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Homework problems, set 4:

Quantum and classical
communication

Hand in before 4/5-2018.
Maximum number of points: 34.

(Some problems might need simple numerical calculations...)

1 Quantum copy machine

Following the book Quantum approach to informatics we look at the example
of “quantum copying” on pages 40-41.

a) Write down a unitary operator Û , acting on the three qubit states
|a〉1|b〉2|c〉3, which realises the transformation (2.102). Check that Û is
unitary. (3p)

b) From the state |Ψ〉123 of equation (2.103), derive the three reduced
density operators ρα, α = 1, 2, 3. (3p)

2 Noisy classical channel

It is by no means necessary for a channel to have the same number of input
and output symbols. Consider a channel with two input symbols (a1, a2) and
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four output symbols (b1, b2, b3, b4). The conditional probabilities are

P (b1|a1) = P (b2|a1) =
1

3
,

P (b3|a2) = P (b4|a2) =
1

3
,

P (b3|a1) = P (b4|a1) =
1

6
,

P (b1|a2) = P (b2|a2) =
1

6
.

(1)

a) Calculate the associated mutual information

I(A : B) = H(B)−H(B|A). (2)

Express it in the probabilities {p1, p2}. (4p)

b) Calculate the channel capacity, i.e. the maximum value of I(A : B).
(3p)

3 Quantum binary channel

We consider communication between Alice and Bob. Assume that Alice’s
coding states are

|a0〉 = |e1〉,

|a1〉 =
1√
2

(|e1〉+ |e2〉),
(3)

and that Bob’s detection states are

|b0〉 = cos θ|e1〉 − sin θ|e2〉,

|b1〉 = sin θ|e1〉+ cos θ|e2〉.
(4)

During the lecture we looked at the symmetric case, i.e. P00 = P11, corre-
sponding to θ = π/8. Let us lift the restriction of a symmetric channel.

a) If we can vary the detection angle θ and the probabilities {p0, p1} (of
transmitting the two states |a1〉 and |a1〉 respectively) and we want to
maximise the channel capacity, how should we choose these? (4p)



Homework problems Course FK7037 3

4 Strong subadditivity

During the lectures we proved that

|S(ρ̂A)− S(ρ̂B)| ≤ S(ρ̂AB) ≤ S(ρ̂A) + S(ρ̂B). (5)

The first inequality is called the triangle inequality or the Araki-Lieb inequal-
ity, and the second subadditivity. For three-partite systems (subsystems A,
B and C) one can prove the so called strong subadditivity

S(ρ̂ABC) + S(ρ̂B) ≤ S(ρ̂AB) + S(ρ̂BC) (6)

a) Use the “strong subadditivity” inequality of Eq. (6) to prove the in-
equalities (5). (4p)

b) Consider now the GHZ and W states

|ΨGHZ〉 =
1√
2

(|000〉+ |111〉),

|ΨW 〉 =
1√
3

(|001〉+ |010〉+ |100〉).
(7)

Show by first calculating the reduced density operators and then the
corresponding von Neumann entropies that the strong subadditivity is
fulfilled. (3p)

5 Negativity

Given a general (bi-partite) density operator ρ̂ ∈ HA ⊗HB;

ρ̂ =
∑
ijkl

cijkl|i〉〈j| ⊗ |k〉〈l|, (8)

the partial transpose of say subsystem B is given by

ρ̂TB =
∑
ijkl

cijkl|i〉〈j| ⊗ |l〉〈k|. (9)

For two qubits, for example, this would imply

|x, 0〉〈y, 1| → |x, 1〉〈y, 0|,

|x, 1〉〈y, 0| → |x, 0〉〈y, 1|.
(10)
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Furthermore, if λi are the eigenvalues of ρ̂TB , the negativity is defined as

N [ρ̂] =
1

2

∑
i

|λi| − λi. (11)

Thus, it sums all negative eigenvalues. For qubits, a non-zero value ofN (ρ̂) is
a necessary and sufficient condition for entanglement between the two qubits.
Note that this measure of entanglement is valid also for mixed states. The
von Neumann entropy, for example, is not a good measure of entanglement
for mixed two-qubit states.

Assume that two qubits interact via the Hamiltonian

Ĥ = σ̂(1)
x ⊗ σ̂(2)

x . (12)

a) Find a closed form for the time-evolution operator (3p)

Û(t) = e−iĤt. (13)

(Hint, remember how you derived the time-evolution operator for a
single spin.)

b) Give the time evolved states if they initially are in the states (3p)

(i) ρ̂(0) = 1
2

(|00〉〈00|+ |11〉〈11|) ,

(ii) ρ̂(0) = 1
3

(|00〉〈00|+ |11〉〈11|+ |01〉〈01|+ i|00〉〈11| − i|11〉〈00|) .
(14)

c) Calculate the negativity N [ρ̂(t)] for the two cases above. (4p)


