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Homework problems, set 4:

Quantum and classical
communication

Hand in before 4/5-2018.
Maximum number of points: 34.
(Some problems might need simple numerical calculations...)

1 Quantum copy machine

Following the book Quantum approach to informatics we look at the example
of “quantum copying” on pages 40-41.

A~

a) Write down a unitary operator U, acting on the three qubit states
|a)1|b)2|c)s, which realises the transformation (2.102). Check that U is
unitary. (3p)

b) From the state |¥)a3 of equation (2.103), derive the three reduced
density operators p,, @ =1, 2, 3. (3p)

2 Noisy classical channel

It is by no means necessary for a channel to have the same number of input
and output symbols. Consider a channel with two input symbols (ay, as) and
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four output symbols (by, bs, b3, by). The conditional probabilities are

P(by|ay) = P(ba]ar) = 1

57

1

P(bslaz) = P(balaz) = 3,
) (1)

P(bslar) = P(balar) = ,

1

P(bl|a2) = P(b2|a2) = 8

a) Calculate the associated mutual information
I(A: B)=H(B)— H(B|A). (2)

Express it in the probabilities {p1,p2}. (4p)

b) Calculate the channel capacity, i.e. the maximum value of I(A : B).
(3p)

3 Quantum binary channel

We consider communication between Alice and Bob. Assume that Alice’s
coding states are

|a0> = |€1>a

) (3)
a;) = —=(ley) + |e2)),
lay) \/5(| 1) + [e2))

and that Bob’s detection states are

|bg) = cosf|er) — sinB|es),

(4)
|b1) = sinf|e;) + cosb|es).

During the lecture we looked at the symmetric case, i.e. Py = Pi1, corre-
sponding to # = 7 /8. Let us lift the restriction of a symmetric channel.

a) If we can vary the detection angle 6 and the probabilities {pg, p1} (of
transmitting the two states |a;) and |a;) respectively) and we want to
maximise the channel capacity, how should we choose these? (4p)
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4 Strong subadditivity

During the lectures we proved that
1S(pa) = S(pB)| < S(pap) < S(pa) + S(pB). (5)

The first inequality is called the triangle inequality or the Araki-Lieb inequal-
ity, and the second subadditivity. For three-partite systems (subsystems A,
B and (') one can prove the so called strong subadditivity

S(pasc) +S(pp) < S(pag) + S(ppc) (6)

a) Use the “strong subadditivity” inequality of Eq. (6) to prove the in-
equalities (5). (4p)

b) Consider now the GHZ and W states

Wenz) = 12(\000) +[111)),

(7)
€

V3

Show by first calculating the reduced density operators and then the
corresponding von Neumann entropies that the strong subadditivity is
fulfilled. (3p)

Wy ) = —=(|001) 4 010) + |100)).

5 Negativity

Given a general (bi-partite) density operator p € Ha ® Hp;
p=2_cyuli)(jl @ k), (8)
ijkl
the partial transpose of say subsystem B is given by
prE =2 cijuli) (5] © [1) (k|- (9)
ijkl
For two qubits, for example, this would imply
[, 0)(y, 1] = |2, 1){y, 0],
(10)
[, 1){y, 0] = |2, 0){y, 1].
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Furthermore, if ); are the eigenvalues of p?2, the negativity is defined as
.1
NI = 53 Il = A (11)

Thus, it sums all negative eigenvalues. For qubits, a non-zero value of N (p) is
a necessary and sufficient condition for entanglement between the two qubits.
Note that this measure of entanglement is valid also for mixed states. The
von Neumann entropy, for example, is not a good measure of entanglement
for mixed two-qubit states.

Assume that two qubits interact via the Hamiltonian

H=5Yos?. (12)
a) Find a closed form for the time-evolution operator (3p)
U(t) = e, (13)

(Hint, remember how you derived the time-evolution operator for a
single spin.)

b) Give the time evolved states if they initially are in the states (3p)
(i) p(0) = 5 (|00){00| + [11)(11]),

(i1)  p(0) = 5 (]00)(00] 4 [11)(11] + ]01)(01| 4 2]00) (11| — @'|11><0(2|1)4.>

c¢) Calculate the negativity N[p(t)] for the two cases above. (4p)



