On this page you find information about the course "Analytical Mechanics" (kurskod FK7049) given during spring 2020 for students at the physics bachelor/master program at Stockholm university.
This book serves as the course literature. Earlier years, Ingemar Bengtsson's lecture notes Notes on Analytical Mechanics, lecture notes were used. We will steal a few problems from them, plus that I recommend that you read a few parts of his notes (see reading instructions).
The course consists of 15 lectures and 6 tutorials, see scheme below. Lectures will be given by Jonas Larson (jolarson@fysik.su.se) and the tutorials are led by Marcus Högås (marcus.hogas@fysik.su.se). Apart from these, the course contains also 3 occasions where we discuss the individual assignment topics.
Set of problems here.
Some old exams, 1997-05-31, 2000-08-25, 2002-08-23, 2005-03-18, 2015-03-20 and 2018-03-18.
The grading criteria for the assignment are found here. The assignment consists of three parts:
Each student can collect a maximum 4 points; 2.5 on the written report and 1.5 on the peer reviewing, while the discussion does not givepoints but is mandatory. These points are added to the total points collected on the written exam. NOTE! Each student need to do this assignment, it is not possible to skip it thereby and score zero bonus points!
Date | Topic | |
---|---|---|
Lecture 1 | Tues 21/1 | Repetition of Newtonian mechanics, constrains, generalized coordinates.
|
Lecture 2 | Wed 22/1 | Generalized coordinates contin, d'Alembert's principle.
|
Lecture 3 | Fri 24/1 | Variatonal methods.
|
Lecture 4 | Tues 28/1 | Hamilton's principle, constrains and Lagrange multipliers.
|
Lecture 5 | Wed 29/1 | Conservation laws, Noether's theorem.
|
Tutorial 1 | Fri 31/1 | The Lagrangian, Lagrange's equations.
|
Lecture 6 | Tues 4/2 | Hamilton's equations, Legendre transformations.
|
Lecture 7 | Wed 5/2 | Canonical transformations.
|
Tutorial 2 | Fri 7/2 | Variational methods, Legendre transforms.
|
Lecture 8 | Tues 11/2 | Cannonical transformations continued. Poisson brackets.
|
Lecture 9 | Wed 12/2 | Poison brackets, connections to quantum mechanics. |
Tutorial 3 | Fri 14/2 | Hamilton's equations, symmetries. |
Lecture 10 | Tues 18/2 | Phase space, Liouville's theorem. |
Lecture 11 | Wed 19/2 | Hamilton-Jacobi theory. |
Tutorial 4 | Fri 21/2 | Canonical transformations. |
Lecture 12 | Tues 25/2 | Hamilton-Jacobi theory. |
Lecture 13 | Wed 27/2 | Central forces, moments of inertia. |
Tutorial 5 | Fri 28/2 | Canonical transformations and Hamilton-Jacobi theory. |
Lecture 14 | Tues 3/3 | Inertia tensor contin. Classical chaos, Lyapunov exponents. |
Lecture 15 | Wed 4/2 | Classical chaos, KAM theorem, Poincaré sections. |
Tutorial 6 | Fri 6/3 | Old exam. |
`Discussion' 1 | Tues 10/3 | Common discussion about the individual assignments I. |
`Discussion' 2 | Wed 11/3 | Common discussion about the individual assignments II. |
`Discussion' 3 | Fri 13/3 | Common discussion about the individual assignments III. |
Exam | Fri 20/3 | Everything |
Instructions for the assignments can be found here.
Below are suggested problems that can be chosen for the individual works.
For any questions send us an email to jolarson@fysik.su.se or marcus.hogas@fysik.su.se, or pass by any of our offices, C5:3017 resp. A5:1031!
© Jonas Larson,
jolarson@fysik.su.se, 2020.
This page was updated 20-01-10