QFT problem set 1

Due date: Monday Dec 09, 2024

(Use the metric $\eta_{00} = 1 = -\eta_{ii}$ and set c = 1)

1. The Lagrangian density for a free real scalar field $\phi(x)$ is $\mathcal{L} = \frac{1}{2} \left(\partial_{\mu} \phi \partial^{\mu} \phi - m^2 \phi^2 \right)$. Obtain the equation of motion for ϕ . Starting with a trial solution $\phi \sim e^{ik_{\mu}x^{\mu}}$ solve this equation and obtain the general solution (up to normalization)

$$\phi(x) = \sum_{\mathbf{k}} \left(\frac{1}{2V\omega_{\mathbf{k}}} \right)^{1/2} \left(a(\mathbf{k}) e^{-ikx} + a^{\dagger}(\mathbf{k}) e^{ikx} \right),$$

where $kx = k_{\mu}x^{\mu}$ and $k^{0} = \omega_{\mathbf{k}} = \sqrt{m^{2} + \mathbf{k}^{2}}$, taking $\hbar = c = 1$. (4 points)

2. Derive the following expression for the lowering operator $a(\mathbf{k})$

$$a(\mathbf{k}) = \frac{1}{(2V\omega_{\mathbf{k}})^{1/2}} \int d^3x \, e^{ikx} \left(i\dot{\phi}(x) + \omega_{\mathbf{k}}\phi(x) \right)$$

and obtain the commutation relations for $a(\mathbf{k})$ and $a^{\dagger}(\mathbf{k}')$ using the equal time commutation relations for the fields (note the relation between $\dot{\phi}$ and π). (4 points)

3. Assume that a and a^{\dagger} are lowering and raising operators satisfying $[a, a^{\dagger}] = 1$, [a, a] = 0 and $[a^{\dagger}, a^{\dagger}] = 0$. Given a state

$$|n\rangle = \frac{1}{\sqrt{n!}} (a^{\dagger})^n |0\rangle,$$

show that $\langle n|n\rangle=1$. Furthermore, given $|n+1\rangle=C\,a^{\dagger}\,|n\rangle$, find C so that $|n+1\rangle$ is normalized to unity. (4 points)

(Hint: It is convenient (but not necessary) to first evaluate the commutator $[a,(a^{\dagger})^n]$.)

4. For the real scalar field, obtain the Hamiltonian H and momenta P_i in terms of $\dot{\phi}$ and $\nabla \dot{\phi}$. Using the solution for $\phi(x)$, calculate these in terms of the creation and annihilation operators, showing the steps in your calculation. (4 points).

1