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=
Motivation

= Optical lattices + control — quantum simulators.

» Hubbard models, spin models (magnetism), topological models
(quantum computing), new models,...

= Controlled disorder. Study paradigm problems from cond-mat,
fundamental questions about dynamics,...
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Anderson
localization: idea



" A
Weak localization

= |magine a lattice model with onsite disorder.
= Random phase contributions.

= Going from A to B, sum all paths
coherently.

=  Amplitude to "stay”, C to C. Closed
loops, clockwise and anti-clockwise.

= Time-reversal symmetry; constructive
interference if 72 = +1, destructive
interference if 72 = —1.




"
Strong localization

= Anderson 1958: sufficently strong disorder may fully prohibit
conduction.

= Destructive interference — quantum effect.

= Single-particle case — no interaction.
Theory:

» 1D, all eigenstates are localized.
» 2D, all eigenstates are localized, or...

» 3D, a mobility edge: some energy F . separates localized from
delocalized eigenstates.



Symmetry classes



"
Symmetry classes

= Symmetry: unitary U, H| =0,

= Hamiltonian on block form,
each block an ’irreducible’
Hamiltonan.

=  Should look for 'different’
symmetries.

Rye et al., NJP 12, 065010 (2009) 8



"
Symmetry classes

= Time-reversal symmetry T :
Ty — 41

= Particle-hole symmetry C :

A

OLa 0, = — B
= Furthermore we may have

T2 = +1, C? = +1
= Finally 7 . C is non-trivial and called chiral symmetry S:

[(75, ﬁ]+ =0

Rye et al., NJP 12, 065010 (2009) 9



"
Symmetry classes

= |n this work:

A (unitary) 0 0

Al (orthogonal) +1 0 0

AIl (SYymplechic) s 0

g AlII Schiral unitarv) 0 0 5

BDI (chiral orthogonal) +1 +1

CII (chiral symplectic) -1 -1 1

D (BdG) 0 +1 0

C (BdG) 0 -1 0

DIII (BdG) -1 +1 1

Cl (BdG) +1 -1 1

Pinheiro & Larson, arXiv:1503.07777 10



" J
Symmetry classes and localization

= Focuson A, Al, Alll, and BDI (2D).

1) Class A - unitary. All states localized, potentially
topological.

2) Class Al — Wigner-Dyson orthogonal. All states localized,
topologically trivial.

3) Class Alll — chiral unitary. State at E=0 may be
extended, other states localized, topologically trivial.

4) Class BDI — chiral orthogonal. Same as for AlIL.

= Renormalization group calculation gives localization length

AE) o9~ V/1og(A/[E)

Here, A is a band ”width” of clean system, and 9 s proportional to
the conductance.

Evers & Mirlin, PRM (2008), Kénig et al., PRB (2012). 11
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Anderson
localization:
realization with

cold atoms




" A
Anderson in the atomic lab

L 420
1. 2008: 1D, localization and G

localization length (Nature 453; 410 -
891 & 895). 200

2. 2009: 3D, suppression of - -
superfluidity (PRL 102, 055301).

3. 2010: 3D, Bose glass (Nature
Phys. 6, 677).

4. 2011/2012: 3D, presence of a
mobility edge (Science 334, 66;
Nature Phys. 8, 398).

= All experiments use a standard
optical potential — class Al

13



Beyond current
experiments



" A
Model Hamiltonian

= 2D isotropic square optical lattice + two atomic species.

= Tunneling ¢, chemical potentials 4q and /4, and random (onsite)
coupling between the species hije’¥i

H= —t) (a a; lA)IlA)J) + Z (taTrq + ppp) + Z h; (eiwi&;ri)i + h.c.)

(ij)

= Aternative: Bilayer single species model with random hopping
between layers.

Pinheiro & Larson, arXiv:1503.07777 19



" A
Model Hamiltonian

Idea: control 4 = ta — Mp and @; = 0 or ¢; # 0. Different

symmetry classes.

hj 2 Class
Real-valued Zero BDI
Complex-valued Zero Alll
Real-valued Non-zero Al
Complex-valued Non-zero A

Pinheiro & Larson, arXiv:1503.07777 16



" A
Onset of localization

= Divergent \(E = 0) highly debated — hard to see numerically (too
small systems) and never experimentally seen.

» |nverse partition ratio /PR
IPR(E) = % s, )/

~ 1 localized

IPR(E) = N1 extended

Pinheiro & Larson, arXiv:1503.07777 17



Onset of localization

Ground state IPR Eigenstate IPR
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coupling strength (disorder). flattening indicates that the
Chiral models localize earlier. localization length ~ system
Dotted lines b species. size (30x30).

Pinheiro & Larson, arXiv:1503.07777 18



" A
Effective model for non-chiral cases

= Assume large u, i.e. adiabatically elliminate (integrate out) a-
species.

» Heisenberg equations of motion

Ot = —ihsby — ip1ad; + it X,
J

EMA)i = —thja; — 'ilubb[;i + ’itZ ZA)j.
J
= Setf,a; =0 giving 3 = M'hb With h diagonal and M tight-
binding.

» Effective long range hopping for h-species

(L)

= Not enough to kill localization!!

Pinheiro & Larson, arXiv:1503.07777 19



" A
Effective model for non-chiral cases

A

at&i = —’ihibi — iﬂadi + 1t Z &ja
J

8t131 = —1ha; — ’L',ubi?i + 1t > [A)j.
J

= Large population in one species gives large disorder for the
other.

= If &) > |ail, the "small” species minimizes the disordered
potential energy while the "large” species minimizes the kinetic
energy.
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y i Pinheiro & Larson, arXiv:1503.07777 20



" A
Effective model for non-chiral cases

A

8t&i = —’ihibi — ’i/la&i + 1t Z dja
J

8#31 = —1ha; — ’iublA)i + 1t > [A)j.
J

= Large population in one species gives large disorder for the
other.

= If &) > |ail, the "small” species minimizes the disordered
potential energy while the "large” species minimizes the kinetic
energy.

(d) | - - x107

51 I T In the middle of the
* 103 spectrum [[bi| = ||a;
i i— " B P J6i]| = |

5 and for the most
excited states |a;| > ||

1 Pinheiro & Larson, arXiv:1503.07777 21



"
Characterizing excitations

f= —tz> (a, a5 + bb; ) S (afia + i) + 3y (ewia;fz}i + h.c.)
(ij i i

= |f p1 =0, the last term favors a phase locking¢ = 0, 7 between the
onsite species.

= If ¢; # 0, the the phase locking should compensate the random
phase.

1) First case (time-reversal symmetric, AI and BDI),
excitations in terms of domain walls.
2) Second case (A and AllI), excitations in terms of

vortices.

» Long domain walls (many vortices) costly in terms of kinetic
energy.

Pinheiro & Larson, arXiv:1503.07777 22



"
Characterizing excitations

BDI Alll

10 QiO 30 10

Relative phase between the two species for
eigenstate 20. Time-reversal model (left) - domain
walls, complex Hamiltonian (right) — vortices.
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Pinheiro & Larson, arXiv:1503.07777 23



Order vs disorder



" A
"Random field induced order”

= Mermin-Wagner theorem: critical lower dimension were the
system cannot order (too large fluctuations). Classical:

1) Continuous symmetry, possible order for D>2.
2) Discrete symmetry, possible order for D>1.

» Add a random field such that a continuous symmetry is

broken down to a discrete one. Order not forbidden due to
Mermin-Wagner - Random-field induced order (RFIO).

Abanin et al., PRL (2007). 29



" A
"Random field induced order”

» Niederberger et al. (PRL 100, 030403 (2008)):

E= [ dx[(12 /2m) [V |2 + VOl P + (g1/2)1 1
+ (72 2m) |V |* + V() |* + (g2/2)14|*
+ g2l Pl |* + (hQ(r)/2)( i + )]

= The two BEC fields build up a = /2 phase locking due to
RFI10.

= Do we see RFIO?
= No numerical evidence!

» RFIO not well understood, even less now©

» Is interaction crucial?

» Interacting random systems very different from
"Anderson systems”. Role of excitations?

26



And then...



"
Work In progress...

= |nteraction:

1) RFIO
2) Excitations.

= Change of basis: phase of
coupling appears on the
tunneling terms — synthetic
gauge field. Hall physics,

Hofstadter butterfly, ...

= Four species, can we getthe | _‘ Vi vet inte heller
symplectic class or the BdG | varfor vi grdver...
classes? men ouﬂd retar

det ndgon.
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