
Reading instructions

List of which literature (Goldstein’s book Classical Mechanics
and Ingemar Bengtsson’s lecture notes [1]) that you’re

supposed to study. Chapters and sections not mentioned below
are not part of the course.

1 Chapter 1 – Survey of the Elementary Princi-

ples

1.1 Section 1.1 – Mechanics of a particle

Hopefully most of this section is familiar to you. However, back when you
studied Newtonin mechanics you did not have the same mathematical ma-
chinery, and some results here might be a bit more abstractly derived. The
same should apply to the three conservation laws, i.e. that you have met
them before. They say that if there are no forces acting on the particle then
momentum and angular momentum must be preserved. Furthermore, if the
force is conservative (important to know what a conservative force is!), then
the particle’s energy is also preserved.

1.2 Section 1.2 – Mechanics of a system of particles

Center-of-mass and relative variables are important for later when we discuss
motion in central potentials and the inertia tensor.

1.3 Section 1.3 – Constraints

This is essential for analytical mechanics, and thereby important that you
get the ideas. A constraint could be if a particle is in a box, then it is

1



Reading instructions Course FK70492

restricted to a certain part of space. Or a particle in the atmosphere of the
earth. Constraints replaces some forces, for example the walls of the box
is nothing but a very strong potentials. So one can talk about forces of
constraints (however, they are not normally specified), instead you introduce
generalized coordinates qi that obey the constraints. Another concept that
appear throughout the course. The type of constraints is also to get familiar
with; holonomic, non-holonomic, and rheonomous vs. scleronomous.

1.4 Section 1.4 – D’Alembert’s principle and Lagrange’s equa-
tions

Now it really gets started! D’Alembert’s principle is good to have seen,
even though it is the Lagrange’s equations that will be returning method
in this course. The derivations of d’Alembert’s prionciple and Lagrange’s
equations are good exercises, and as you’ll see further they are typical for
how derivations in this course. Thus, it is recommended that you through
them step-by-step. Learn also the difference between a full derivative and a
partial derivative, e.g. d

dt
vs. ∂

∂t
. The Lagrangian is something that we come

back to over and over. It is actually something you most likely meet also in
other courses.

1.5 Section 1.5 – Velocity dependent potentials and the dis-
sipation function

We will actually not talk too much about velocity dependent potential in the
course, but the example of a charge particle in. magnetic field is so important
such that it must be included in a course like this. The last part about the
Rayleigh’s dissipation function is not central.

1.6 Section 1.5 – Simple applications of the Lagrange for-
malism

I think that one has to work through numerous examples and problems in
order to get acquainted with generalized coordinates and the Lagrange for-
malism. In this section they give the most simple ones. Goldstein returns
every now and then to his expansion (1.73) of the kinetic energy. It is noth-
ing I use later in the course though. If you feel uncomfortable with different
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coordinates, Cartesian, polar, cylindrical and spherical, I recommend that
you spend a few minutes to repeat that.

2 Chapter 2 – Variational Principles and the La-

grange’s Equations

2.1 Section 2.1 – Hamilton’s principle

This is one of the central topics in analytical mechanics. An action integral
is something that is central in a whole set of different areas of physics (quan-
tum mechanics, optics, quantum field theory). Actually, the idea of using
variations of an action to derive the equations of motion is something you
will meet in later courses if you follow the theory program.

2.2 Section 2.2 – Some techniques of the calculus of varia-
tions

The mathematics we need for the next section. Even though it is math-
ematics I think it is important for fully appreciating Hamilton’s principle.
When applied to quantum mechanics (not in this course) it also give a nice
alternative approach (path integrals), and provides novel insight into the
physics. Maybe some of you, especially those taking any course on quantum
field theory, this is good training in functional derivatives. If you need more
motivation, it is also fun mathematics.

2.3 Section 2.3 – Derivation of Lagrange’s equations from
Hamilton’s principle

Another very typical and crucial derivation.

2.4 Section 2.4 – Extending Hamilton’s principle to systems
with constraints

Now the abstraction level is raised one step. We will not use this much later
in the course, but I will mention it in the lecture. It works with Lagrange
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multipliers which is something useful to know as a physicist. Focus on the
derivation up till equation (2.23).

2.5 Section 2.6 – Conservation theorems and symmetry prop-
erties

Needless to say, symmetries is much of physics. How it connects to conser-
vation laws is due to Emmy Noether (why didn’t she get the Nobel prize?).
Here the canonical/conjugate momentum is introduced for the first time, you
better remember what it is. Note that it does not need to be equal to the
physical momentum. Since the whole formalism is general, the generalized
coordinates could be something else than spatial coordinates, and then also
the corresponding conjugate momentum will not be a momentum. Remem-
ber also what is meant by cyclic coordinates since it is something we come
back to frequently. My lecture is somewhat different from this section, but
it does not hurt to get both views.

2.6 Section 2.7 – Energy function and the conservation of
energy

We will talk more about this when we discuss the Hamilton formalism. Read
up to equation (2.58).

3 Chapter 8 – The Hamilton Equation of Motion

3.1 Section 8.1 – Legendre transforms and Hamilton’s equa-
tions of motion

Important section. The Legendre transform is an abstract tool that works.
It is difficult to get a picture of what is going on. The parts about thermody-
namics not included in this course, but read it anyway (only one page). I do
not introduce the matrix formulation like Goldstein does on page 339. You
can do it as well if you want, or do the calculations by brute force by writing
out every term (like what I do). The example of a charged particle in an
electromagnetic field is essential in physics! The last page about symplectic
notation is not part of the course (but for one of the assignments).
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3.2 Section 8.2 – Cyclic coordinates and conservation theo-
rems

Here you only need to note that for a cyclic coordinate, its conjugate momen-
tum is constant according to Hamilton’s equations (first equation on page
344). You don’t need to go into further details after this equation.

4 Chapter 9 – Canonical Transformations

4.1 Section 9.1 – The equations of canonical transformations

This is an important section, and most likely a bit hard to digest. In other
words, pay some extra time to it. The four basic transformations are pre-
sented in Table 9.1, and note how the change of variables are performed by
a Legendre transformation.

4.2 Section 9.2 – Examples of canonical transformations

Following the rules from the previous section, this section is hopefully rather
straightforward. It is not mentioned, but note how the Jacobian matrix
on page 376. You met the Jacobian matrix in mathematics when you, for
example, changed between Cartesian and spherical coordinates.

4.3 Section 9.3 – The harmonic oscillator

This section gives the first non-trivial example of how to solve a problem
using canonical transformation. It is not the simplest way for solving the
harmonic oscillator, but an instructive example for how to apply the idea
of canonical transformation. So make sure you understand the steps in the
derivation.

4.4 Section 9.5 – Poisson brackets and other canonical In-
variants

Goldstein rapidly moves into the matrix representation of Poisson brackets.
I chose to not take that path. It clearly has its advantages, once you are used
to it the derivations become short. However, it adds a level of abstraction
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that I don’t think we need. So instead I write out the derivations step-by-
step. Nevertheless, the first four pages of Section 9.5 are important. As I
said, in the lecture I do the same but without the matrix formalism. You can
skip the discussion about Lagrange brackets and the last pages of the section.
You’re of course also welcome to read pages 97-98 in Ingemar’s note [1] on
the same topic.

4.5 Section 9.6 – Equations of motion, ...

The first part up to half of page 398 is included. The remaining part of
the section is interesting, for example it makes the connection to quantum
mechanics even more striking, but it is only for the interested reader.

4.6 Section 9.9 – Liouville’s theorem

The whole section is part of the course. However, my derivation of the the-
orem on the lecture is slightly different from that presented in Goldstein. I
derive a continuity equation and from that I can prove the theorem. Gold-
stein uses a result (Poincaré’s integral invariant) from part of a section that
is not included in the course. With this result Liouville’s theorem follows
easily. If you buy the result of Poincaré’s integral invariant, namely that
a volume element ∆V = ∆q∆p is invariant under time-evolution, then you
should be able to grasp Goldstein’s proof (which is also intuitively nice).

5 Ingemar notes – Phase space

Goldstein lacks any deeper discussion about phase space, it is mentioned as
if the reader is familiar with it already. However, in Ingemar’s notes [1] there
is a good description about phase space, Section 1.4. It is important that you
feel comfortable with the phase space, and that you understand the different
types of fixed points. Fixed points is something returning in physics, we will
most likely discuss them further in terms of chaos, and if you read about
the renormalization group later during your studies you’ll find that they are
extremely important there as well.
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6 Ingemar notes – Connection to Quantum Me-

chanics

Goldstein does not discuss this more than mentioning it at a few occasions,
for example he sells the Hamilton formalism partly as bridging classical and
quantum mechanics (QM). However, I don’t see why he could not add one
section about it.

Ingemar discusses this partly in the section about Poisson brackets (sec-
tion 8.2). This short part I recommend that you read. He then continues
with a longer more mathematical discussion in section 8.5. This, however, is
outside the scope of the course.

Below I summarize the important parts that you need to know.

When you learned about Poisson brackets I hope that you already saw nu-
merous similarities with QM. If not you have to recall the Heisenberg picture
of QM, in which states are static while operators evolve in time. The solution
of the Schrödinger equation

i∂t|ψ(t)〉 = Ĥ|ψ(t)〉 (1)

can be formally written as

|ψ(t)〉 = Û(t, 0)|ψ(0)〉, Û(t, 0) = exp
(
−iĤt/~

)
, (2)

when assuming that the Hamiltonian Ĥ is time-independent (for a time-
dependent Hamiltonian we have to modify the equations slightly, but every-
thing works also for such cases). Expectations of some observable Â (as an
observable, the operator Â is hermitian, i.e. Â = Â†) with respect to the
state |ψ(t)〉 are

〈Â〉 = 〈ψ(t)|Â|ψ(t)〉 = 〈ψ(0)|Û †(t)ÂÛ(t)|ψ(0)〉 = 〈ψ(0)|Â(t)|ψ(0)〉,

where we have defined the time-dependent operator

Â(t) = Û †(t)ÂÛ(t). (3)

If we take the time-derivative of this operator, and use the explicit form of
the time-evolution operator Û(t), one finds

d

dt
Â =

1

i~
[Â, Ĥ] ≡ 1

i~
(ÂĤ − ĤÂ). (4)
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Solving this equation is equivalent to solving the Schrödinger equation (1).
Knowing a state |ψ(t)〉 implies that we know as much as possible about
the system, all the properties of the state are contained in the expecta-
tions 〈Â〉t = 〈ψ(t)|Â|ψ(t)〉 for all possible operators Â (not necessarily ob-
servables). However, knowing Â(t) and the initial state |ψ(0)〉 we get the
same information from 〈Â〉t = 〈ψ(0)|Â(t)|ψ(0)〉. The former approach is the
Schrödinger picture, while the latter is the Heisenber picture. If the operator
Â is explicitly time-dependent we modify the above equation-of-motion as

d

dt
Â =

1

i~
[Â, Ĥ] +

∂Â

∂t
(5)

The above equation has the same structure as the one rendering time-
evolution in classical mechanics (Goldstein, equation. (9.94)),

d

dt
u = {u,H}+

∂u

∂t
. (6)

By making the identification

{.. , ..} ↔ 1

i~
[.. , ..] (7)

the two equations (5) and (6) are formally identical. Thus, we swap between
Poisson brackets and commutators, together with adding a factor 1/i~ where
~ is Planck’s constant divided by 2π. Let’s check this for the canonical
conjugate variables qi and pj. Classically we have

{qi, pj} =
∑
l

(
∂qi
∂ql

∂pi
∂pl
− ∂qi
∂pl

∂pi
∂ql

)
=
∂qi
∂qi

∂pj
∂pi

= δij. (8)

The quantum commutator between the two operators q̂i and p̂j should there-
for be i~δij according to (7);

[q̂i, p̂j] = q̂i

(
−i~ ∂

∂q̂j

)
−
(
−i~ ∂

∂q̂j

)
q̂i

= q̂i

(
−i~ ∂

∂q̂j

)
− (−i~δij)− q̂i

(
−i~ ∂

∂q̂j

)
= i~δij.

(9)

You are welcome to derive the same ‘correspondence’ between the classi-
cal Poisson brackets {Li, Lj} and the quantum commutators [L̂i, L̂j] for the
angular momentum.
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Using the identification (7) is in fact a standard method for quantizing a
classical system. If you know the Poisson brackets, for example the canonical
conjugate variables, you postulate the same commutators (multiplied with
1/i~) for the corresponding quantum operators. This goes under the name
the correspondence principle.

For those of you familiar with the density operator ρ̂ of QM we find
another nice correspondence. The density operator can formally be written
as

ρ̂ =
∑
n

pn|φn〉〈φn|, pn ≥ 0. (10)

Here, pn is the (classical) probability (
∑

n pn = 1) for the system to be found
in the state |φn〉. The set of states {|φn〉} need not be orthonormal, but
normalized. As for the state vector of |ψ〉 of quantum system, ρ̂ provides the
complete information about the system. The two formalisms are equivalent
as long as we consider pure states |ψ〉 ⇔ ρ̂ = |ψ〉〈ψ|. However, the density
formalism allows to describe a larger class of states, namely mixed states
occurring when two or more of the probabilities pn are non-zero. In such
cases we may think of ρ̂ as a classical ensemble of the quantum states |φn〉
(note that this is not a quantum superposition of the same states!). In
this way we can incorporate classical probabilities into QM. The evolution
operator Û(t) are as before (6), even when we work with density operators,
but we have to act with it both from the left and the right since ρ̂ is a matrix.
A density operator thus evolves as

ρ̂(t)= Û(t)ρ̂(0)Û−1(t)=
∑
n

pnÛ(0)|φn(0)〉〈φn(0)|Û−1(t)=
∑
n

pn|φn(t)〉〈φn(t)|.

(11)
Differentiating this equation results in the Schrödinger equation for the den-
sity operator

d

dt
ρ̂(t) =

1

i~

[
Ĥ, ρ̂(t)

]
+
∂

∂t
ρ̂(t). (12)

This is not a Heisenberg equation for the matrix/operator ρ̂, but really the
Schrödinger equation (we consider the Schrödinger picture where the state
evolves in time). Even though it looks much like a Heisenberg equation
there is a difference, there is a sign-difference in front of the first term (see
Eq. (7)). This equation is also referred to as the quantum Liouville equation,
to be compared to the classical Liouville equation

d

dt
ρ(q, p, t) = {ρ(q, p, t), H}+

∂

∂t
ρ(q, p, t).
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From the quantum Liouville equation (12) we can directly evaluate how
expectation values of operators evolve in time from the identity d

dt
〈Â〉 =

d
dt

Tr
[
Âρ̂
]

= Tr
[
Â d

dt
ρ̂
]
. By plugging in the expression (12) for d

dt
ρ̂ we arrive

at the Ehrenfest theorem

d

dt
〈Â〉 =

1

i~
〈[Â, Ĥ]〉+

∂

∂t
〈Â〉.

This tells us that quantum expectation values obey the same equations of
motion as their classical counterparts.

Classically ρ(q, p, t) is a probability distribution of the canonical variables
(q, p). Quantum mechanically, q̂ and p̂ are not independent variables due
to the Heisenberg uncertainty relation. This causes problems in trying to
construct a quantum counterpart of ρ(q, p, t). However, there are ways to
construct something similar to ρ(q, p, t) also in QM. Even though one can
prove that a direct analog is impossible. This is the topic of one of the
assignment topics.

Let us conclude by looking at another similarity between the two theories.
If we assume that u is time-independent, then we had that if its Poisson
bracket with the Hamiltonian H vanishes, i.e. {u,H} = 0, then u is an
integral of motion – that is it is constant. The same holds, of course, in
QM as well; if a time-independent operator Â commutes with Ĥ, then it is
a constant of motion. Further, if Â is hermitian we have that it defines a
symmetry. More precisely, if Û(φ) = exp(iÂφ) for some parameter φ, then
[Û(φ), Ĥ] = 0 and Û(φ) will be unitary. For example, for a potential V (r)
in spherical coordinates we have that [L̂z, Ĥ] = 0, and we say that L̂z is an
integral/constant of motion. It also defines a symmetry, Û(φ) = exp(iL̂zφ)
acting on the Hamiltonian (Û(φ)ĤÛ−1(φ)) represents a rotation by an angle
φ around the z-axis. We say that L̂z is a generator of rotations around z.
Likewise, the Hamiltonian is a generator of time-evolution, both in classical
and QM. This is the quantum version of Noether’s theorem. A caveat, the
above holds true for continuous symmetries, not for discrete ones (e.g. parity
q̂i ↔ −q̂i). In general, for classical systems Noether’s theorem applies for
continuous symmetries and not discrete ones.
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7 Chapter 10 – Hamilton-Jacobi Theory and the

Action-Angle Variables

7.1 10.1 – The Hamilton-Jacobi equation...

Essential section. It presents the ideas of the Hamilton-Jacobi theory, and it
turns out good for understanding canonical transformations. It is important
to get that we have not solved anything so far, only rewritten the equations-
of-motions into a single non-linear first order partial differential equation for
S(q;α, t).

7.2 10.2 – The harmonic oscillator problem...

Good example to see the Hamilton-Jacobi ‘in action’. You may focus on the
first part, the 1D harmonic oscillator. The remaining two examples are not
hard to follow, but the important ingredients are already in the first example
(nevertheless, knowing what a Lissajous curve is might turn out valuable
knowledge in a party or so).

7.3 10.3 – ...Hamilton’s characteristic function

With the principle function S(q,P, t) we transformed the problem into one
with K ≡ 0, i.e. the canonical Qi = βi = const. and Pi = αi = const. (I
call this method 3). This approach is general and works for explicitly time-
dependent Hamiltonians H(q,p, t). Alternatively, if ∂H/∂t = 0 a systematic
approach is to transform the Hamiltonian into one with every Qi cyclic (in
my lecture I call this method 2). This is solved via the Hamilton-Jacobi
equation ow taking the form

H

(
qi,
∂W

∂qi

)
= α1,

i.e. first equation on page 441 in Goldstein. The procedure how to solve the
problem follows similar steps as for case 1.

7.4 10.4 – Separation of variables...

In most solvable examples with more than one degree-of-freedom, the Hamilton-
Jacobi method becomes helpful only when the action S can be separated in
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the variables qi. This is briefly discussed in this section.

7.5 10.5 – Ignorable coordinates...

To see the idea of variable separation in action, in this section I recommend
that you look at the example of planar motion in a central force field that
starts at the end of page 448 and continues for the whole page 449.

7.6 10.6 – Action-angle variables in systems of one degree of
freedom

Important section. Also as a training in Hamilton-Jacobi theory.

7.7 10.7 – Action-angle variables for completely separable sys-
tems

The generalization to many variables is straightforward. Read up to equation
(10.106). It is interesting that the method works for any separable system,
even if the full system is not periodic. For the fully separable system, each
canonical pair (qi, pi) is periodic with some frequency vi. However, if the
different vi’s are not commensurate the full system will not be periodic.

For the interested; if you look at trajectories in configuration space, like
in two dimensions (q1(t), q2(t)) they will form Lissajous curves, for irrational
v1/v2 the curves will never close.

8 Chapter 3 –The Central Force Problem

8.1 3.1 – Reduction to the equivalent one-body problem

This section is probably something you already studied in the first mechanics
course and thereby familiar stuff. But nevertheless, it might be good to repeat
concepts as center-of-mass variables, relative variables, and reduced masses.

8.2 3.2 – The equations of motion and first integrals

Important to understand how the conserved quantities help in solving the
problem with a potential on the form V (r) (r is the radial variable). Here
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the Lagrange formalism is applied, which is a good exercise. Pay attention
to the centrifugal term

1

2

l2

mr2

that pops up in the Euler-Lagrange equation for the r-variable. You may
connect this to what you learned about central forces in quantum mechanics.

9 Chapter 4 –The Kinematics of Rigid Body Mo-

tion

Most of this chapter is applied linear algebra, and hopefully you recognize
much already.

9.1 4.1 –The Independent coordinates...

Probably stuff you remember from your first courses on classical mechanics.

9.2 4.2 –Orthogonal transformations

Read if you wish to refresh your knowledge about matrices that rotates vec-
tors. You have seen this in your linear algebra courses. You may also recall
quantum mechanics; unitary operators (operators leaving the scalar product
invariant) is the generalization of orthogonal matrices. Orthogonal matrices
are real and act as rotations in R3, while unitary matrices are in general
complex and rotate vectors in Hilbert space H.

9.3 4.3 –Formal Properties...

After quantum mechanics this is hopefully known for you: (1) matrices do
not need to commute (for example rotations in R3), (2) an orthogonal matrix
is diagonalizable and its spectrum is real, (3) the norms of the eigenvalues of
an unitary matrix is 1, i.e. the determinant is ±1. If this sounds familiar to
you, no need to read this section.
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9.4 4.4 –The Euler angles

The Euler angles is something you most likely will hear many times through
your studies (maybe you have already). The Euler angles is a choice for
parametrizing the rotation into three independent angles.

9.5 4.6 –Euler’s theorem ...

Another section of linear algebra. It is shown that the norm of the eigen-
values of an orthogonal matrix must be unity. In quantum mechanics this
is often motivated by the fact that the norm should be preserved. Using
the mathematics of orthogonal matrices, it is shown that the motion of a
rigid body with one fixed point is a rotation. This is, of course, an expected
result, but nevertheless the chapter is useful for getting a better intuition for
rotations and orthogonal matrices. A more general result is that any motion
of a rigid body can be characterized by a translation and a rotation.

9.6 4.8 –Infinitesimal rotations

The derivation in this section is very similar to that of rotations in quantum
mechanics (for you who took Sakurai), and one sees how the cross product
naturally arises and also how the angular commutation relations derive. You
might also recognize polar/axial vectors from electromagnetism. The section
is good to have seen during your studies, but it is not central for this course.

9.7 4.9 –Rate of change of a vector

Some of the results of this section are needed when discussing the inertia
tensor in chapter 5. Especially the result Eq. (4.86) will be needed later on.
The tensor derivation of this result can be skipped.

10 Chapter 5 – The Rigid Body Equations of Mo-

tion

10.1 5.1 –Angular momentum and ...

An important section, not so much for understanding the ideas behind ana-
lytical mechanics. However, rotations and central motion is so important in
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physics that it is good to pay some extra thinking about these things.

10.2 5.3 –The inertia tensor and ...

A good exercise in how the developed theory is applied is presented in this
section. It ends with an example of how to derive the inertia tensor for a
homogeneous cube.

10.3 5.4 –The eigenvalues of the ...

As for the previous section, an exercise that deepens the understanding for
the inertia tensor. This idea of diagonalizing I is likely that you will meet in
later courses. The moment of inertia can be written as a quadratic form, and
this often also happens in quantum mechanical problems and whenever the
Hamiltonian is written on quadratic form it is usually easy to diagonalize it.

11 Chapter 11 – Classical Chaos

Classical chaos could make up a course on its own, and if you ask me an
interesting and fun course. Unfortunately, there will not be much time to go
into this topic in any depth, but I’ll try to mention some basic concepts and
ideas.

11.1 11.1 –Periodic motion
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