
Vibrations (phonons) in a chain of identical
atoms

Simple model to see how phonons appear in solids, acoustic
and optical.

1 Problem

In your quantum mechanics course you saw how the energies of a particle in

a periodic potential has a peculiar structure of continuous bands separated

by gaps of forbidden energies. This forms the basics for properties of metals

and other materials. However, in real materials the atoms forming the lattice

potential are not totally fixed. The atoms can move (oscillate) around their

equilibrium positions, but since they interact with one another the vibrational

motion of the atoms will be collective (the oscillate in wave-like ways). The

simplest model for a solid is a chain formed from identical atoms, coupled to

their neighbours with a spring, as shown in the figure below.

By assuming periodic boundary conditions this problem can be solved ex-

1
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Figure 1: In the upper chain the (identical) atoms are at equilibrium with

an equal distance between every two neighbouring atoms (lattice spacing

a). In the lower chain the n’th atom is displaced by an amount un from its

equilibrium position Rn.

actly [1], and one finds the energies
1
(frequencies) of the collective oscillations.

These are called acoustic phonons (see figure above). In this assignment I

want that you write down the corresponding Hamiltonian (Lagrangian is also

ok), and solve the equations-of-motion such that you get the energies. You

are very welcome to also solve the same problem with two types of atoms,

i.e. di↵erent masses. In this case you end up with a second branch of ener-

gies, the optical phonons. As literature I suggest the book [1] (I attach the

relevant pages below), but the derivations can be found in many other books

as well.

References

[1] J. J. Quinn and K.-S. Yi, Solid State Physics, pages 37-44 and 48-50,

(Springer, 2009).

1Also called dispersions, denoted as !(k) where k is the wave-number of the vibrational
wave.
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Lattice Vibrations 2

2.1 Monatomic Linear Chain 3

So far, in our discussion of the crystalline nature of solids we have assumed 4
that the atoms sat at lattice sites. This is not actually the case; even at the 5

lowest temperatures the atoms perform small vibrations about their equilib- 6
rium positions. In this chapter we shall investigate the vibrations of the atoms 7

in solids. Many of the significant features of lattice vibrations can be under- 8

stood on the basis of a simple one-dimensional model, a monatomic linear 9
chain. For that reason we shall first study the linear chain in some detail. 10

We consider a linear chain composed of N identical atoms of mass M 11

(see Fig. 2.1). Let the positions of the atoms be denoted by the parameters 12
Ri, i = 1, 2, . . . , N . Here, we assume an infinite crystal of vanishing surface 13

to volume ratio, and apply periodic boundary conditions . That is, the chain 14
contains N atoms and the Nth atom is connected to the first atom so that 15

Ri+N = Ri. (2.1) 16

The atoms interact with one another (e.g., through electrostatic forces, core 17

repulsion, etc.). The potential energy of the array of atoms will obviously be 18
a function of the parameters Ri, i.e., 19

U = U(R1, R2, . . . , RN ). (2.2)

We shall assume that U has a minimum U
(
R0

1, R
0
2, . . . , R

0
N

)
for some partic- 20

ular set of values
(
R0

1, R
0
2, . . . , R

0
N

)
, corresponding to the equilibrium state of 21

the linear chain. Define ui = Ri −R0
i to be the deviation of the ith atom from 22

its equilibrium position. Now expand U about its equilibrium value to obtain 23

U (R1, R2, . . . , RN ) = U
(
R0

1, R
0
2, . . . , R

0
N

)
+
∑

i

(
∂U
∂Ri

)

0
ui

+ 1
2!

∑
i,j

(
∂2U

∂Ri∂Rj

)

0
uiuj + 1

3!

∑
i,j,k

(
∂3U

∂Ri∂Rj∂Rk

)

0
uiujuk + · · · . (2.3)
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38 2 Lattice Vibrations

Fig. 2.1. Linear chain of N identical atoms of mass M

The first term is a constant which can simply be absorbed in setting the 24
zero of energy. By the definition of equilibrium, the second term must vanish 25

(the subscript zero on the derivative means that the derivative is evaluated at 26

u1, u2, . . . , un = 0). Therefore, we can write 27

U(R1, R2, . . . , RN ) =
1
2!

∑

i,j

cijuiuj +
1
3!

∑

i,j,k

dijkuiujuk + · · · , (2.4)

where 28

cij =
(

∂2U

∂Ri∂Rj

)

0

,

dijk =
(

∂3U

∂Ri∂Rj∂Rk

)

0

. (2.5)

For the present, we will consider only the first term in (2.4); this is called the 29
harmonic approximation. The Hamiltonian in the harmonic approximation is 30

31

H =
∑

i

P 2
i

2M
+

1
2

∑

i,j

cijuiuj. (2.6) 32

Here, Pi is the momentum and ui the displacement from the equilibrium posi- 33

tion of the ith atom. 34

Equation of Motion 35

Hamilton’s equations 36

Ṗi = −∂H

∂ui
= −

∑

j

cijuj,

u̇i =
∂H

∂Pi
=

Pi

M
. (2.7)

can be combined to yield the equation of motion 37

Müi = −
∑

j

cijuj . (2.8)

In writing down the equation for Ṗi, we made use of the fact that cij actually 38

depends only on the relative positions of atoms i and j, i.e., on |i − j|. Notice 39
that −cijuj is simply the force on the ith atom due to the displacement 40

uj of the jth atom from its equilibrium position. Now let R0
n = na, so that 41

R0
n−R0

m = (n−m)a. We assume a solution of the coupled differential equations 42
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of motion, (2.8), of the form 43

un(t) = ξqei(qna−ωqt). (2.9)

By substituting (2.9) into (2.8) we find 44

Mω2
q =

∑

m

cnmeiq(m−n)a. (2.10)

Because cnm depends only on l = m − n, we can rewrite (2.10) as 45

Mω2
q =

N∑

l=1

c(l)eiqla. (2.11) 46

Boundary Conditions 47

We apply periodic boundary conditions to our chain; this means that the 48
chain contains N atoms and that the Nth atom is connected to the first atom 49

(Fig. 2.2). This means that the (n + N)th atom is the same atoms as the nth 50
atom, so that un = un+N . Since un ∝ eiqna, the condition means that 51

eiqNa = 1, (2.12)

or that q = 2π
Na × p where p = 0,±1,±2, . . . . However, not all of these values 52

of q are independent. In fact, there are only N independent values of q since 53

there are only N degrees of freedom. If two different values of q, say q and q′ 54

give identical displacements for every atom, they are equivalent. It is easy to 55
see that 56

eiqna = eiq′na (2.13)

Fig. 2.2. Periodic boundary conditions on a linear chain of N identical atoms
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40 2 Lattice Vibrations

for all values of n if q′ − q = 2π
a l, where l = 0,±1,±2, . . . . The set of inde- 57

pendent values of q are usually taken to be the N values satisfying q = 2π
L p, 58

where −N
2 ≤ p ≤ N

2 . We will see later that in three dimensions the inde- 59

pendent values of q are values whose components (q1, q2, q3) satisfy qi = 2π
Li

p, 60
and which lie in the first Brillouin zone, the Wigner–Seitz unit cell of the 61

reciprocal lattice. 62

Long Wave Length Limit 63

Let us look at the long wave length limit, where the wave number q tends to 64
zero. Then un(t) = ξ0e−iωq=0t for all values of n. Thus, the entire crystal is 65

uniformly displaced (or the entire crystal is translated). This takes no energy 66

if it is done very very slowly, so it requires Mω2(0) =
∑N

l=1c(l) = 0, or 67

ω(q = 0) = 0. In addition, it is not difficult to see that since c(l) depends only 68

on the magnitude of l that 69

Mω2(−q) =
∑

l

c(l)e−iqla =
∑

l′

c(l′)eiql′a = Mω2(q). (2.14)

In the last step in this equation, we replaced the dummy variable l by l′ and 70

used the fact that c(−l′) = c(l′). Equation (2.14) tells us that ω2(q) is an even 71
function of q which vanishes at q = 0. If we make a power series expansion 72

for small q, then ω2(q) must be of the form 73

ω2(q) = s2q2 + · · · (2.15)

The constant s is called the velocity of sound. 74

Nearest Neighbor Forces: An Example 75

So far, we have not specified the interaction law among the atoms; (2.15) 76

is valid in general. To obtain ω(q) for all values of q, we must know the 77

interaction between atoms. A simple but useful example is that of nearest 78
neighbor forces. In that case, the equation of motion is 79

Mω2(q) =
1∑

l=1

cleiqla = c−1e−iqa + c0+ c1eiqa. (2.16)

Knowing that ω(0) = 0 and that c−l = cl gives the relation c1= c−1= −1
2c0. 80

Therefore, (2.16) is simplified to 81

Mω2(q) = c0

[
1 −

(
eiqa + e−iqa

2

)]
. (2.17)

Since 1 − cosx = 2 sin2 x
2 , (2.17) can be expressed as 82

ω2(q) =
2c0

M
sin2 qa

2
, (2.18)

which is displayed in Fig. 2.3. By looking at the long wave length limit, the 83

coupling constant is determined by c0 = 2Ms2

a2 , where s is the velocity of 84
sound. 85



U
nc

or
re

ct
ed

 P
ro

of

BookID 160928 ChapID 02 Proof# 1 - 29/07/09

2.2 Normal Modes 41

ππ

ω

Fig. 2.3. Dispersion relation of the lattice vibration in a monatomic linear chain

2.2 Normal Modes 86

The general solution for the motion of the nth atom will be a linear com- 87
bination of solutions of the form of (2.9). We can write the general solution 88

as 89
un(t) =

∑

q

[
ξqeiqna−iωt + cc

]
, (2.19)

where cc means the complex conjugate of the previous term. The form of (2.19) 90
assures the reality of un(t), and the 2N parameters (real and imaginary parts 91

of ξq) are determined from the initial values of the position and velocity of 92

the N atoms which specify the initial state of the system. 93
In most problems involving small vibrations in classical mechanics, we seek 94

new coordinates pk and qk in terms of which the Hamiltonian can be written 95
as 96

H =
∑

k

Hk =
∑

k

[
1

2M
pkp∗k +

1
2
Mω2

kqkq∗k

]
. (2.20)

In terms of these normal coordinates pk and qk, the Hamiltonian is a sum 97

of N independent simple harmonic oscillator Hamiltonians. Because we use 98
running waves of the form eiqna−iωqt the new coordinates qk and pk can be 99

complex, but the Hamiltonian must be real. This dictates the form of (2.20). 100
The normal coordinates turn out to be 101

qk = N−1/2
∑

n

une−ikna, (2.21) 102

and 103

pk = N−1/2
∑

n

Pne+ikna. (2.22) 104
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42 2 Lattice Vibrations

We will demonstrate this for qk and leave it for the student to do the same 105

for pk. We can write (2.19) as 106

un(t) = α
∑

k

ξk(t)eikna, (2.23)

where ξk is complex and satisfies ξ∗−k = ξk. With this condition un(t), given 107

by (2.23), is real and α is simply a constant to be determined. We can write 108
the potential energy U = 1

2

∑
mn cmnumun in terms of the new coordinates 109

ξk as follows. 110

U =
1
2
|α|2

∑

mn

cmn

∑

k

ξkeikma
∑

k′

ξk′eik′na. (2.24)

Now, let us use k′ = q − k to rewrite (2.24) as 111

U =
1
2
|α|2

∑

nkq

[
∑

m

cmneik(m−n)a

]
ξkξq−keiqna. (2.25)

From (2.10) one can see that the quantity in the square bracket in (2.25) is 112

equal to Mω2
k. Thus, U becomes 113

U =
1
2
|α|2

∑

nkq

Mω2
kξkξ

∗
k−qe

iqna. (2.26)

The only factor in (2.26) that depends on n is eiqna. It is not difficult to prove 114

that
∑

n eiqna = Nδq,0. We do this as follows: Define SN = 1 + x + x2 + · · ·+ 115

xN−1; then xSN = x + x2 + · · · + xN is equal to SN − 1 + xN . 116

xSN = SN − 1 + xN . (2.27)

Solving for SN gives 117

SN =
1 − xN

1 − x
. (2.28)

Now, let x = eiqa. Then, (2.28) says 118

N−1∑

n=0

(
eiqa
)n =

1 − eiqaN

1 − eiqa
. (2.29)

Remember that the allowed values of q were given by q = 2π
Na × integer. 119

Therefore, iqaN = i 2π
NaaN × integer, and eiqaN = e2πi×integer = 1. Therefore, 120

the numerator vanishes. The denominator does not vanish unless q = 0. When 121

q = 0, eiqa = 1 and the sum gives N . This proves that
∑

n eiqna = Nδ(q, 0) 122

when q = 2π
Na × integer. Using this result in (2.26) gives 123
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2.2 Normal Modes 43

U =
1
2
|α|2

∑

k

Mω2
kξkξ

∗
kN. (2.30)

Choosing α = N−1/2 puts U into the form of the potential energy for N 124
simple harmonic oscillators labeled by the k value. By assuming that Pn is 125

proportional to
∑

k pke−ikna with p∗−k = pk, it is not difficult to show that 126

(2.22) gives the kinetic energy in the desired form
∑

k
pkp∗k
2M . The inverse of 127

(2.21) and (2.22) are easily determined to be 128

un = N−1/2
∑

k

qkeikna, (2.31) 129

and 130

Pn = N−1/2
∑

k

pke−ikna. (2.32) 131

Quantization 132

Up to this point our treatment has been completely classical. We quantize the 133

system in the standard way. The dynamical variables qk and pk are replaced 134
by quantum mechanical operators q̂k and p̂k which satisfy the commutation 135

relation 136

[pk, qk′ ] = −ih̄δk,k′ . (2.33)

The quantum mechanical Hamiltonian is given by H =
∑

k Hk, where 137

Hk =
p̂kp̂†k
2M

+
1
2
Mω2

kq̂k q̂†k. (2.34)

p̂†k and q̂†k are the Hermitian conjugates of p̂k and q̂k, respectively. They are 138

necessary in (2.34) to assure that the Hamiltonian is a Hermitian operator. 139

The Hamiltonian of the one-dimensional chain is simply the sum of N indepen- 140
dent simple Harmonic oscillator Hamiltonians. As with the simple Harmonic 141

oscillator, it is convenient to introduce the operators ak and its Hermitian 142
conjugate a†

k, which are defined by 143

qk =
(

h̄

2Mωk

)1/2 (
ak + a†

−k

)
, (2.35) 144

145

pk = ı

(
h̄Mωk

2

)1/2 (
a†

k − a−k

)
. (2.36) 146

The commutation relations satisfied by the ak’s and a†
k’s are 147

[
ak, a†

k′

]

−
= δk,k′ and [ak, ak′ ]− =

[
a†

k, a†
k′

]

−
= 0. (2.37)
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44 2 Lattice Vibrations

The displacement of the nth atom and its momentum can be written 148

un =
∑

k

(
h̄

2MNωk

)1/2

eikna
(
ak + a†

−k

)
, (2.38) 149

150

Pn =
∑

k

ı

(
h̄ωkM

2N

)1/2

e−ikna
(
a†

k − a−k

)
. (2.39) 151

The Hamiltonian of the linear chain of atoms can be written 152

H =
∑

k

h̄ωk

(
a†

kak +
1
2

)
, (2.40) 153

and its eigenfunctions and eigenvalues are 154

|n1, n2, . . . , nN⟩ =

(
a†

k1

)n1

√
n1!

· · ·

(
a†

kN

)nN

√
nN !

|0⟩, (2.41) 155

and 156

En1,n2,...,nN =
∑

i

h̄ωki

(
ni +

1
2

)
. (2.42) 157

In (2.41), |0 >= |01 > |02 > · · · |0N > is the ground state of the entire 158
system; it is a product of ground state wave functions for each harmonic 159

oscillator. It is convenient to think of the energy h̄ωk as being carried by an 160

elementary excitations or quasiparticle. In lattice dynamics, these elementary 161
excitations are called phonons. In the ground state, no phonons are present 162

in any of the harmonic oscillators. In an arbitrary state, such as (2.41), n1 163

phonons are in oscillator k1, n2 in k2, . . ., nN in kN . We can rewrite (2.41) as 164
|n1, n2, . . . , nN⟩ = |n1> |n2 > · · · |nN >, a product of kets for each oscillator. 165

2.3 Mössbauer Effect 166

With the simple one-dimensional harmonic approximation, we have the tools 167
necessary to understand the physics of some interesting effects. One example 168

is the Mössbauer effect.1 This effect involves the decay of a nuclear excited 169

state via γ-ray emission. First, let us discuss the decay of a nucleus in a free 170
atom; to be explicit, let us consider the decay of the excited state of Fe57 via 171

emission of a 14.4 keV γ-ray. 172

Fe57∗ −→ Fe57 + γ. (2.43)

The excited state of Fe57 has a lifetime of roughly 10−7 s. The uncertainty 173

principle tells us that by virtue of the finite lifetime ∆t = τ = 10−7 s, there 174

1 R. L. Mössbauer, D.H. Sharp, Rev. Mod. Phys. 36, 410–417 (1964).
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48 2 Lattice Vibrations

We shall neglect terms of order N−2, N−3, . . ., etc. in this expansion. With 248

this approximation we can write 249

⟨ni|eiK·RN |ni⟩ ≃
∏

k

[
1 − E(K)

h̄ωk

nk + 1
2

N

]
. (2.55)

To terms of order N−1, the product appearing on the right-hand side of (2.55) 250

is equivalent to e−
E(K)

N

∑
k

nk+1
2

h̄ωk to the same order. Thus, for the recoil free 251

fraction, we find 252

P (ni, ni) = e−2E(K)
N

∑
k

nk+ 1
2

h̄ωk . (2.56) 253

Although we have derived (2.56) for a simple one-dimensional model, the 254

result is valid for a real crystal if sum over k is replaced by a three-dimensional 255

sum over all k and over the three polarizations. We will return to the evalua- 256
tion of the sum later, after we have considered models for the phonon spectrum 257

in real crystals. 258

2.4 Optical Modes 259

So far, we have restricted our consideration to a monatomic linear chain. Later 260

on, we shall consider three-dimensional solids (the added complication is not 261

serious). For the present, let us stick with the one-dimensional chain, but let 262
us generalize to the case of two atoms per unit cell (Fig. 2.5). 263

If atoms A and B are identical, the primitive translation vector of the 264

lattice is a, and the smallest reciprocal vector is K = 2π
a . If A and B are 265

distinguishable (e.g. of slightly different mass) then the smallest translation 266

vector is 2a and the smallest reciprocal lattice vector is K = 2π
2a = π

a . In this 267
case, the part of the ω vs. q curve lying outside the region |q| ≤ π

2a must 268

be translated (or folded back) into the first Brillouin zone (region between 269

− π
2a and π

2a ) by adding or subtracting the reciprocal lattice vector π
a . This 270

results in the spectrum shown in Fig. 2.6. Thus, for a non-Bravais lattice, the 271

phonon spectrum has more than one branch. If there are p atoms per primi- 272

tive unit cell, there will be p branches of the spectrum in a one-dimensional 273
crystal. One branch, which satisfies the condition that ω(q) → 0 as q → 0 is 274

called the acoustic branch or acoustic mode. The other (p − 1) branches are 275
called optical branches or optical modes. Due to the difference between the

Α Α Α Α ΑΒ Β Β Β

UNIT CELL
2

Fig. 2.5. Linear chain with two atoms per unit cell
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0

ACOUSTIC
        BRANCH

OPTICAL
 BRANCH

ππ
2
π

2
π

ω

Fig. 2.6. Dispersion curves for the lattice vibration in a linear chain with two atoms
per unit cell

Fig. 2.7. Unit cells of a linear chain with two atoms per cell

pair of atoms in the unit cell when A ̸= B, the degeneracy of the acoustic 276

and optical modes at q = ± q
2a is usually removed. Let us consider a simple 277

example, the linear chain with nearest neighbor interactions but with atoms 278

of mass M1 and M2 in each unit cell. Let un be the displacement from its 279
equilibrium position of the atom of mass M1 in the nth unit cell; let vn be 280

the corresponding quantity for the atom of mass M2. Then, the equations of 281

motion are 282

M1̈un = K [(vn − un) − (un − vn−1)] , (2.57)
M2v̈n = K [(un+1− vn) − (vn − un)] . (2.58)

In Fig. 2.7, we show unit cells n and n + 1. We assume solutions of (2.57) and 283

(2.58) of the form 284

un = uqeiq2an−iωqt, (2.59)

vn = vqeiq(2an+a)−iωqt. (2.60)

where uq and vq are constants. Substituting (2.59) and (2.60) into the equa- 285
tions of motion gives the following matrix equation. 286
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50 2 Lattice Vibrations

0
q

12 /K M

22 /K M

/ 2a−π / 2aπ

ω

ACOUSTIC
BRANCH

OPTICAL
BRANCH

Fig. 2.8. Dispersion relations for the acoustical and optical modes of a diatomic
linear chain

[
−M1ω2 + 2K −2K cos qa
−2K cos qa −M2ω2 + 2K

] [
uq

vq

]
= 0. (2.61)

The nontrivial solutions are obtained by setting the determinant of the 2× 2 287

matrix multiplying the column vector
[

uq

vq

]
equal to zero. The roots are 288

ω2
±(q) =

K

M1M2

{
M1+ M2 ∓

[
(M1+ M2)2 − 4M1M2 sin2 qa

]1/2
}

.

(2.62)

289

We shall assume that M1 < M2. Then at q = ± π
2a , the two roots are 290

ω2
OP(q = π

2a ) = 2K
M1

and ω2
AC(q = π

2a ) = 2K
M2

. At q ≈ 0, the two roots are 291

given by ω2
AC(q) ≃ 2Ka2

M1+M2
q2 and ω2

OP(q) = 2K(M1+M2)
M1M2

[
1 − M1M2

(M1+M2)2 q2a2
]
. 292

The dispersion relations for both modes are sketched in Fig. 2.8. 293

2.5 Lattice Vibrations in Three Dimensions 294

Now let us consider a primitive unit cell in three dimensions defined by the 295

translation vectors a1, a2, and a3. We will apply periodic boundary conditions 296
such that Ni steps in the direction ai will return us to the original lattice site. 297

The Hamiltonian in the harmonic approximation can be written as 298

H =
∑

i

P2
i

2M
+

1
2

∑

i,j

ui · Cij · uj . (2.63) 299

Here, the tensor Cij (i and j refer to the ith and jth atoms and Cij is a 300

three-dimensional tensor for each value of i and j) is given by 301

Cij =
[
∇Ri∇Rj U(R1,R2, . . .)

]
R0

i R0
j
. (2.64)


