very different from 

”Anderson systems”. Role of excitations? 

π / 2



And then… 
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Work in progress… 

§  Interaction: 

1)  RFIO 
2)  Excitations. 

§  Change of basis: phase of 
coupling appears on the 
tunneling terms – synthetic 
gauge field. Hall physics, 
Hofstadter butterfly,… 

§  Four species, can we get the 
symplectic class or the BdG 
classes?  



Summary 

§  Classical vs. Quantum choas. 

§  Possibilities to study closed quantum dynamics. 

§  Equilibration and thermalization. 

§  Not well understood: 
i.  Criteria for equilibration/thermalization. 
ii.  Mechanism behind thermalization. 
iii.  Definition for “Quantum integrability”. 
iv.  Open systems… 
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Thanks! 


