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Homework problems, set 3:

Nonlocality
Hand in before 20/4-2018.

Maximum number of points: 44.

1 Entanglement

Characterizing multipartite entanglement becomes very complex in higher
dimensions. For three qubits, however, is it possible to show that there
exists two classes, W and GHZ, i.e. any entangle (pure) three quit state
can be obtained from local operations of these two states

|Ψ〉W =
1√
3

(|100〉+ |010〉+ |001〉),

|Ψ〉GHZ =
1√
2

(|000〉+ |111〉).
(1)

Let us call the three subsystems A, B and C.

a) Calculate the reduced density operators ρ̂
(W )
A = TrBC

[
ρ̂(W )

]
and ρ̂

(GHZ)
A =

TrBC
[
ρ̂(GHZ)

]
. With the obtained reduced density operators, calculate

the corresponding von Neumann entropy (4p)

S
(W )
A = −TrA

[
ρ̂
(W )
A log

(
ρ̂
(W )
A

)]
,

S
(GHZ)
A = −TrA

[
ρ̂
(GHZ)
A log

(
ρ̂
(GHZ)
A

)]
.

(2)

b) Repeat the exercise above but for the reduced densities ρ̂
(W )
BC = TrA

[
ρ̂(W )

]
and ρ̂

(GHZ)
BC = TrA

[
ρ̂(GHZ)

]
. (3p)

c) Having the expressions for the reduced density operators ρ̂
(W )
BC and

ρ̂
(GHZ)
BC from the previous problem, calculate the corresponding neg-
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ativity for the two states

N [ρ̂] =
∑
i

|λi| − λi
2

, (3)

where the λi’s are the eigenvalues of the partially transposed density

operators
(
ρ̂
(W )
BC

)TB
and

(
ρ̂
(GHZ)
BC

)TB
. (4p)

Note. Remember that for a (bi-partite) density operator ρ̂ ∈ HA⊗HB;

ρ̂ =
∑
ijkl

cijkl|i〉〈j| ⊗ |k〉〈l|, (4)

the partial transpose of say subsystem B is given by

ρ̂TB =
∑
ijkl

cijkl|i〉〈j| ⊗ |l〉〈k|. (5)

2 Entropic density of entangled qubit states

The von Neumann entropy for a qubit state 0 ≤ S ≤ 1 provided we use
log-base 2.

a) Assume you pick a random qubit state ρ̂ and calculate its corresponding
entropy S. Further, assume that all qubit states are equally probable
(i.e. they are drawn from a flat distribution). Plot the corresponding
distribution P (S) which gives the probability that the state you picked
has exactly entropy S. (2p)

b) Now let us change scenario and assume that we pick instead a random
pure n-qubit state

|ψ〉 =
∑
{σ}

C{σ}|{σ}〉. (6)

Here the sum is over all 2n possible states |σ1, σ2, . . . , σn〉 with σi = 0, 1.
Having |ψ〉 we can trace out all but one qubit and get a single qubit
state ρ̂n, which in return has some entropy Sn. Like for the a) exercise
we can introduce the corresponding distribution P (Sn). Nothing says
that P (Sn) will be independent of the number of qubits n. Plot P (Sn)
for n = 2 and some other n > 2. (3p)
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c) Argue what the distribution P (Sn) is in the limit n→∞, and discuss
what it implies physically - what can we say about general multi-qubit
states? (2)

(If you’re going to hand in this set of problems in time I suggest you use
numerics to solve this one!)

3 POVM’s

During the lecture we discussed an example demonstrating the Naimark’s
theorem. We considered a qubit and the POVM operators Π̂n = |Ψn〉〈Ψn|;

|Ψ1〉 =
1√
2

(tan θ|0〉+ |1〉),

|Ψ2〉 =
1√
2

(tan θ|0〉 − |1〉),

|Ψ3〉 =
√

1− tan2 θ|0〉.

(7)

In the extended space we instead consider the projectors P̂n = |Φn〉〈Φn|;

|Φ1〉 =
1√
2

(
|1〉 ⊗ |0〉+ tan θ|0〉 ⊗ |0〉+

√
1− tan2 θ|1〉 ⊗ |1〉

)
,

|Φ2〉 =
1√
2

(
|1〉 ⊗ |0〉 − tan θ|0〉 ⊗ |0〉 −

√
1− tan2 θ|1〉 ⊗ |1〉

)
,

|Φ3〉 =
√

1− tan2 θ|0〉 ⊗ |0〉 − tan θ|1〉 ⊗ |1〉,

|Φ4〉 = |0〉 ⊗ |1〉.

(8)

a) Show that the two set of operators are complete, i.e.
∑3
n=1 Π̂n = 1 and∑4

n=1 P̂n = 1. (3p)

b) Show orthonormality; P̂nP̂m = P̂nδnm. (2p)

c) Show that (〈0| ⊗ 〈ψ|)P̂n(|ψ〉 ⊗ |0〉) = 〈ψ|Π̂n|ψ〉 for n = 1, 2, 3. What
is (〈0| ⊗ 〈ψ|)P̂4(|ψ〉 ⊗ |0〉)? (3p)
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4 Master equations I

In the lecture we considered the master equation

d

dt
ρ̂ = i

[
ρ̂, â†â

]
−C

2

(
â†âρ̂− 2âρ̂â† + ρ̂â†â

)
−A

2

(
ââ†ρ̂− 2â†ρ̂â+ ρ̂ââ†

)
. (9)

a) Show that the norm is preserved, i.e. dTr[ρ̂]/dt = 0. (3p)

b) Let us define the quadratures

x̂ =
1√
2

(
â† + â

)
, p̂ =

i√
2

(
â† − â

)
. (10)

Use the result
d

dt
〈â〉 =

(
−i− C − A

2

)
〈â〉 (11)

derived in the book, to give expressions for d〈x̂〉/dt and d〈p̂〉/dt. Solve
these equations of motion and describe how the state evolves in phase
space, i.e. in the xp-plane, for the initial condition (〈x̂〉0, 〈p̂〉0) = (x0, 0).
Do the solutions converge to a steady state? (3p)

5 Master equation II

A qubit evolving under the influence of Markovian phase damping is described
by the master equation

d

dt
ρ̂ = i [ρ̂, σ̂3]−

γ

2
(ρ̂− σ̂3ρ̂σ̂3) , γ ≥ 0. (12)

Furthermore, any qubit state can be written as

ρ̂ =
1

2

(
1 + ~R · ~σ

)
=

1

2
(1 + u σ̂1 + v σ̂2 + w σ̂3) , (13)

where ~R = (u, v, w) is the Bloch vector.

a) Write down the equation-of-motion for the Bloch vector ~R. Use the
knowledge of the previous exercise to solve these equations. Describe
how the Bloch vector evolves on the Bloch sphere for the initial states
(u(0), v(0), w(0)) = (1, 0, 0) and (u(0), v(0), w(0)) = (cosφ cos θ, cosφ sin θ, sinφ)
for any 0 ≤ φ ≤ π and 0 < θ < π/2. (4p)
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b) For a general Lindblad master equation

d

dt
ρ̂ = i

[
ρ̂, Ĥ

]
+ L [ρ̂] , (14)

where the Lindblad super-operator L [ρ̂] describes the coupling to the
reservoir/bath, a dark state ρ̂D is defined as an ‘eigenstate’ of Ĥ, i.e.[
ρ̂D, Ĥ

]
= 0, and also an eigenstate of the Lindblad super operator

with eigenvalue 0, i.e. L [ρ̂D] = 0. The set {ρ̂D} of all dark states is
called a decoherence-free subset. Find this set for the Lindblad master
equation (12). (3p)

c) Describe what happens to the diagonal and off-diagonal terms of the
density matrix ρ̂(t) as time progresses. (Assume ρ̂(t) to be given in the
computational basis.) (2p)

d) If we would instead consider the master equation

d

dt
ρ̂ = i [ρ̂, σ̂3]−

γ

2
(ρ̂− σ̂1ρ̂σ̂1) . (15)

What would be the infinite time (t = ∞) density operator ρ̂(∞), i.e.
its steady state? Can you determine the decoherence-free subset {ρ̂D}?
(3p)


