QFT problem set 3

Due date: Tuesday, March 04, 2025

- 1. Problem 7.4 from Mandl and Shaw (page 125, 2nd Edition)
- 2. Problem 8.2 from Mandl and Shaw (page 158, 2nd Edition)
- 3. Compute the differential and total cross sections in the CoM frame for the (μ^+, μ^-) pair production process in (e^+, e^-) collisions. Present your calculations logically and in more detail than given in the book.
- 4. Consider the photon field A_{μ} in the Lorenz gauge with polarization tensor denoted by $\epsilon_{\mu r}(\vec{k})$. Explain why $\epsilon_{\mu r}(\vec{k}) \rightarrow \epsilon_{\mu r}(\vec{k}) + \lambda_r k_{\mu}$, corresponds to a residual gauge transformation of the photon field. Show that the complete amplitude $\mathcal{M} = \mathcal{M}_a + \mathcal{M}_b$ for the Compton scattering process $e^-(p,r) + \gamma(k,s) \rightarrow e^-(p',r') + \gamma(k',s')$ is indeed invariant under the gauge transformations $\epsilon_{\mu r}(\vec{k}) \rightarrow \epsilon_{\mu r}(\vec{k}) + \lambda_r k_{\mu}$ (that is, for $\mathcal{M} = \epsilon_{\mu r}(\vec{k})\mathcal{M}^{\mu}$, show that $k_{\mu}\mathcal{M}^{\mu} = 0$).
- 5. Compute the unpolarized differential cross section for Compton scattering. Present your calculation clearly, logically and in more detail than in the book.