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and a basic understanding of Flight
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Our motivation for discussing some aspects of fluid mechanics is two fold:

e To understand the basic principles of the mechanics of liquids and gases (fluids).
We encounter fluid motion in almost every aspect of our daily lives. However,
understanding fluid behaviour and motion is far less intuitive in comparison with
solid objects. Hence, often phenomena invloving fluids require careful analysis to
determine what physical principles are involved and how they conspire to lead to
the observed effect.

e It can help us understand the application of vector calculus in physics with easy to
visualize examples. Also, to study fluids, we need to understand some aspects of the
mechanics of continuous media which is useful for understanding the more general
framework of field theory (both classical and quantum).

e These notes are part of the “avancerad problemlosning I” course. Not everything
here is covered in the class, and the level of detail may vary

1 General description of Fluids in motion

1.1 A fluid as a mechanical system

Superficially, the behaviour of a fluid (that is, liquid or gas) is very different from that of
a rigid mechanical system, but at a fundamental level both obey the laws of Newtonian
mechanics. In Newtonian mechanics one essentially describes the motion of particles under
the action of forces. In order to apply Newtonian mechanics to fluids at the macroscopic
level (that is, by considering the action of forces on macroscopic fluid elements, and not
on the individual fluid molecules) we introduce some notions in terms of which the flow
of a fluid can be described:

Consider a small volume element AV of the fluid moving along with the fluid. AV
is defined such that the molecules it contains remain within it as the volume moves along
with the fluid, at least during some time interval. The volume element is taken to be
infinitesimally small from macroscopic point of view, but still large enough to contain
a very large number of fluid molecules. This will enable us to reliably average over
molecular properties (like molecular velocities) giving rise to well defined macroscopic
quantities associated with the volume element. The location of AV can be identified as
the location of a point #(¢) within it. The arbitrariness in the choice of # within AV
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becomes negligiable in the limit of AV — 0. Also in this limit, the fluid contained in
AV is characterized by its velocity field 7(Z,t), the local mass density p(Z,t) and the
static pressure p(Z,t). For an incompressible fluid, the density p is constant both in
space and in time. Furthermore, in steady state, 07/0t = 0 and Op/dt = 0, i.e., at a
given point in space both are constant in time (note the use of partial time derivatives).
The fluid within the volume element AV is also referred to as a fluid particle (which in
this sense, of course, is not the same as a fluid molecule).

In general, a force AF acting on the fluid within AV of mass Am = pAV produces
an acceleration given by Newton’s second law of motion,
dv

AF = Am — 1
m— (1)

This looks very similar to the corresponding equation for particle mechanics. However the
distinctive properties of fluids are encoded in the detailed structure of ¢ and AF: First,
note that for a particle 7 = #(t), while for a fluid element, ¥ = ¥(Z(¢),t) and hence the
distinction between d/dt and 0/0t is very important (we will come back to this below).
Second, the force AF on the fluid element is a sum of external forces (for example, gravity)
and internal forces like pressure and viscosity that act within fluids,

AF = AFE, + AFyje + AF, + -+ . (2)
These will also be discussed in more detail later.

The motion of fluid can be pic-
tured in terms of streamlines. A
streamline is a line drawn through
the fluid such that a tangent to it
at any point is in the direction of
the fluid velocity at that point. A
collection of neighboring streamlines

forms a streamtube. In Steady
state, the actual physical paths fol-
lowed by fluid “particles” coincide
with streamlines. This is not the case
when the flow changes with time.

1.2 Pressure in Fluids: Static Pressure

An important component of the force AF acting within fluids can be described in terms of
pressure, or more precisely, in terms of pressure gradients. We now make the notion
of pressure for a moving fluid more precise. First, recall that to a force F’;, we can associate
a pressure p as force per unit area,

A
P= AAlJI_rl’O AAJ_
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where AA | is a small area element normal to the direction of the force and on which the
force acts. For the time being, we regard pressure as a vector pointing naturally in the
same direction as F’;,. Below we argue that for fluids, this can be replaced by a scalar
quantity p.

Let us now consider a point # inside a fluid and a small area element A passing through
Z. The orientation of the area A can be described by a unit vector n normal to the area
element. This allows us to represent the small area element as a vector A = AAn. In this
way, the opposite faces of the same physical area A can be denoted as A and —A4 and can
be regarded as representing two different area elements oriented opposite to each other.
For example, if we consider a small sheet of paper of scalar area A passing through the
point 7, then Aand —A correspond to the two different faces of paper sheet. Although in
practice a force will act on the scalar area A (of the paper sheet, for example), theoretically
we can make a distiction between forces acting on different faces of A as follows: A force
F' is said to act on the face A provided its value remains unchanged in the hypothetical
event that the fluid on the —A side of the area A is removed (this will of course alter a
force acting on the face —A‘) From now on, we will be dealing with forces that act on an
oriented area element in the above sense.

Now, for any elemental area, A passing through a point 7 in a fluid, one can determine
the force perpendicular to it and determine the associated pressure p' at Z. In general, for
each orientation of the area A through Z one could obtain a different value of pressure.
However, in a fluid at rest, there cannot exist a net unballanced force acting on any point
in the fluid (otherwise, the fluid will not remain at rest). This has two implications:

1) A force acting on the side A'is balanced by an equal and opposite force acting on the
opposite side —A and this is true for every orientation of the area element. For example,
through a point Z in a drum of liquid, one can consider a small horizontal area A, a
distance z below the surface. The downward pressure on A; due to the liquid column
above it is pgown = pgz, where p is the liquid density. At equilibrium this should be
balanced by an upward pressure on Ay, so that p,, = —Pgown. Similarly, one can consider
a small vertical area A, through the same point ¥ and argue that at equilibrium the left
and right pressures on it must balance, pright = —Piest-

2) The arguments so far (which apply equally well to rigid bodies) do not tell us
anything about the relation between pressures in different directions, say, piown and prignt-
For a rigid body these would be unrelated, while for a fluid they turn out to be the same
and the reason is not difficult to see: Consider a layer of fluid compressed vertically
between two pistons. Since the fluid inbetween can easily change its shape, it will start
flowing sideways, escaping from the region that is compressed by the pistons. The only
way to counter this is to exert horizontal forces on the fluid (say, through the side walls
of the container) to balance the vertical force of the pistons. Thus equilibrim in a fluid
cannot be established unless at any point # within it pressure is the same in all directions
and this is due to the fact that the shape of a fluid changes easily in response to applied
forces. The technical statement is that, unlike solids, fluids in equilibrium do not support



shearing forces. The consequence is that at equilibrium, pressure at a point 7 in
the fluid is the same in all directions.

The isotropy of fluid pressure implies that its vector nature has become irrelevant and
hence it can be treated as a scalar p(Z,t). Note that even in equilibrium, pressure can
change from point to point, although at a given point it is the same in all directions (an
example being the variation of pressure with depth in liquids). Pressure defined in this
way for a liquid at rest is called static pressure.

In a moving fluid things are more complicated since the motion could be associated
with unbalanced forces. However, the notion of pressure can still be defined unambigu-
ously for an observer flowing along with the fluid. From the point of view of this observer,
the fluid surrounding him/her is at rest and therefore the notion of pressure is the same
as in the static case. The pressure in a moving fluid defined in this way is also called the
static pressure (of the moving fluid).

How to measure static pressure without really
flowing along with the liquid? To answer this, re-
call that fluid pressure is due to random motions | p=pgh
of its molecules that impinge on a surface and is h %

therefore related to the random molecular veloci- —————
ties. If the fluid as a whole flows with velocity v, # ””””” V —»

the components of molecular velocities in directions
transverse to ¢ are not affected by the flow. Hence
the pressure measured in a direction transverse to the flow (e.g., through the rise of liquid
in a side tube) is the static pressure.

2 Bernoulli’s Principle (A Simplified Treatment)

Even before further developing the fluid equation of motion, we are already in a position to
give a simple derivation of Bernoulli’s principle as a consequence of energy conservation
in fluid flows (However, to get better understanding of this principle, later we will derive it
more rigorously after we have discussed the fluid equation of motion in the next section).

Besides being an important principle of fluid dynamics, this will also help us develop
a better understanding of fluid pressure as experienced in daily life. We will then discuss
some applications and common misapplications of the principle.

2.1 Statement of the Principle

Let us consider the fluid contained in a small volume element AV which is flowing along
a streamline with velocity ¢ in steady state. The total mechanical energy of this fluid
elements consists of three parts:



1. A kinetic energy 3pv?AV,

2. A potential energy due to pressure, pAV. This it the work done to push the fluid
into the volume AV = AAAz against a force pAA (more explicitly, work = Fdz =
pAV).

3. A potential energy due to gravity pghAV, where h is the hight of AV above some
given reference level.

Combining these together, the total mechnical energy of the fluid element per unit volume
is obtained as %pU2 + p+ pgh. This energy density can change only if a) there is external
work done on/by the fluid, b) there are internal dissipative forces (viscosity) against
which the fluid has to do work as it flows. If there is no external work, and if the effect
of dissipative forces can be ignored, then the energy conservation law states that as the
fluid element in AV flows along a streamline,

Loy
gPv + p + pgh = constant

Note, however, that the constant on the right-hand-side can have different values for
different streamlines. This is the Bernoulli principle. Each term in the left-hand-side is
a function of the position Z within the fluid. The theorem states that the sum, however,
is independent of & and is the same everywhere along a given streamline. This holds for
inviscid (non-viscous) flows in steady state.

Under certain conditions the con-
stant on the right-hand-side is the same
for all streamlines and so remains the
same throughout the fluid volume. This
happens when the flow is irrotational
(these concepts will be discussed later
using the fluid equation of motion).

Consider a regular flow, say, in a

tube. If we consider points 1 and 2 along
a tube in which the fluid flows, then it
is customary to express the Bernoulli’s

principle as

1 1
§pr +p1 + pghy = ipvg + pa + pghs

2.2 Some Applications of Bernoulli’s Principle

The theorem can be applied to flows in tubes with varying cross sections: Consider a
horizontal tube the cross section of which is A; at point 1 and A, at point 2 with A; > A,.



Since the flow is horizontal, h; = hs, and the theorem takes the form,

1, I
PV P11 = 5,07)2 + po

2

As a consequence of conservation of mass
and incompressibility of the fluid, pv; A; =
puaAs so that vy = v1A1/As. Thus, as the
tube cross section reduces A; > A,, the

flow velocity increases (v < v2). Then
the above equation then tells us that static
pressure is lower in regions of higher veloc-

ity (p1 > p2). Measuring pressures p; and
po (for example, by measuring the rise of
liquid in narrow side-tubes inserted at points 1 and 2) one can get information about the
change in fluid velocity.

The notion that regions of higher fluid

velocity have lower pressure may sound
somewhat counterintuitive. After all, if

you place your hand in a fluid flow, you

will find that pressure on your hand grows
with fluid velocity and not the other way
around. The resolution of course is that the pressure felt by your hand is not the static
pressure of the moving fluid (it is the pressure felt by you, not by the fluid). This can
be clarified further by introducing the notion of a stagnation point: This is a point in
the steamline where the flow velocity reduces to zero, v; = 0 (due to the presence of an
obstacle). At this point the static pressure has the maximum value p; (since ¥ = 0):

Loy

5PV + D =Ds
2

A hand placed in a fluid flow feels the stagnation pressure p; (and not p) which increases

with v?. Measuring p, and p, one can determine the flow velocity v. (For an example see

problem set 1).

2.3 Erroneous applications of Bernoulli’s principle

Bernoulli’s principle easily lends itself to erroneous applications to a range of everyday
phenomena. The misapplications include the explantion of flight (air flow and forces on
an airfoil), the working of a vaporizer, the behaviour of a light ball in an air jet, etc. We
begin with a misapplication that characterizes the situation very well.

a) Hangning paper strip: Take a strip AB of paper around 1em wide and some 7—8cm
long. Hold the end A in front of your mouth with the end B free. The strip will then take
a convex shape with the end B hanging downwards. Now if you start blowing mildly along



the surface, end B of the paper strip will rise untill the strip is horizontal and no longer
hangning down. One may be tempted to explain this in terms of Bernoulli’s principle as
follows: the air below the paper strip is stationary and at a pressure of 1 atmosphere. As
you blow, the air above the strip acquires a velocity and hence its pressure drops below 1
atmosphere making the paper strip rise. Here is the flaw in this argument: As you blow,
you impart kinetic energy to the air above the strip by doing external work on it. This is
no longer the isolated system to which the Bernoulli theorem applied. Also the air above
and below belong to different streamlines. Because of these facts, the air above the strip
moves faster without its pressure droping (subsequently a pressure difference will develop
but for other reasons as will be explained below). To confirm this as a misapplication
of the Bernoulli principle, repeat the above experiment after pushing the end B of the
strip up with your finger so that now the strip has a concave shape with its middle part
sagging down. If you now start blowing along it, the strip will be pushed further down,
rather than raised up while our naive application of the Bernoulli principle would predict
the opposite.

This experiment shows that the behaviour of paper strip depends on its curvature
(convex or concave). We will show later that the effect is actually caused by the curvilinear
flow of the fluid. All misapplications of the Bernoulli’s principle fall in this category: the
real cause of the phenomenon is fluid motion along a curve.

b) Flight: A major misapplication of Bernoulli’s theorem is to the problem of flight
and the explanation of the origin of forces that act on the airfoil. In this, one looks at
the nature of the air-flow around the wing of an aircraft. It is argued that air on the
upper side of the wing travels a longer distance than on the lower side during the same
time interval and hence it has a higher velocity. This gives rise to a lower pressure region
above the wing that sucks the wing up. The problem here is not that Bernoulli’s theorem
does not apply to the air flow near the wing; it certainly does and turns out to be very
useful. The problem is that of cause and effect and of the other important effects that
are crucial to establishing the right flow pattern, but are overlooked in this simplified
explanation. Below, we give a slightly more detailed description of air-flow based on the
fluid equation of motion and then use the results to gain a better understanding of the
above phenomena. In short, we will follow the following reasoning: Air flow above the
wing follows a curved path due to Coanda effect. Viscosity effects near the wing further
shape the flow. Finally, curved flow generates a lower pressure region above the wing as
can be seen from the fluid equation of motion (and interestingly, the force component
responsible for this is orthogonal to the component responsible the Bernoulli principle!).
This creats the lift. Now, the pressure difference also creats a velocity difference above and
below the wing by Bernoulli principle. Then the velocity difference contains information
about the lift and can be used to compute the upward force.



3 Equations of Fluid Dynamics

The fluid equation of motion AF = Am(d7/dt) describes the motion of a small fluid
element of volume AV under the influence of force AF. The main contributions to the
force are written in the form AF = AF; + Aﬁvisc + Aﬁg and each will be discussed below.
We will then describe the acceleration dv'/dt of the fluid element. The continuity equation
is described at the end.

3.1 Force due to Pressure Gradient

A component Aﬁp of the force acting on small fluid elements is caused by pressure
gradient (or unbalanced pressure) in the fluid. To see how this arises, it should be
emphasized that AF is the net force acting on the fluid in AV, that is the sum of all
forces acting on it from different directions. Even when the net force at a point £ within
the fluid vanishes, the net force on AV may not vanish:

Let us first compute the component (AF},), of Aﬁp in the z-direction. Consider a
small rectangular slab of thickness Az (along the z-axis) and area A, (in the y — z plane)
within the fluid. The volume of the slab is AV = A,Az. The two faces intersect the
z-axis at x and = + Az where the pressures are p and p + Ap, respectively, corresponding
to a pressure gradient Ap/Ax across the slab. The forces on the faces are (F},), = p A,
and the oppositly directed (F},);+a; = —(p + Ap) A,. Thus the net force acting on the
slab in the z-direction is

(AR = (By)e + (Fy)usse = [p As = (p+ Ap) As] = ~Ap A, =~ 22 AV
In the limit of zero thickness, one gets
y A a force per unit volume,
- S
: x+A x lim (AF,), _ _Op
av—o AV ox
The sign indicates that the force is di-

. : F x+AX rected from region of higher pressure
R ';<'"'_'_' ”””””” =~ to region of lower perssure which is

Fx T X the direction in which fluid particles
' move as a result of a pressure differ-
ence.

Ayx Clearly, one can derive similar ex-
pressions for the y and z components

of the force. At the end, taking the small volume limit, we get,
L, op .Op ., Op

AF,=— |2 — — —

P (max+y8y+zaz

where, Z, etc. denote unit vectors in the corresponding directions and the small volume

) AV = —VpAV

limit is implicitly assumed.



A streamline is a one dimensional curve in S+As
space. At any point, we can draw a tangent vec- S
tor to this curve. By the definition of a stream- EC
line, this tangent vector has the same direction
as the fluid velocity at that point. Hence, if 5 is a .
unit tangent vector to the streamline at a point x x+Ax
(§-5=1), then in terms of the fluid velocity at
that point, § = @/|d]. We can now ask the ques-
tion: What is the component of the force AF, in
the direction of a given streamline? More explic-
itly, we want to evaluate AF’;, - 5. To this end, it
is convenient to first give a different description of §: Any point along the streamline can
be parametrized in terms of its distance, s, from a reference point on the streamline. For
example, a point A will be at some distance s4 from the reference point and its distance
from point B will be s4 — sp (note that s is measured along the curve and not along a
straight line). Consider two adjacent points s and s + As with vector positions # and
T + AT, respectively, on the streamline. For very close separation, the distance between
the two in terms of the length parameter is As = |AZ|. In the limit that the two points
approach each other (that is, As — 0) AZ becomes tangent to the curve at the point &
(or s). Then § = AZ/As is a unit tangent vector. The component of AF, tangent to the
streamline at s is then clearly

s A = A 8])
AF;=AF,-3=(-Vp-3) AV = (—%) AV
To understand the last step, note that
o A L _ Op dp W, e A=
Ap =p(Z + AZ) — p(Z) = pe Az + 3yAy + aZAz = Vp- A%

Then, dividing by As one obtains the directional derivative of p along the streamline
as p A

p_ . Ap o
ds Allglo As Vb3

To summarize, the component of force along the streamline is

Op

—g)AV

AF? = (

3.2 Force due to Viscosity

Viscosity in fluids is the analogue of friction in solids. It is the property that makes
adjacent layers of moving fluid tend to stick together. So if two adjacent layers have
different velocities, the faster layer tends to slowdown and the slower one tends to speed
up due to the pull of the other layer. For fluids flowing near a boundary, this gives rise to
the following profile: the fluid layer immediately next to the boundary is almost stationary



due to friction between fluid and the boundary. This stationary level pulls on the moving
fluid next to it and tends to slow in down. So as we move away from the boundary, the
flow speed get faster. This behaviour can be quantified in a simple way:

Consider a horizontal flow of fluid with velocity in the z direction. The flow is par-
allel to the z — z plane and the y coordinate measures the fluid height. Consider 2
flow planes parallel to the z — 2z plane at heights y and y + Ay with flow velocities
vy and v, + Awv,, respectively (note that the lower layer, being closer to the bottom
boundary, has a lower velocity than the upper one, due to viscosity). The faster flow
at height y + Ay tries to speed up the flow at height y through viscous interaction
by exerting a force on it in the z direction (that is, the flow direction). Such a force
per unit horizontal area is called the stress, 7(y) (Note the differece: pressure is force

per unit area acting normal to a sur-

yA face, while stress is force per unit area

| acting parallel to the surface). Simi-
larly, the slower flow at height y tries

( y +Ay to retard the faster flow at height
: Ux( y+Ay) Y + Ay by exerting (?n it a force. per
unit area 7(y + Ay) in the —z direc-
tion. Such forces are the cause of the
velocity difference between the layers.
For simple fluids (the so called New-
tonian fluids), the resulting velocity
gradient is proportional to 7,

0v,
Oy

T=U

where p is called the viscosity coefficient.

Let us now consider a small volume element of height Ay and cross section area AA,
between the flow plans at heights y and y + Ay. The oppositely directed stresses 7(y)
and 7(y + Ay) acting on the lower and upper faces of this volume give rise to a net force
on AV = AyAA, in the z-direction,

0%v,

M—ayQ

(Amz:[T(ymy)—r(y)]my:u[(‘?y“‘)m— (%y) Ay = p 2 ayaa,

Velocity gradients in the z and z directions also contribute to the force, and the total
(AF,), (which we do not derive here ') is given by (AF,), = (uV?v;)AV. Similar
equations hold for other components of the force, hence,

AF, = (uV?*3) AV

!The appearance of the term %2;22 is not obvious for our simple definition of 4 and the above derivation
based on it. A more rigorous treatment is based on the analysis of stresses and strains in fluids. For
Newtonian fluids, the two are linearly related through the viscosity coefficients. For incompressible fluids,

the expression coincides with the one given here.
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Sometimes fluid viscosity does not play an important role in a phenomenon and can be
ignored for the sake of that phenomenon. Such a flow for which, effectively, u = 0, is
called inviscid flow.

3.3 Force due to Gravity

Aﬁg is the gravitational force, (Am)g, acting on the mass element Am = pAV | where §
is the acceleration due to gravity. This can also be written in terms of the gradient of a
gravitational potential ®, using § = —6@,

AF, = pGAV = —pVOAV

3.4 Fluid Acceleration

Newton’s second law applied to fluids contains the acceleration @ = dv//dt of a fluid
element. To elucidate the meaning of the total derivative d/dt (in contrast with the
partial time derivative 0/0t), we start with a generic function f(Z,t) which varies both in
space and time. For example, f could represent the local fluid density, local temperature
or any component of fluid velocity. Often we are interested in the value of such a quantity
for a fluid element as it flows along a streamline. The fluid element follows a path Z(t)
in space. Then the values of the function along this path are given by f(Z(¢),t). Note
the two sources of time dependence: Even for a function f(Z) which does not explicitly
depend on time, the corresponding function f(Z(t)) evaluated on the path Z(¢) still has a
time dependence because of the motion of the fluid element.

The total time derivative of f takes both types of time variations into account. To
evaluate it, note that a small time interval ¢¢ the fluid point Z(¢) moves to Z(t + 0t) =
Z(t) + 9ot. The total time derivative of f(Z(t),t) is then defined as

df . f(@+ 06t t+6t) — f(Z,1)
— = lim
dt 5t—0 ot

On Taylor expanding the numerator and taking the limit one obtains,

df  Of =~ ,0f _Of  _ =
dt - ot +;v o - ot TV

Now taking f to be the components v*(Z,t) of the velocity of a fluid element, the compo-
nents a’ of acceleration can be easily computed as,

B dv’ B o'

i YY 7- V)
a g Y + (7- V)v*,
or, in vector notation,
v 0v -
i=—=—+(0-V)v.
A== TV

We have now deciphered all quantities that appear in Newton’s second law as applied to
Fluids.
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3.5 The Navier-Stokes Equation

The Navier-Stokes equation is simply a rewriting of Newton’s second law,
AF = Ama,

applied to the motion of fluid elements. AF is the force acting on a fluid mass Am = pAV
that moves with velocity 7(Z(t),t) and imparts to it an acceleration @ = dv//dt. Collecting
the expressions from the previous sections one obtains the equation,

ov > 1o -

—+ (- V)i=—-Vp+nV?i—- Vo
where 1 = u/p is the viscosity coefficient. This is the Navier-Stokes equation for incom-
pressible flow:

In order to solve this equation, in general, one has to specify boundary conditions. The
boundary conditions often depend on the shape of the objects that constrict or divert the
flow, like the geometry of air ducts or the shape of aircraft wings (airfoil). In most cases
it suffices to impose as two boundary conditions the requirements that, at the boundary,
both the normal ¢, and tangential 7| components of ¥ vanish. Physically 7, = 0 means
that the fluid does not penetrate the boundary and #); = 0 means that the fluid layer just
adjacent to the boundary is at rest as supported by empirical evidence.

3.6 The Continuity Equation

This equation is a statement of conservation of mass in fluid dynanics. Within the flow,
let us consider a fixed volume V' bounded by a surface S (this is a fixed volume in space
through which fluid flows). At a given time ¢, the total fluid mass contained in V' is given
by My = [, p(t)dV. During some time interval At, some fluid may enter or leave the
volume V' by passing through the surface S. Let us denote the quantity of fluid passing
through S per unit time by Is. To compute this fluid flux through the surface, consider
a small surface element dS on the surface S. The magnitude of this vector gives the area
of the surface element while its direction is normal of to the surface element and fixes its
orientation. Then the amount of fluid crossing ds per unit time is given by the scalar
product pv - dS and the total mass of fluid leaving/entering through the surface S, per
unit time, is

Ingpﬁ-d—gz/ﬁ-(pﬁ)d‘/
s v

To write the expression in terms of a volume integral we have used the divergence
theorem.

If no mass is created or destroyed in V, then this in/out-flow of mass across the
boundary of V' should result in an increase/decrease (per unit time) of mass within V.
Hence the total change of mass per unit time is given by

oMy
ot

=1,
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The negative sign signifies that if the flow is directed outwards (so that ¢ and dS are
roughly in the same direction and hence Iy = §, pt' - dS is positive), then OMy /Ot is
negative, consistent with the fact that mass inside V' reduces as a result of the outward
flow. Since the integration region V is time independent, one gets,

Jp =
Pav = — (oB)d
/Vat 1% /VV (pt)dV

This holds for any arbitrary volume V', which implies that
op =

LAV (pf) =0

5 TV (07)

This is the continuity equation which is a mathematical statement of the principle of
conservation of mass. It holds for both viscous and invicid fluids.

If the fluid is incompressible, then its density p is constant i.e., dp/0t = 0 and ﬁp = 0.
The continuity equation then reduces to

V-7=0

4 Simple Applications of Fluid Equation of Motion

Having derived the Navier-Stokes equation, now we consider some of it’s simple implica-
tions. This includes a derivation of the Bernoulli principle and study of forces that result
for the curvature of the flow (the later is useful in understanding the physics of flight, and
shape of fluid rotating in a drum).

4.1 A Closer Look at Fluid Acceleration

In steady state, the fluid acceleration reduces to

dv -
i=—=(U-V)U.
Obviously, at any poing along the streamline, @ can be resolved into components parallel

and perpendicular to the velocity at that point,
a= C_I:H +d.

such that @ = (@- 8)5, and @, - 5§ = 0. As discussed above, 5 is a unit vector along the
velocity and is also a unit tangent vector to the streamline at a point s. Now we want to
obtain the expressions for @ and a, .

Denoting the magnitude of the velocity by v = |#/|, we have ¥ = v§. Also from the
discussion above, we know that § -V = 0/0s. Substituting these in @ we get

i=v(3-V)ws) = vg(vé) P L

0s 0s
13



The first term is clearly parallel to §. As for the second term, note that - § =1 implies
that s - % = 0 (this is easy to understand: a unit vector cannot change parallel to itself
since that would change its magnitude, so it can only vary normal to itself subject to its
norm remaining unchanged). Hence the second term is normal to §. Now we have the

sought after decomposition of acceleration,

1 Ov? 5 08

) =- — § i, =v:—
=9 9s 7

0s
(Note that 05/0s is in general not a unit vector).

It is useful to illustrate this with an example: Consider circular motion of the fluid
along a circle of radius r. For the circular streamline, we can choose s = rf and § = 6.
Since 7 is fixed,

o _ 10 95 106 i
s 100’ 0s rdd
Then @, = —(v?/r)7 which is the familiar centripetal acceleration of the fluid volume

element. Moreover, if the flow is uniform, then @) = 0.

4.2 Derivatin of Bernoulli’s Principle

Bernoulli’s principle is valid for the steady state flow of inviscid fluids for which the
equation of motion takes the form,

s 1o S
(V)i =~ Vp- Vo (3)

The scalar product of this equation with § correcponds to the effect of forces acting parallel
to the streamline, AF; = Ama. Based on our previous results, this gives,

0 (v p
(P =
88<2+p+> 0

Hence the quantity within the brackets is a constant along the streamline,

1
5,01)2(3) + p(s) + p®(s) = ¢ (independent of s)
From this derivation it is clear that c is constant only along a given streamline but could

have different values for other streamlines.

There is however a special type of flow for which ¢ is constant throughout the fluid.
To see this, we start from the full equation of motion (3). In components, the first term
on the LHS is Y7, v'dv7/da*. Note that if we make the assumption (to be discussed
later) that the velocity field satisfies

ol O
o7~ o0 (4)
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then this term can be written as 3., v'dv’/da? = %8(2?:1 v'v?)/Ox? (this assumption
is non-trivial only for ¢ # j). The equation then reduces to

- 1
V(Ep@'? +p®+p)=0
The solution is then,

1
3 pi? + p® + p = constant (independent of )

which is the more restrictive form of Bernoulli theorem.

Recal that for the above solution to be valid, it is important that the velocity field
satisfies the assumption (4) made above. In vector form, this assumption is simply,

V XxT=0

A flow satisfying this condition is said to be irrotational. Equivalently, the condition
states that the line-integral of ¥ along any closed curved C in the flow is zero,

fﬁ-cﬁ:/(ﬁxﬁ)-dfszo
C S

where use has been made of Stokes’s theorm in vector calculus. To make the discussion
more formal, note that one has the vector identity,

— — 1 —
(U- V)= V(§172) — 7 x (V x 7)

and that for irrotational flow, the last term on the RHS vanishes leading to the desired

result.

4.3 Uniform fluid flow along a circular path

The study of fluid acceleration parallel to the streamline, a)|, gave us information about the
variation of pressure along the streamline. In a similar way, the study of the component
of fluid acceleration perpendicular to the streamline, a,, will tell us how pressure varies
normal to streamlines. In particular, we will see that the variation of pressure normal
to the streamline is correleted with the curvature of the streamline. This understanding
is very useful and can provide explanations for diverse phenomena including the basic
dynamics of flight. For the sake of simplicity, in this section we consider uniform flow
along a circular path since it already exhibits the main features of curved flow. In a later
section we will consider general curved flows.

In order to understand, for example, the mechanism of flight, we have to know some-
thing about fluid motion along a curved path. The basic feature of such flows can be
understood by considering the simple case of uniform fluid flow along a circular arc so
that the streamlines form arcs of concentric circles. The volume element AV then moves
along a circular arc of radius R at constant speed. Since the magnitude of ¥ remains con-
stant, dv'/dt is simply the centripetal acceleration directed towards the centre of the circle,
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. 9 higher pressure
dv V7 4 .
- ——R region

dt R

where R is a unit vector in the radial direction. The fluid

lower pressure
equation of motion (1) applied to this situation implies that region

there is a force

U2A

R
R
directed toward the centre of the circle. The relationship between force and pressure

Fi=—(pAV)

gradient discussed earlier (that the force vector points from a region of high pressure to
a region of low pressure) then implies that pressure is higher for larger values of
the radius. Later we will apply this formula to a drum of rotating liquid. For now, two
points should be emphasized:

1. Often in problems that involve flow of air in an open environment, the large radius
region maybe contiuously connected to the atmosphere. The high pressure at large
radius is then the atmospheric pressure (say, 1 atm). This means that the low
pressure at small radius should be below 1 atm.

2. The second point to emphasize is that although we have described how a curved
flow generates pressure gradients, we have not explained how the flow is curved
in the first place. This is usually due to the so called Coanda effect that will
be described later. The combination of Coanda effect and pressure gradient arising
from curved flow can explain a number of interesting phenomena including the paper
strip experiment.

4.4 Fluid flow along a general curved path

For the sake of completeness, we now consider curved flows not necessarily along arcs of
circles (but it is convenient to still restrict to 2-dimensional flows). The general formula
for a, gives the force transverse to the streamline,

0s

F, = (pAV)v?
il (PV)UaS

So everything depends on the behavior of 0§/0s. If § lies in the = — y plane, we can
parametrize it in terms of its z and y components, § = icosf + jsinf, where 0 is the
angle between § and the x — axis and it’s value depends on the value of the paremeter
s along the curve. Hence 6(s) encodes the information about the curvature of the flow.
Since 7 and j are fixed vectors in space, we have

ok - 5 _
5 (—zs1n0+jcos6’)£ =n o

n is a unit vector normal to § as can be easily verified. If we ignore the contributions

06 . 06

of viscosity and gravity to the force, then F| is given in terms of the component of the
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pressure gradient —ﬁp normal to the flow,

ﬁ-ﬁLz—ﬁ-(ﬁp)sz—a—p AV
on

where 0/0n denotes a derivative normal to the streamline and can be taken to simply
stand for n - V. Putting all this together in the equation of motion, one gets

Op , 00

— = — N

on P 0s
This gives the variation of pressure normal to the streamline as a function of its curvature.
To understand the implication of this equation, let’s consider a flow that is convex
upward. We want to study pressure variation in the region above a certain streamline in

the flow. Then as we move along the flow, say, from left to right, 6 starts from a positive
value, decreases to zero and then becomes negative; hence, 00/0s < 0 and therefore,

do
$>0

convex upward concave upward

Op/On > 0. In other words, pressure increases in the normal direction as we go away
from the streamline (just as in the circular flow case considered above). This is to be
contrasted with a flow pattern that is concave upward. Now, as s increases, f goes
from a negative value to zero and then becomes positive, hence 90/0s > 0 and therefore,
Op/On < 0. This states that in the region above the streamline, as we go away form the
streamline in the transverse direction, pressure falls.

To summarize, at any point on the streamline, the normal force F'| is directed toward
the center of curvature at that point. This implies that pressure decreases in the
direction of center of curvature, but increases in the opposite direction.

4.5 Drum of rotating (inviscid) liquid

As an application of the result of the preceding section we consider a rotating cylidrical
drum filled with liquid. The liquid rotates together with the drum and any small volume
element AV in it moves around a circular path. At a qualitative level, the discussion
in the previous section tell us that pressure in the liquid increases as we go away from
the centre of the drum. However, in this specific case, we can also get a quantitative
expression for the pressure.
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To describe the rotation of the liquid in the drum, let us choose a cylindrical polar
coordinate system (z,7,6) where the z-axis coincides with the axis of the drum around
which it rotates. r is the radial distance from the axis of rotation and # is the angle of
rotation so that the angular velocity of the drum is given by w = df/dt. In this coordinate
system it is convenient to choose a volume element dV such that its three sides are given
by the height dz, width rdf and depth dr so that dV = rdrdfdz. Hence in the fluid
equation (1), we set Am = prdrdfdz and dv/dt = —w?r7, so that

F = —(pw?rdrdbdz) 7

F' is the net radial force that acts on the volume element dV. If we study the motion of
dV at a fixed height, then we can ignore the effect of gravity. To a good approximation,
we may also ignore viscocity and concentrate on inviscid flow. Then, recalling our earlier
discussion, F can be related to the pressure gradient dp/dr across the volume dV as
follows:

The face of this volume element that is perpendicular to the radius vector has area
rdfdz. The force on the face at radius r is F. = [p(r) r dfdz]# and that on the face at
radius 7+ dr is Fr g = —[(p(r) +dp) r d8dz] #. The choice of sign signifies that the forces
are always directed into dV. Now, the total radial force on dV' becomes,

F=F +F 4 =—|dprdfdz] 7
Combining this with the last equation, one gets an expression for the pressure gradient,

dp =w’rp
dr
This gives the variation of pressure as a function of 7 at a fixed height z from the bottom
of the drum. Integrating this expression from r = 0 to any radius r gives (for any constant
Z)’
W2r2p

2

where pg is the value of pressure at r = 0 and at a given height z. Changing the height z

Pr =Dpo +

affects p, through py as the second term is independent of height.

Using the above expression one can also obtain the height profile of the surface of the
rotating liquid as function of the radius (See Problem set 1). It is an interesting exercise
to generalize the above cosiderations to the case of viscous fluids.

5 Understanding the Aerodynamics of Flight

Flight is a consequence of the pattern of air flow around the wings of an aeroplane. Air
flows around the wing such that pressure above the wing is less than the pressure below
it, generating an upward force on the wing. The purpose is to understand how such a
flow pattern is created. This information is in principle contained in the fluid equations of
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motion. But we are more interested in the physical origins of the dominant effects. Thus
in this section, we start with a very qualitative discussion of the flow pattern in terms of
the property of the gas to follow the shape of the wing (usually called the Coanda effect).
But this effect, by itself, is not enough to understand an important feature of the flow,
the circulation around the wing, which is caused by viscous effects at the rear end of the
wing. We address this when discussing the Kutta condition.

5.1 Coanda effect

Coanda effect is the tendency of a fluid flow along a curved surface to follow the shape of
the surface. The effect is observed in liquid as well as in gas flows very easily. The trivial
case is when a surface adjacent to a flow bends toward the flow, partially obstructing it.
Since the flow cannot penetrate the surface, it has no option but to bend and continue
flowing along the surface. The non-trivial case arises when a surface adjacent to a flow
bends away with respect to the initial flow direction. Even in this case, the flow tends to
change direction as well so that it remains in contact with the surface.

The Coanda effect has different causes depending on the situation. In the case of
liquids, this happens mostly due to surface tension and the adhesive forces acting between
the liquid and the boundary material it is in contact with. For gases, there is a different
cause: If a surface curves away from a gas flow, the flow tends to blow away air molecules
trapped in the small wedge formed between the initial flow direction and bent surface,
creating a low pressure region. The gas flow then bends to fill up this low pressure void.

initial gas flow final gasflow

air pocket

Instances of the Coanda effect are water falling on a vertically held curved surface or
the bending down the air flow along the upper surface of an airfoil.

5.2 Qualitative explanation of flight

The vertical force that lifts an aeroplane is created by the air flow pattern around the
wings. This pattern is essentially created by the shape of the cross section of the wing
and the angle it makes with the direction of motion. The cross section of the wing is

19



usually designed to have the shape of an aerofile, with a rounded front region and a
sharp trailing edge (But in the simplest case, the wing can have a rectangular shape
with a cross section which is simply a line). For simplicity one assumes that the wing
has a uniform cross section throughout its length and consider forces per unit lenght of
the wing. This enables one to concentrate on the two dimensional air flow pattern in the
cross sectional plane of the wing.

In practice, it is the motion of the wing with a velocity —t through the air that creates
the flow pattern around it. But often it is useful to consider a reference frame in which
the wing is stationary and air rushes toward it with velocity ¢’ (this is the air velocity
well before reaching the wing; the upstream velocity). In wind tunnel experiments it is
covenient to use a set up with a fixed wing and moving air. In the following, we picture
the wing as moving from right to left, or the air as moving from left to right.

The vertical force per unit length of the the wing is called the lift L. Among other
things, L depends on the angle that the aerofile makes with the direction of air flow,
called the angle of attack, a. This angle is defined such that o = 0 corresponds to the
aerofile orientation that generates zero lift (L = 0). The airflow around the aerofile also
generates a horizontal force that opposes the motion of the wing through the air. Such a
force, per unit length of the wing, is called the Drag D (in our conventions, D has the

—

same direction as 7). External work is needed to overcome the drag.

We are now in a position to describe

how L and D are generated by the air flow F. [ higher pressure
pattern around the wing. In a frame in A (~1atm)
which the wing is stationary, consider a I S

uniform horizontal flow of air with speed V' lower pressure

v toward the aerofile. As the flow reaches UA(< latm)

the aerofile, it splits into a part going above
the wing with velocity a profile ¢4, and
a part going below the wing with veloc-
ity profile 7. The Coanda effect now re-
quires that the flow above the wing must O
“generally” follow the shape of the upper RN

surface of the wing ? and, hence, the flow

2Tt should be emphasized that although this may explain the general shape of the flow, it does not as
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streamlines above the aerofile first rise up

and then bend down to follow the shape of the aerofile, generating a convex upward pat-
tern. The flow below the wing bends down without rising up first, hence the streamlines
are again convex upward, but with a smaller curvature as compared to the streamlines
above the wing, which thus play a dominant role. The curvatures of the streamlines above
the wing indicate a (generally) downward “centripetal” force that is exerted on the air-
flow by the wing. By Newton’s third law, the airflow must exert and equal and oppositely
directed reaction force on the wing pulling it upward. The vertical component of this
force is the Lift L and its horizontal component is the Drag D. The flow below the wing
enhances this effect but to a lesser extent.

It is instructive to understand the lift in terms of pressure gradients (this is the explicit
mechanism through which the reaction force is generated). Remember that in fluids,
force vectors point from regions of higher pressure to regions of lower pressure. Then the
downward “centripetal” force acting on the air above the wing implies a pressure gradient
with a low pressure region just above the wing, and increasing pressure as one goes up.
But the maximum pressure far above the wing is simply the atmospheric pressure. Hence
the pressure just above the wing must be less than the atmospheric value. By a similar
argument, the pressure just below the wing is somewhat higher than the atmospheric
value (at least having the atmospheric value, if we ignore the flow curvature below the
wing), approaching the atmospheric value far below the wing. The lower pressure region
above the wing thus sucks the wing upward, giving rise to the lift. This will also generate
a drag force as will be explained later.

The description above, of the flow patterns around the wing (with the extra assumption
of flow seperation at the rear edge to be justified later) and of the associated forces and
pressures, already provides a qualitative explanation of flight. This can be sharpened
further by studying the velocity profile of the flow. While the incoming flow is horizontal,
the convex nature of streamlines above the aerofile means that by the time the flow leaves
the upper surface of the wing, it has acquired a downward velocity component. Thus the
air stream leaving the wing has a downward momentum. By momentum conservation,
this is balanced by the upward momentum of the plane (since, momentum change per
unit time is equal to force, this is equivalent to Newton’s third law).

5.3 The Kutta-Zhukovsky theorem

One can now apply Bernoulli’s principle to the streamlines around the aerofile. First, note
that there is a thin layer of air in direct contact with the wing for which viscosity effects
cannot be neglected. Outside this region, the flow can be safely approximated as inviscid.
This is so because at the high flow velocities we are concerned with, fluid particles get to

such specify the special flow features that generate lift. In particular, it does not specify where on the
aerofile the rear stagnation point should be situated and where the flow should separate from the aerofile.
We will discuss this in the subsection on the Kutta condition. Here we simply assume that the flow has
a pattern as shown in the figure
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interact with the wing for a very short time. During this time, energy transfers due to
viscosity are very small as compared to the inviscid energy exchanges between the fluid
and the wing. After treating the flow as inviscid, an important effect due to viscosity in
the boundary layer can be incorporated into the theory in terms of the Kutta condition
to be discusses in the later subsections.

Consider two streamlines just outside the thin viscous region, one just above the wing
and one just below it, along which the flow can be treated as inviscid. Well before reaching
the wing, these two streamlines flow parallel to each other with very similar properties
(that is, speed v and pressure p). If flow speeds and pressures on the streamlines above
and below the wing are denoted by v4,pa and vg, pg, respectively, then,

3PV +p = 5pvi+Dpa
(5)

%pvQ—l-p = %PU%‘*‘Z)B

Here, p is the atmospheric pressure, and from our discussion above it follows that p4 < p
and pg > p (this must be the case for lift to get generated). Bernoulli’s principle then
implies that v4 > v > vg. Thus the air above the wing moves faster than the air below
it.

To see what this velocity profile entails, let us consider this problem in a frame in which
the air is stationary and the wing is moving against it with velocity —, say, from right to
the left. Then the upstream air velocity in front of the aerofile is zero, above the aerofile
velocity is positive (that is, directed from left to right) and below the aerofile velocity is
negative (directed from right to left). Thus if we take a snap shot of the velocities of fluid

U Un

aerofile rest frame rest frame of ar

particles on the two streamlines, the velocity vectors give rise to a circulation around
the aerofile in the clockwise direction 3. Mathematically, the circulation is quantified by

F:fﬁ-cﬁ
C

where C' is a path around the aerofile which, by convention, is taken to run counter-
clockwise. Although it was easy to visualize the circulation I' in a given frame, its actual

3The term “circulation” here refers only to a configuration of velocity vectors, it does not mean that
fluid particles circulate around the aerofile.

22



value does not depend on the choice of the inertial frame (since the frames are related by a
constant shift of velocity and a constant vector field has zero loop integral). Note that the
existence of circulation was inferred from the requirement that pressure above the wing is
lower than that below it. Conversely, given a circulation, one infers a pressure difference
based on the velocity differences. We now show that the circulation I' determines the lift
L, a result known as the Kutta-Zhukovsky theorem.

Let ¢ denote the width (chord) of the
wing and consider a coordinate axis par-
allel to this width (to fix ideas, one may
consider a very thin wing, or simply a rect-
angular wing the cross section of which is
a line). At a point z on the coordinate
axis, the pressures and velocities on the two

streamlines just above and below the wing
are pa(z),pp(x) and U4 (z), Up(x), respectively. Bernoulli’s principle as in equations (5),
applied to points corresponding to z on the two streamlines then gives

Pa() — pis(x) = 5 plva +vp) (w5 — va) = 3 p(20 -+ bua -+ 5up) (vn(x) — va(a))

In practice, |0v4,p| = |va,p — v| << v and since (vp — v4) is of the same order as dvy g,
we can write

pa(z) — pp(z) ~ —pv (va(z) — vB(7))
This gives the upward force per unit length i.e., lift, as

Lz—A%umw—mmm=wAEwmm—ww>

On the other hand, for the flow near the thin wing,

c 0 c c
F%/ dea:+/ vAda::/ dea:—/ vadx
0 c 0 0

L=—pvl

This is the Kutta-Zhukovsky theorem. In our setup I' is negative (since ¥ around the

Hence we have,

wing has a clockwise flow while the curve C' runs counter-clockwise) and v is positive.
Hence L is positive corresponding to an upward direction. Although here the theorem
is derived in the context of an aerofile, it applies more generally to 2-dimensional flows
around objects.

Note that, stricktly speaking, L is perpendicular to axis that we introduced along the
wing, essentially at an angle a with the horizontal direction. Hence lift consists only of
the component of L perpendicular on the horizontal direction. The component in the
horizontal direction gives drag.

To summarize, lift is due to pressure difference across the wing caused by the curvature
of air flow around it. Bernoulli’s principle allows us to relate pressures to velocities and
hence to express this lift in terms of the circulation around the wing.
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5.4 A topological issue

When deriving the Bernoulli principle, we defined an irrotational flow as one characterized
by the condition V x ¢ = 0. Ordinarily, through Stockes’s theorem,

]{ ﬁ-cfz:/(ﬁxa)-dfg,
C=9S S

this implies the vanishing of circulation, I' = 0. There is, however, a caveat here: one
must be able to identidy the curve C' as the boundary of some surface S through the fluid
so that the ¥/(Z) is defined everywhere over it. For our contour C' around an aerofile, this
is not possible in a purely 2-dimensional setup because the aerofile acts as a defect in
space preventing us from filling the region within the curve with a surface S. For the same
reason, the curve C cannot be contracted to a point however it is deformed and the space
is not simply connected (rather, it is multiply connected). Such a two dimensional setup
is equivalent to a wing of infinite length in 3 dimensions. Since Stockes’s theorem does
not apply to such cases, it is possible to have non-zero circulation around non-contractible
loops even in an irrotational flow *. Moreover, the shape of C is not relevant to the value
of the circulation (since in the region where V x # = 0 we can deform contours to each
other without affecting the value of circulation).

However, if the wing has a finite length (as is really the case), then it is always possible
to construct a surface that goes over the open end of the wing with C as its boundary.
In such a case Stockes’s theorem is applicable and therefore I' # 0 implies V x 7 # 0.

5.5 The Kutta condition

As we have seen, the existence of a non-zero circulation around the wing is crucial for
the generation of lift. The Kutta condition describes the origin of this circulation and
how it generates the correct flow pattern around the wing; something that we have so
far assumed without a proper explanation (it was emphasized that this aspect of the flow
cannot be explained in terms of the Coanda effect).

Let us consider a wing the cross section of which is an ellipse instead of an aerofile.
This is placed in an airstream at zero angle of attack, & = 0, meaning that the major
axis of ellipse is parallel to the upstream velocity of the flow. The flow now has a front

stagnation point A and a rear stagnation point B, these being the points where the major

4Exactly the same mathematics is required for understanding a very important phenomenon in quan-
tum physics; the Aharonov-Bohm effect. In this case, ¥ is replaced by the magnetic vector potential A
and the wing is replaced by a long current carrying solenoid
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axis intersects the ellipse. Let us now increase the angle of attack slowly to some value
a. The front stagnation point moves to some point A’ below A while the rear stagnation
point moves to some point B’ above B on the upper side of the ellipse. This means that
at the rear end, the flow streamlines bend around at B and continue following the contour
of the ellipse upwards until they detach in the neighbourhood of the new stagnation point
B'. The location of B’ is determined by the interaction between the flows below and above
the ellipse. Even though the angle of attack is non-zero, the flow has zero circulation and
hence no lift is generated (The flow curvature is such that the upward force generated
near the front region is balance by a downward force around the rear end). Such a wing
cross section is obviously not appropriate for flight.

Let us now replace the rounded rear end of the ellipse around B by a sharp edge so
that the wing cross section becomes an aerofile with a sharp trailing edge at B. As in
the case of ellipse, the flow below the wing tends to turn around the sharp edge at B
and go up the aerofile until B’. This indeed is the flow pattern for a short time interval
after the start of the flow. However, since B is now a sharp edge, the flow must take a
very sharp turn if it is to follow the shape of the rear end of the aerofile. This implies
a large change in velocity over a short time interval and hance a very large force. But
fluids cannot sustain large (unballanced) forces and hence the flow tends to detach from
the aerofile at B rather than move up to B’. This also eliminates the resistance that the
flow above the wing encountered at B’, which then continues following the shape of the
aerofile until it too detaches at B. As a result of this the rear stagnation point moves
down from B’ back to B where it stays.

The downward shift of the rear stagnation point is accompanied by the generation of
a non-zero circulation around the wing as follows: Soon after the start of the flow, when
the stagnation point is still at B’, let us denote the velocity field around the aerofile by
¥7. In particular, this is such that at B the velocity is non-zero, between B and B’ air
adjacent to the aerofile moves upward and § @, - dl = 0. The interaction of air with the
aerofile changes the flow adjacent to the wing by generating a another velocity field 7
with a circulation around the wing ¢ > - dl =T # 0 such that ¥ = ¥, + 5 is zero at B
and not at B'. Hence, to keep the stagnation point at B we need a specific circulation
I=¢v- dl around the wing. Thus the Kutta condition states that, under stable flow
conditions, an aerofile creats a circulation in the velocity field around itself such that the
rear stagnation point is maintained at the sharp trailing edge.

Note that the Kutta condition does not intend to explain the physical origin of circu-
lation (which we have qualitatively explained in terms of velocity differences above and
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below the wing related, by the Bernoulli principle, to pressure differences). Rather, it
gives a criterion for determining the circulation I' using the requirement of keeping the
rear stagnation point at the trailing edge (instead of doing complicated calculations using
the Navier-Stokes equation in the presence of the viscous forces).

For the sake of completeness we should also address the issue of conservation of cir-
culation in inviscid flows. Consider a loop in a fluid moving along with it such that it
contains the same set of particles at all times. At a given instant of time, we can evaluate
the circulation around this loop. It can be shown (although not here) that in an invis-
cid flow, the value of this circulation remains constant in time. This result if known as
Kelvin’s circulation theorem. In particular, if the circulation was zero, it will retain
that value during flow. This seems to contradict the essence of the Kutta condition where
a circulation I' is created around an aerofile by increasing its angle of attack from zero to
some non-zero value. The resolution is that at the same time that the circulation I' forms
around the aerofile, the downward motion of the stagnation point from B’ to B also cre-
ates a vortex with circulation —I' (where, in our conventions, the velocity field circulates
in the counter-clockwise direction) at the trailing edge. This vortex is not bound to the
wing and is left behind as the wing moves on. It is called the starting vortex. The
creation of the starting vortex insures that the total circulation remains zero in agreement
with Kelvin’s circulation theorem. With zero viscosity, this vortex left behind would con-
tinue forever, but in the real world it dissipates because of air viscosity (which cannot be
ignored over the longer time scales relevant to the decay of starting vortex).

5.6 The origin of drag and the “level flight” condition

We have stated that, beside the lift, air low around the wing also created a drag, a
force parallel to the upstream flow direction that opposes the horizontal motion of the
wing in air. Drag is caused mainly by two effects (beside turbulence): Friction between
air and the wing surface gives rise to friction drag, Dy,;.. Another component of D
is the induced drag D;,q which has a non-viscous origin and simply follows from the
curving of the air flow. Let us denote the initial up-

stream flow velocity by 7; and the final average veloc- —>

ity of the flow emerging from the trailing edge of the vi

aerofile by #;. The magnitude of ¥y is close to that

of ¥; but it has a downward component. The change
AT = ¥y — v; is related to the total generally down-

ward force on the air flow by the wing. An equal and ~_ >
opposite force then acts on the wing. Av has a purely Uf —>
downward component A%, normal to the initial flow AU

direction ¥ and a component along ¥, A#). Since the
magnitudes of @; and ¥ are not too different, Av, is
directed opposite to ¥. Hence the direction of the re-
action force on the wing is along ¥, that is, it opposes the motion of the wing. This is the
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induced drag.

Let us now briefly look at the energetics of flight. As the plane is moving upward,
the lift does work against gravity and also provides kinetic energy due to upward motion.
One also needs a supply of energy to work against the drag and supply the planes kinetic
energy due to its forward motion (if that velocity changes). After the plane levels up, the
situation simplifies. There is no upward displacement and hence no work associated with
it. The lift in only required to ballance the weight of the plane,

L x (wing span) = M g

The power (work per unit time) supplied by the engine is then only needed to overcome
the drag effects,

Pengine = Dv
For a given aerofile and flow conditions, L. and D can be computed in terms of the
parameters of the theory.

5.7 Spinning bodies moving in fluids (Magnus effect)

Consider a rotating cylinder in a fluid flow normal.
The rotation of the cylinder drags the adjacent fluid N T,

|
|
|

along, setting up a non-zero circulation. The 2 rele-

vant directions are: the axis of spin and the direction higher fveZOCity
of flow (for simplicity, one can take these to be per- v ‘
pendicular to each other). Then there is a force on the —

cylinder in the 3rd direction as implied by the Kutta- -z

Zhukovsky theorem. The physical origin of the force lower velocity

can also be understood by studying the strealines and

velocity profile around the cylinder, where the rotation

causes fluid velocity on one side to be higher than the other side. Then the force direction
can be inferred from the application of Bernoulli’s principle, or from the curvatures of
streamlines on both sides of the cylinder.

6 A Simple Model of Flight

See “Flight without Bernoulli” by Chris Waltham at

http://www.physics.ubc.ca/ waltham/air/FwB.pdf

7 Further Reading

e For detailed discussions of fluid mechanics see some of the many books on the
subject, for example,
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— Mechanics of Fluids, by B.S. Massey
— Physical Fluid Dynamics, D.J. Tritton

e A very good reference for technical as well as background information is the free
web encyclopedia, Wikipedia, and the references therein.

e Some more resources on the web (with nice animationa and detailed explanations):
http://www.av8n.com/how/
http://www.diam.unige.it/~irro/

http://firstflight.open.ac.uk/aerodynamics/index.html

Popular and less technical descriptions of flight and misinterpretations of Bernoulli’s
principle:

http://user.uni-frankfurt.de/ weltner/Mis6/mis6.html
http://user.uni-frankfurt.de/ weltner/Flight/PHYSIC4.htm
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