
Electrodynamics I � Solutions to the extra problems

By Emil Johansson Bergholtz, ejb@physto.se

These solutions are preliminary and there may very likely exist some typos. If
you �nd any I would be appreciate if you let me know.

Extra problem no. 1

This problem is solved by expanding the solution of the Laplace equation in
terms of orthonormal functions. In this particular example it is fruitful to
expand the potential in terms of a Legendre series according Jackson eq.(3.33)
since the problem has azimuthal symmetry. Hence we write the potential as

Φ(r, θ) =
∞∑

`=0

[A`r
` + B`r

−(`+1)]P`(cos θ), (1)

where A` and B` are real constants that we are to determine from the boundary
conditions. First of all we note that the potential have to stay �nite everywhere.
Therefore we decompose the solution into separate cases and write

Φ(r, θ) = Φin(r, θ) =
∞∑

`=0

a`r
`P`(cos θ), r < R (2)

Φ(r, θ) = Φout(r, θ) =
∞∑

`=0

b`r
−(`+1)P`(cos θ), r > R. (3)

The potential must of course be continuous at r = R thus Φin(R, θ) = Φout(R, θ).
Plugging this condition into eqs. (2) and (3) yields a` = b`R

−(2`+1). Further-
more we make use of the general condition for the surface charge σ = ε0

∂Φ
∂n ,

where ∂
∂n denotes the normal derivative. Since we know that σ = σ0 cos θ =

σ0P1(cos θ) we obtain

σ0P1(cos θ) = ε0(
∂Φin

∂r
− ∂Φout

∂r
)r=R

= ε0

∞∑
`=0

[`a`R
`−1 + (` + 1)b`R

−(`+2)]P`(cos θ) = ε0

∞∑
`=0

(2` + 1)a`R
`−1P`(cos θ). (4)

The equation above is solved by a1 = σ0
3ε0

and a` = 0 for all ` 6= 1. Hence we
have arrived at the exact expression for the potential both inside and outside
the shell of the sphere:

Φin(r, θ) =
σ0

3ε0
r cos θ, r < R (5)

Φout(r, θ) =
σ0R

3

3ε0r2
cos θ, r > R. (6)

The electric �eld follows directly from
−→
E = −∇Φ:
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−→
E in = − σ0

3ε0
ẑ, r < R (7)

−→
E out =

σ0R
3

3ε0r3
(2 cos θr̂ + sin θθ̂), r > R. (8)

Extra problem no. 2

By use of the identity

x− x′

|x− x′|3
= −∇(

1
|x− x′|

), (9)

we �nd that

B =
µ0

4π

∫
J(x′)× x− x′

|x− x′|3
d3x′

= −µ0

4π

∫
J(x′)×∇(

1
|x− x′|

)d3x′

=
µ0

4π
∇×

∫
J(x′)
|x− x′|

d3x′, (10)

where the last step follows from A × B = −B × A and the fact that J does
not depend on x. This immediately yields Gilberts law, ∇ · B = 0, since the
divergence of a curl of a vector always vanishes.

To proceed we take the curl of (10) and use the identity ∇ × ∇ ×A = ∇(∇ ·
A)−∇2A:

∇×B =
µ0

4π
∇

∫
J(x′) · ∇(

1
|x− x′|

)d3x′ − µ0

4π

∫
J(x′)∇2(

1
|x− x′|

)d3x′ (11)

The second of these integrals is easily taken care of since ∇2( 1
|x−x′| ) = −4πδ(x−

x′). Hence it yields a term µ0J(x). The �rst integral needs a bit more care.
By use of a partial integration, the continuity equation, the de�nition of the
potential φ(x) and a bit of ingenuity we �nd

µ0

4π
∇

∫
J(x′) · ∇(

1
|x− x′|

)d3x′ = −µ0

4π
∇

∫
J(x′) · ∇′(

1
|x− x′|

)d3x

=
µ0

4π
∇

∫
∇′ · J(x′)
|x− x′|

d3x′ = − ε0
4π
∇

∫ ∂ρ(x′)
∂t

|x− x′|
d3x′

= −µ0

4π
4πε0

∂

∂t
∇φ(x) = ε0µ0

∂E
∂t

. (12)

Thus we have arrived at the Maxwell-Ampere law

∇×B = µ0J + ε0µ0
∂E
∂t

. (13)
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Extra problem no. 3

Since E0 is a constant vector it follows that

∇ ·E(x, t) = (Ex
0

∂

∂x
+ Ey

0

∂

∂y
+ Ez

0

∂

∂z
)ei(k·x−ωt)

= i(Ex
0 kx + Ey

0ky + Ez
0kz)ei(k·x−ωt) = ik ·E(x, t). (14)

But in absence of charges Gauss law tells us that ∇ · E = 0 hence k · E = 0.
Exactly the same logic gives k ·B = 0 since Gilbert's law applies.

It is worth mentioning that if we take the curl of these plane wave solutions
we end up with one might expect, but probably is not sure of. A short calcula-
tion reveals that ∇×E = ik×E and ∇×B = ik×B.

Extra problem no. 4

First of all we take the curl of both sides of the Maxwell-Ampere equation and
use a well known1 identity for the curl of a curl:

∇×∇×B = µ0∇× J + ε0µ0
∂

∂t
∇×E

∇(∇ ·B)−∇2B = µ0∇× J + ε0µ0
∂

∂t
∇×E. (15)

Now we rearrange terms and use Gilbert's and Faraday's laws to �nd

∇2B− 1
c2

∂2B
∂t2

= −µ0∇× J, (16)

where ε0µ0 = 1
c2 also is used. Thus we have arrived at a (inhomogenous) wave

equation for the magnetic �eld.

In order to �nd a wave equation for the electric �eld we take the curl of Faraday's
law and use the same vector identity as above

∇×∇×E = − ∂

∂t
∇×B

∇(∇ ·E)−∇2E = − ∂

∂t
∇×B. (17)

Gauss law and the Maxwell-Ampere law now yields

∇2E− 1
c2

∂2E
∂t2

=
1
ε0

(∇ρ +
1
c2

∂J
∂t

). (18)

1If you do not know it I urge you to show if by use of index-notation.
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It now remains to show that the continuity equation holds. By taking the diver-
gence of the Maxwell-Ampere law and then applying Gauss law we immediately
see that

0 = ∇ · (∇×B)

= µ0∇ · J + ε0µ0
∂

∂t
∇ ·E

= µ0(∇ · J +
∂ρ

∂t
), (19)

which shows that the electric charge is a conserved quantity. Another elegant
way to prove this is to note that

0 = ∂α∂βFαβ = 4π∂αJα, (20)

where the antisymmetric property of Fαβ is used.

Extra problem no. 5

Suppose that we have a solution Fαβ ≡ ∂αAβ − ∂βAα. We can then use a
scalar function2 Λ(x) that gives a new vector potential Aα(x) → A′

α(x) =
Aα(x) + ∂αΛ(x) since this leaves Fαβ (and hence the physics) unchanged. This
is easily proven:

F ′
αβ = ∂αA′

β − ∂βA′
α = ∂α(Aβ + ∂βΛ)− ∂β(Aα + ∂αΛ)

= ∂αAβ − ∂βAα + (∂α∂β − ∂β∂α)Λ = Fαβ . (21)

In order to explain the di�erence in arbitrariness of the gauge transformation
between the Lorenz and the Coulomb gauge I will also review their basic struc-
ture.

Coulomb gauge

Given a solution Aα that does not obey the Coulomb gauge (i.e. ∂iAi 6= 0), we
can �nd a solution A′

α that does by applying a suitable gauge transformation.
We choose Λ(x) so that ∂iA

′
i = ∂iAi +∂i∂iΛ = 0. We will �nd Λ i� we can solve

∇2Λ = −∂iAi. (22)

This is doable under reasonable conditions and we have thereby found the de-
sired transformation. To show that the transformation is unique we assume that
we had ∂iAi = 0 to begin with. To transform this solution into another solution,
A′

α, that obeys the same condition we have to demand ∂iA
′
i = ∂iAi + ∂i∂iΛ =

∇2Λ = 0. But the uniqueness theorem for the Laplace equation tells us that
the only solution is Λ = 0, thus the gauge �xing is unique.

Lorenz gauge

Given a solution Aα that does not obey the Lorenz gauge (i.e. ∂αAα 6= 0), we
can �nd a solution A′

α that does by applying a suitable gauge transformation.

2We assume that this function is well behaved, i.e. it vanishes at in�nity and is di�erentiable
everywhere.
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We choose Λ(x) so that ∂αA′
α = ∂αAα + ∂α∂αΛ = 0. We will �nd Λ i� we can

solve3

(
∂2

∂t2
−∇2)Λ = −∂αAα. (23)

This is doable under reasonable conditions and we have thereby found the de-
sired transformation. However, the choice of Λ is not unique in this case. To
see this we just assume that we had ∂αAα = 0 to begin with. We can the trans-
form to a new solution, Aα(x) → A′

α(x) = Aα(x) + ∂αΛ(x), that also obeys the

Lorenz gauge as long as ( ∂2

∂t2 −∇
2)Λ = 0. This condition does not imply that

Λ = 0 and therefore the gauge transformation is not unique.

Extra problem no. 6

We use the hint and vary the coordinates in the action

S =
∫

dt{−m
√

1− ẋiẋi + eẋiAi + eA0}. (24)

By use of the chain rule for derivatives we �nd that

δS =
∂S
∂xj

δxj +
∂S
∂ẋj

δẋj =
∫

dt{(eẋi∂jAi + e∂jA0)δxj

+(
mẋj√

1− ẋiẋi

+ eAj)δẋj}. (25)

A partial integration of the second term4 and the fact that d
dtAj = ∂0Aj+ẋi∂iAj

now yields

δS =
∫

dt{(eẋi∂jAi + e∂jA0 −
d

dt
(

mẋj√
1− ẋiẋi

)− e
d

dt
Aj)δxj}

=
∫

dt{(e(ẋi∂jAi − ẋi∂iAj) + e(∂jA0 − ∂0Aj)−
d

dt
(

mẋj√
1− ẋiẋi

))δxj}

=
∫

dt{(eεjikẋiBk + eEj −
d

dt
(

mẋj√
1− ẋiẋi

))δxj}. (26)

Since this has to hold for arbitrary variations we arrive at the equation for the
Lorentz force:

d

dt
(mγẋi) = e(Ei + εijkẋjBk) (27)

where we have also used the de�nition γ ≡ 1√
1−ẋiẋi

.

It is of course also possible to derive the Lorentz force without choosing τ = t.
It is left as an exercise to the reader to show that the general condition is

d

dτ
(

mẋα√
−ẋαẋα

) = eẋβFαβ . (28)

3I use the same metric as Jackson, chapter 11.
4We drop the end terms since the variation is zero (by de�nition) at times t1 and t2 which

we integrate between.
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Extra problem no. 7

In the �rst part of this exercise we shall vary the �eld Aµ�not the coordinates
xi! We shall hence use functional derivatives δ

δAµ(x) which in four dimensions

obey the following axiom: δ
δAµ(x)A

µ(y) = δ(4)(x− y). By use of the chain rule

(the generalization to a continuous set of indices) we obtain

S[A] =
∫

d4x(− 1
16π

FαβFαβ + AαJα)

⇒ δS =
∫

d4x(− 1
16π

δ(FαβFαβ) + δ(Aα)Jα)

=
∫

d4x(− 1
8π

Fαβδ(Fαβ) + δ(Aα)Jα)

{Fαβ(∂αδ(Aβ)− ∂βδ(Aα)) = −2Fαβ∂βδ(Aα)}

=
∫

d4x(
1
4π

Fαβ∂βδ(Aα) + δ(Aα)Jα)

=
∫

d4xδ(Aα)(− 1
4π

∂βFαβ + Jα), (29)

where the last equality follows from a partial integration of the �rst term. The
principle of least (or most) action tells us that δS = 0 must hold for arbitrary
variations in order to obtain a physical solution. It is now easy to see that this
implies

∂βFαβ = 4πJα, (30)

which is the �rst half of Maxwell's equations. The second half follows directly
from the de�nition Fαβ ≡ ∂αAβ − ∂βAα. To see this note that

∂[αFβγ] = 2(∂αFβγ + ∂βFγα + ∂γFαβ)
= 2((∂β∂γ − ∂γ∂β)Aα + (∂γ∂α − ∂α∂γ)Aβ + (∂α∂β − ∂β∂α)Aγ) = 0.

We now turn our attention to the gauge transformation Aα(x) → A′
α(x) =

Aα(x) + ∂αΛ(x). We plug this expression into the last line of (29) and perform
a partial integration:

δS =
∫

d4x∂αΛ(x)(− 1
4π

∂βFαβ + Jα)

=
∫

d4xΛ(x)(− 1
4π

∂α∂βFαβ + ∂αJα)

=
∫

d4xΛ(x)∂αJα. (31)

The above vanishes for arbitrary Λ(x) if (and only if)

∂αJα = 0, (32)

which corresponds to the conservation of electrical charge (e.g. the continuity
equation). As we have seen earlier in the course one can also deduce this result
directly from Maxwell's equations.
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Extra problem no. 8

Due to the lack of time I will not do this example this year. However you can try
to do it yourself and you can show the expression for both length contraction and
time dilation by use of extremely simple mathematics, i.e. Pythagoras theorem.

Extra problem no. 9

a) Since we want to obtain the electric and magnetic �elds Ẽ and B̃ in terms
of E and B it is su�cient to study how Fαβ transforms. Since it is a Lorentz
contravariant tensor it transforms as

F̃αβ(x̃) = Λα
γΛβ

δF
γδ(x) ⇔ F̃(x̃) = ΛF(x)ΛT. (33)

We can now write down the transformed electromagnetic �eld tensor in explicit
matrix form:

F̃(x̃) = ΛF(x)ΛT =


γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1



×


0 Ex Ey Ez

−Ex 0 Bz −By

−Ey −Bz 0 Bx

−Ez By −Bx 0




γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1



=


0 Ex γEy − γβBz γEz + γβBy

−Ex 0 γBz − γβEy −γBy − γβEz

−γEy + γβBz −γBz + γβEy 0 Bx

−γEz − γβBy γBy + γβEz −Bx 0

 . (34)

Since

F̃ =


0 Ẽx Ẽy Ẽz

−Ẽx 0 B̃z −B̃y

−Ẽy −B̃z 0 B̃x

−Ẽz B̃y −B̃x 0

 (35)

we can now identify

Ẽ =

 Ex

γEy − γβBz

γEz + γβBy

 ; B̃ =

 Bx

γBy + γβEz

γBz − γβEy

 . (36)

It is essential to note that the electric and magnetic �elds E and B are still
expressed in terms of coordinates xi, i.e. not in the coordinate system of S̃ !

b) In frame S we have Ei = xi

4πε0|x|3 and Bi = 0. According to what we
found in the �rst part of this exercise we can now write down the answer in
terms of the old coordinates:

Ẽ =
1

4πε0|x|3

 x
γy
γz

 ; B̃ =
1

4πε0|x|3

 0
γβz
−γβy

 . (37)
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It now remains to change to the coordinates x̃i that an observer in S̃ would use.
We �nd that

x = Λ−1x̃ =


γ γβ 0 0
γβ γ 0 0
0 0 1 0
0 0 0 1




t̃
x̃
ỹ
z̃

 =


γt + γβx
γx + γβt

y
z

 (38)

and insert this result into (37) to obtain

Ẽ =
γ

4πε0(γ2(x̃ + βt̃)2 + ỹ2 + z̃2)3/2

 x̃ + βt̃
ỹ
z̃

 ,

B̃ =
γβ

4πε0(γ2(x̃ + βt̃)2 + ỹ2 + z̃2)3/2

 0
z̃
−ỹ

 , (39)

which is what we were looking for.

Extra problem no. 10

By de�nition a scalar �eld transforms according to

φ̃(x̃) = φ(x) ⇔ φ̃(x) = φ(Λ−1x). (40)

We now make use of (38) and can immediately write down the answer since we
know that φ(x) = 1

r2 :

φ̃(x) =
1

(γ2(x + βt)2 + y2 + z2)3/2
. (41)
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