
The Foucault pendulum

Old problem demonstrating the rotation of earth.

1 Problem

This is an old experiment invented by Foucault to demonstrate that the earth
is rotating. The idea of this assignment is to use the techniques of analytical
mechanics to explain how the Foucault pendulum works. Below I include
a problem with solution taken from a book. The problem is divided into
numerous steps. How you wish to structure your report is up to you, you
do not need to follow the same steps as in the book, nor do you need to
include all of them (that will be di�cult within 4 pages). However, your
report should explain how with the pendulum it is possible to predict the
earth rotation. And you should use what you have learned in the course,
preferable Lagrangian mechanics.
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Problem Statements 59

1. Write down the Lagrangian of the system. If x increases by the arbitrary
quantity s, what is the increase in y in order for the potential to be un-
changed ? Deduce that the Lagrangian is invariant in a group of oblique
translations.

2. Write down the new set of coordinates, which depend continuously on s,
and which leave the Lagrangian invariant. With the help of Noether’s
theorem show that the quantity ẋ + 1

2 ẏ is a constant of the motion.

Check – This result can be checked writing the two Lagrange equations
and eliminating the derivative of the potential.

2.4. Foucault’s Pendulum
[Solution and Figure p. 79] ⋆ ⋆

Study of a famous experiment in the Lagragian formalism
This experiment was realized, in March 31st 1851, with a 67 m pendulum
beneath the dome of the Pantheon; it was revived in 1902, after Foucault’s
death (1819–1868), by Camille Flammarion (1842–1925).

Let a simple pendulum of length l and with mass m be located at a
latitude λ (complementary angle between the vertical at this point and
the Earth’s rotation axis Z) on the Earth surface. The pendulum thus
moves on a sphere (Fig. 2.2). One wishes to study the effect of the Earth’s
rotation on the motion of the pendulum, in a very elegant way, using the
Lagrangian formalism. The effect due to the Earth’s revolution around the
Sun is neglected.

y

x
zO

z

l l

n

w

λ

n

z

w

Z

Fig. 2.2 Foucault’s pendulum. On the left hand side, the trajectory of
Foucault’s pendulum on the ground. On the right hand side, the position of the

pendulum on the Earth’s surface
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60 2 Lagrangian Systems

We will take as generalized coordinates x, y the deviations with respect
to the vertical along the south-north direction n and along the east-west
direction w.
1. In the limit of small deviations with respect to the vertical, show that

the potential energy to within a constant, is

V (x, y) ∼= mg
x2 + y2

2 l
.

Here g represents the acceleration due to gravity only, the direction of
which is the true vertical.

2. Give, with respect to the northerly axis n, the westerly axis w and the
true vertical (passing through the Earth’s center) z at this position, the
components of the pendulum velocity with respect to the Earth. One
neglects ż. Why?

3. Give the components of the unit vector Z (rotation axis of the Earth, see
Fig. 2.2) on n and z.

4. Give the driving velocity due to the Earth’s rotation (radius RE , angular
velocity Ω). The term in z is neglected. Why?

5. Derive the expression of the kinetic energy and of the Lagrangian. One
neglects all terms containing the square of the Earth’s rotational speed,
except those containing the Earth’s radius. Justify.

6. Write down the Lagrange equations.

7. The equation for the x coordinate contains a constant term. Show that
it can be eliminated by the substitution x̃ = x − xe. Give the value of
the constant xe and its interpretation.

8. To solve the two Lagrange equations on an equal footing, the complex
function u(t) = x̃(t) + i y(t) is introduced. Show that the equation to be
solved is

ü + 2 iΩ sin λ u̇ + gu/l = 0 .

Rather than using a systematic method for finding the solution, it is
convenient to make the change of function u(t) = U(t) exp(irt).

Choose r and ω as real numbers in order to obtain the equation Ü +
ω2U = 0 .

What is the nature of the motion seen in terms of variables X, Y with
U = X + i Y ?

Describe the motion in terms of variables x, y?

What happens at the pole and on the equator?
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Hints:
– The velocity of a point M , which is part of a solid and which rotates with

angular velocity Ω around the axis u is Ωu × OM where O is any point
on the rotation axis.

– In the complex plane, the multiplication by exp(irt) rotates a point by an
angle rt. This method is known as the switch towards rotating axes. It
is also employed for a charged particle in a magnetic field.

– The equilibrium position is not the vertical at the point under considera-
tion (there exists also the centrifugal force which acts against gravity).

Alternative derivation
One works in the non Galilean frame n, w, z.
Express the Coriolis force (the centrifugal force is neglected).
Find the potential corresponding to the Coriolis force?
Write down the Lagrangian and the Lagrange equations.
Compare with the first method.
The Lagrangian is time-independent. What is the constant of the motion?

2.5. Three-particle System
[Solution and Figure p. 82] ⋆ ⋆

How astute changes of variables allow us to exhibit symmetries

A – Changing coordinates
Let us consider a system formed with three particles, of equal mass m,
constrained to move on a straight line x′Ox. They interact via a potential
that depends only on the relative distance between them. This system can
represent the vibrations of a linear triatomic molecule.

Let q1, q2, q3, the abscissae, be chosen as generalized coordinates. The
corresponding Lagragian is then written:

L =
1
2
m(q̇2

1 + q̇2
2 + q̇2

3) − V1(q2 − q3) − V2(q3 − q1) − V3(q1 − q2).

1. Give the constant of the motion, associated with spatial translations.
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2. Noether’s theorem can be applied safely. There exists a constant of the
motion

I = (∂ẋL) (dX/ds)|0 + (∂ẏL) (dY/ds)|0

or: I = ẋ +
ẏ

2
= const.

One can directly check this property starting from the two Lagrange’s
equations mẍ = −V ′, mÿ = 2V ′, and eliminating the potential derivative
to get ẍ + 1

2 ÿ = 0 which, after integration, gives again the result of
Noether’s theorem.

2.4. Foucault’s Pendulum
[Statement and Figure p. 59]

1. Let us adopt the axis conventions represented in Fig. 2.2. In the labo-
ratory rotating frame, the point of suspension of the pendulum lies at
altitude l. At equilibrium, the pendulum mass is placed at the ori-
gin. For a small deviation θ with respect to the vertical, the altitude
is z = l(1− cos θ) ≈ lθ2/2. Let us perform an approximate calculation of
the gravitational potential energy: V = mgz ≈ (mglθ2)/2. Furthermore,

θ2 ≈ sin2 θ =
OM2

l2
=

x2 + y2

l2
.

This leads to an approximate expression for the gravitational potential:

V (x, y) = mg
x2 + y2

2l
.

2. The pendulum coordinates in the frame attached to the Earth are by
definition (x, y, z). The pendulum velocity in this frame is thus (ẋ, ẏ, ż).
For a small deviation from equilibrium, the coordinates x and y are of
order lθ, whereas z is of order lθ2, hence negligible with respect to the
horizontal components. It is then fully justified to consider that the
motion takes place in the horizontal plane and that the relative velocity
is given by:

vr = ẋ n + ẏ w.

3. The vector n is in the plane defined by the pole axis and the true vertical
z. As a consequence, the unit vector along the pole axis Z is in the plane
formed by the vectors (n,z). A simple analysis based on the various
projections shows that:

Z = cos λ n + sinλ z.
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4. The instantaneous rotation vector is directed along the pole axis: Ω =
ΩZ. Let M0 represent the coincident pendulum point at a given time.
The driving velocity is simply expressed as ve = Ω × OM0. Using the
definition

OM0 = xn + y w + (RE + z)z

and the previous relation to express the instantaneous rotation vector,
one obtains the equation which gives the driving velocity:

ve = −Ωy sin λ n + Ω (x sinλ − (RE + z) cos λ) w + Ωy cos λ z. (2.14)

5. The absolute velocity of the pendulum in the Galilean frame is obtained
by summing the relative velocity and the driving velocity given in Ques-
tions 2 and 4: va = vr + ve. The kinetic energy is obtained from
T = 1

2mv2
a. Taking into account the small value Ω ≈ 10−5rad/s, val-

ues around unity for x, y , the very small value of z and the very large
value of RE ≈ 106 m, one must retain in the expression for T the terms
Ωx, Ωy and REΩ2 (order 10−5) but one can neglect the terms Ω2x2,
Ω2y2, Ωz and Ω2xz (order 10−10). Lastly, the Lagrangian L is the differ-
ence between the kinetic energy T and the potential energy as given in
Question 1. It is of the form:

L =
1
2
m

[
ẋ2 + ẏ2 − 2Ωẋy sin λ + 2Ωẏ(x sin λ − RE cos λ)

−REΩ2x sin(2λ)
]
− mg̃(x2 + y2)

2l

up to an uninteresting constant mΩ2R2
E cos2 λ/2 and in which we intro-

duced the effective gravitational field g̃ = g − Ω2RE cos2 λ modified by
the centrifugal force.

6. We are concerned now by the Lagrange equations giving the motion in
the horizontal plane. Starting from the previous Lagrangian and applying
the traditional recipe (2.4), one obtains the equations of motion:

ẍ − 2Ωẏ sinλ +
g̃

l
x +

1
2
REΩ2 sin(2λ) = 0;

ÿ + 2Ωẋ sin λ +
g̃

l
y = 0.

7. Let define x̃ = x − xe and substitute this value in the first Lagrange
equation; the arbitrary value xe is then chosen in order to cancel the
constant term in the resulting equation. Owing to the fact that the
value REΩ2 ≈ 10−3 m/s2 is very small as compared to g ≈ 10m/s2, it
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is legitimate to approximate g̃ ∼= g, in which case the result takes the
following form:

xe = −RElΩ2 sin(2λ)
2g

.

The set x̃ = 0, y = 0 is a solution of the equations of motion; indeed this
is the equilibrium solution. Thus at equilibrium, the pendulum is not
oriented along the true vertical, but along the apparent vertical, which
makes an angle

α ≈ sinα =
xe

l
= REΩ2 sin

2λ

2g

with respect to the true vertical. This deviation is due to the centrifugal
force. It is maximum on the 45th parallel.

8. The coupled differential equations to be solved are rewritten:

¨̃x − 2Ωẏ sin λ +
g̃x̃

l
= 0;

ÿ + 2Ω ˙̃x sin λ +
g̃y

l
= 0.

Let us introduce the complex variable u = x̃ + iy. Multiply the second
Lagrange equation by i and add the first one; the auxiliary variable u
occurs naturally in the unique differential equation:

ü + 2iΩu̇ sinλ +
g̃

l
u = 0.

Let us put u(t) = U(t)eirt, substitute in the previous equation and choose
r = −Ω sin λ in order to get rid of the U̇ term. Defining

ω2 =
g

l
+ Ω2 sin2 λ − Ω2 RE

l
cos2 λ.

the resulting equation is written as Ü + ω2U = 0.

One has Ω2 ≈ 10−9 s−1 while Ω2(RE/l) ≈ 10−3 s−1. It is thus fully
justified to neglect the second term as compared to the third one so that:

r = −Ω sin λ;

ω2 = ω2
0 − Ω2 RE

l
cos2 λ,

where ω0 =
√

g/l is the proper angular frequency of the pendulum in a
Galilean frame. The solution of the equation Ü + ω2U = 0 is trivial and
gives U = X + iY = Aeiωt + Be−iωt.
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It is always possible to choose the origin of time and the axis orientation
in order to obtain X(t) = A cos ωt; Y (t) = B sin ωt. In this system of
reference, the pendulum describes an ellipse with an angular frequency
ω. In the complex plane, the multiplication by eirt to switch from the set
X,Y to the set x, y is just a rotation of angle rt. In other words, the axes
of the ellipse turn slowly in time with the angular velocity |r| = Ω sin λ.

At the equator λ = 0 so that r = 0 and

ω =
√

ω2
0 − Ω2

RE

l
.

The pendulum oscillates with an angular frequency slightly smaller than
its proper value.

At the pole λ = π/2 , then r = −Ω and ω = ω0. The pendulum
oscillates with its proper angular frequency and the ellipse axes make a
complete revolution in one day (see Fig. 2.7).

Fig. 2.7 Different types of trajectories for the ellipse drawn on the ground for
three different initial release conditions. For these three cases r/ω = 1/10. On

the left hand side, the pendulum is released with a
tangential velocity opposite to the driving velocity; in the middle,
the pendulum is released with no initial velocity and on the right

hand side one has a situation intermediate between the previous cases

2.5. Three-particle System [Statement p. 61]

A – Changing coordinates
1. In changing the origin q′i = qi − a, the velocities do not vary q̇′i = q̇i,

neither do the relative distances q′i − q′j = qi − qj . The Lagrangian is
invariant and one deduces the following constant of the motion (this is
also a consequence of Noether’s theorem):

P =
∑

i

∂q̇iL,
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