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Homework problems, set 1:

Operators, qubits and simple
operations
Hand in before 4/4-2018.

Maximum number of points: 62.

1 Qubit time-evolution

The Pauli matrices

σ̂1 =

[
0 1
1 0

]
, σ̂2 =

[
0 −i
i 0

]
, σ̂3 =

[
1 0
0 −1

]
(1)

together with the unit matrix σ̂0 = 1 span the set of 2 × 2 matrices. Thus,
we can write

Ĥ = ~c · ~σ = c0σ̂0 + c1σ̂1 + c2σ̂2 + c3σ̂3 (2)

for any 2× 2 matrix Ĥ.

a) What are the constrains on the vector ~c = (c0, c1, c2, c3) making the
matrix Ĥ hermitian, symmetric or unitary? (3p)

b) Assume Ĥ is the Hamiltonian generating the time-evolution for a qubit.
The time-evolution operator is then (we put h̄ = 1)

Û(t) = e−iĤt. (3)

Write down Û(t) as a 2× 2 matrix by using the properties of the Pauli
matrices. (4p)

c) If the initial qubit state is

|ψ(0)〉 =

[
1
0

]
, (4)

give the time-evolved state |ψ(t)〉 for the cases: i) ~c = (ω0, g, 0, 0), ii)
~c = (ω0, 0, g, 0) and iii) ~c = (ω0, 0, 0, g). Explain with words how the
qubit state evolves on the Bloch sphere. (3p)
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d) The same as the previous problem but for the initial state (2p)

|ψ(0)〉 =
1√
2

[
1
1

]
. (5)

2 Single qubit gates

In atomic physics one is often talking about π- or π/2-pulses. The name
comes from the fact that one shines a laser pulse on an atom such that
two electronic states in the atoms are (dipole) coupled by the laser, and the
’area’ of the pulse,

∫
dtΩ(t) = A, equals either π or π/2. The corresponding

unitary operator is given by

ÛA = e−iσ̂xA/2. (6)

a) Write down the closed form expressions for ÛA for the π- (A = π) and
π/2-pulse (A = π/2). (2p)

b) For a general qubit state

|ψ〉 = cos (θ/2) |0〉+ sin (θ/2) eiϕ|1〉 =

[
cos(θ/2)

sin(θ/2)eiϕ

]
, (7)

explain what the two pulses (transformations) are doing to these states
on the Bloch sphere. (2p)

c) Two other common single qubit gate operations are the Hadamard and
the phase gates defined by the unitaries

ÛH =
1√
2

[
1 1
1 −1

]
, Ûφ =

[
1 0
0 eiφ

]
(8)

respectively. Going back to the first problem and Eqs. (2) and (3), find
the vectors ~c which generates these gates, given some time t. (2p)

3 Rotations

If we rescale the Pauli-matrices accordingly,

Ŝx =
σ̂1
2
, Ŝy =

σ̂2
2
, Ŝz =

σ̂3
2
, (9)
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the new operators Ŝx, Ŝy and Ŝz obey the standard angular momentum
commutation relations. Now, having worked out problem 1 and 2, it should
be clear that any operation

Ûê~n(ϕ) = eiϕê~n·
~S, (10)

with ê~n a unit vector in the direction ~n and ~S = (Ŝx, Ŝy, Ŝz), acts as a rotation
of the state |ψ〉. In particular, you will demonstrate in this problem that the
transformation realises a ϕ-rotation about the ê~n-axis.

a) Give a closed expression for Ûê~n(2π) = exp(i2πê~n · ~S). Comment on
this result. (2p)

b) Can you, without explicit calculations, explain which qubit states that

will be the eigenstates of Ûê~n(ϕ) = exp(iϕê~n · ~S)? (2p)

c) As for any rotations, e.g. in euclidian space, we can either consider
rotating the vectors (states) or the coordinate system. Thus, Û~n(ϕ) is
either acting on the state |ψ〉 or on the Pauli matrices. Calculate the
following rotations (3p)

σ̂′α = Ûêx(ϕ)σ̂zÛ
†
êx

(ϕ),

σ̂′z = Ûêx(ϕ)
1√
2

(σ̂y − σ̂z) Û †êx(ϕ),

σ̂′~n = Ûê~n(ϕ) (ê~n · ~σ) Û †ê~n(ϕ).

(11)

d) Imagine an experimental situation: Our qubit is an atom where the
logic states |0〉 and |1〉 are represented by two electronic Zeeman lev-
els corresponding to different principle quantum numbers n. One can
measure the population in the two states via state-selected florescence,
i.e. it is possible to measure σ̂z. In this scenario, the basis {|0〉, |1〉}
makes the natural one and one refers to it as the computational basis.
However, we may want to measure say σ̂x or σ̂y instead. Assume we

can perform any qubit rotation, Ûê~n(ϕ), and we can directly measure
σ̂z, how should we do to measure σ̂x or σ̂y? (3p)
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4 Group properties

Group theory and symmetries play an important role in the understanding of
quantum physics. In this problem we explore some of the very basic concepts
of group theory.

a) Show which of the following that form groups

(i) The set Z of integers under addition. (1p)

(ii) The set Z of integers under multiplication. (1p)

(iii) The set R of real numbers under multiplication. (1p)

(iv) The set Sn of permutations of n objects. (1p)

(v) The set Zn of integers modulo n under addition. (1p)

(vi) The set Cn of in-plane rotations by an angle 2πk/n for k ∈ Z.
(1p)

b) For any two elements g1 and g2 of a group G, the group is said to be
Abelian if g1g2 = g2g1, and non-Abelian otherwise. Furthermore, the
order of the group is the number of elements of the group. For the
groups of the a) problem, determine the order of them and whether
they are Abelian or not. (3p)

c) The idea of group isomorphism is central for the theory of groups. If
two groups G1 and G2 are isomorphic they have the same order and
“structure”, i.e. there exist a one-to-one function f between the two
groups that preserves the multiplication; for a ∈ G1 then f(a) ∈ G2, and
if a, b ∈ G1 such that ab = c ∈ G1 then we have f(a)f(b) = f(c) ∈ G2.
Are any of the groups in problem a) isomorphic? (3p)

d) Assume that G is a group and its elements g ∈ G. If there is a sub-
set of elements {h ∈ G} which also forms a group, then this is called
a sub-group. Futhermore, the center Z of a group G is defined as
={z ∈ G| zg = gz ∀ g ∈ G}. Prove that Z is a subgroup of G. (3p)

5 The SU(2) and SU(3) groups

The Pauli matrices together with the commutation relation

[σ̂i, σ̂j] = i2εijkσ̂k (12)
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defines a Lie algebra. The operators σ̂i (i = 1, 2, 3) are called generators of
the SU(2) group1, meaning that all 2×2 unitary matrix Û with determinant
equal to unity can be written as exponentials of the matrices σ̂i, i.e. Û~c =
exp (i~c · ~σ) with ~c = (c1, c2, c3). Furthermore, a Casimir operator Ĉ is a
matrix that commutes with all the generators.

a) Prove that det
[
Û~c
]

= 1. (2p)

b) Prove that the set of matrices
{
Û~c
}

forms a group. (2p)

c) The Lie algebra spanned by the Pauli matrices has one Casimir oper-
ator, find it! (2p)

The group SU(3) of unitary 3× 3 matrices with unit determinant can be
generated from the Gell-Mann matrices

λ̂1 =

 0 1 0
1 0 0
0 0 0

 , λ̂2 =

 0 −i 0
i 0 0
0 0 0

 , λ̂3 =

 1 0 0
0 −1 0
0 0 0

 ,

λ̂4 =

 0 0 1
0 0 0
1 0 0

 , λ̂5 =

 0 0 −i
0 0 0
i 0 0

 , λ̂6 =

 0 0 0
0 0 1
0 1 0

 ,

λ̂7 =

 0 0 0
0 0 −i
0 i 0

 , λ̂8 =
1√
3

 1 0 0
0 1 0
0 0 −2

 .

(13)

The mutual commutation relations of the Gell-Mann matrices obey the SU(3)
Lie algebra.

d) Consider all n× n unitary matrices, show that they form a group, and
show also that all n× n unitary matrices with unit determinant forms
a sub-group. (3p)

e) The Gell-Mann matrices (13) are the generators for the SU(3) group,
i.e. any 3 × 3 unitary matrix with unit determinant can be written
as Û~d = exp

(
i~d · ~λ

)
with the same notation as above. By looking at

the expressions for the λ̂i matrices, can you show that there are three
SU(2) sub-groups of SU(3)? (3p)

1The S in SU(2) stands for special marking that the determinant is equal to 1.
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6 “Split-operator” and Trotter decomposition

A useful operator identity is the Baker-Hausdorff formula (or its generalisa-
tion)

e(Â+B̂)t = etÂetB̂e−
t2

2
[Â,B̂]e

t3

6 (2[B̂,[Â,B̂]]+[Â,[Â,B̂]]) . . . . (14)

If [Â, [Â, B̂]] = [B̂, [Â, B̂]] = 0 we recover the standard Baker-Hausdorff
formula.

a) Use the above formulate to prove the Trotter decomposition (3p)

e−i(Â+B̂)t = lim
n→∞

[
e−i

Ât
n e−i

B̂t
n

]n
. (15)

b) If we consider n to be finite, but still n � 1 we can use the Trotter
decomposition as an approximation for numerically simulating time-
evolution;

Û(t) ≈
[
e−i

Ât
n e−i

B̂t
n

]n
. (16)

For example, let dt = t/n and the final time of the simulation is thereby

T = ndt = t, and take Â = p̂2

2m
and B̂ = V (x̂). Then we have

ψ(x, dt) = exp
(
−i p̂2

2m
dt
)

exp(−iV (x̂)dt)ψ(x, 0), and since the opera-

tor V (x̂) is diagonal in the x-representation it is easy to apply, and the
operator p̂ is diagonal in the p-representation one applies the Fourier
transform before applying exp

(
−i p̂2

2m
dt
)

exp(−iV (x̂)dt).

Show, however, that a slightly better approximation, for finite n, is to
split the exponential as (4p)

Û(t) ≈
[
e−i

B̂t
2n e−i

Ât
n e−i

B̂t
2n

]n
. (17)


