
Final Examination Paper for Electrodynamics-I
Date: Friday, Nov 02, 2012, Time: 09:00 - 14:00 [Solutions]
Allowed help material: Physics and Mathematics handbooks or equivalent

Questions: 1 2 3 4 5 Total

Marks: 16 16 16 16 16 80

Please explain your reasoning and calculations clearly

1. (a) Consider a charge q placed a distance ~y from a charge Q. Express the potential

Φ(~x) in terms multipole moments of the distribution, retaining the first two

moments (you can choose the midpoint of the charge system as the origin of

the coordinate system).

(b) For a charge distribution ρ, define the multipole moments qlm in spherical polar

coordinates. (i) Show that for a spherically symmetric charge distribution, all

multipole moments beyond the monopole moment vanish. (ii) Show that for a

charge distribution with axial symmetry all moments except ql0 vanish.

Solution (points: 8+8)

a) The potential for the system (choosing the mid point as the origin of the coordinate

system) is given by

Φ(~x) =
q

|~x− ~y/2|
+

Q

|~x+ ~y/2|
.

Expanding in powers of 1/x (where x = |~x|),

1

|~x∓ ~y/2|
=

1

x
± ~y · ~x

2x3
+ · · · .

Then,

Φ(~x) =
q +Q

x
+

(q −Q)~y · ~x
2x3

+ · · · .

This system has a monopole moment q +Q and a dipole moment ~p = (q −Q)~y/2.

b) The multipole moments qlm of the charge distribution ρ(~x) are given by

qlm =

∫
d3x′ρ(~x ′)r′

l
Y ∗lm(θ′, φ′)

(i) For a spherically symmetric charge distribution, ρ(~x) ≡ ρ(r, θ, φ) = ρ(r), inde-

pendent of the angular variables. Therefore the integral factorizes into radial and

angular parts,

qlm =

(∫ ∞
0

r′
2
dr′ρ(r′)r′

l

)(∫ π

0

sin θ′dθ′
∫ 2π

0

dφ′Y ∗lm(θ′, φ′)

)
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Since Y00(θ
′, φ′) = 1/

√
4π, we can insert Y00(θ

′, φ′)
√

4π = 1 in the angular integra-

tion. Now, from the orthogonality property of spherical harmonics it follows that the

angular integral is proportional to δl0 and hence vanishes for all l ≥ 1 (l = 0 being

the monopole moment).

(ii) In the case of axial symmetry about the z-axis, ρ is independent of the azimuthal

coordinate φ. In this case,

qlm = (const)

(∫ ∞
0

r′
2
dr′
∫ π

0

sin θ′dθ′ρ(r′, θ′)r′
l
Pm
l (cos θ′)

)(∫ 2π

0

dφ′e−imφ
′
)

where we have used the fact that Ylm(θ, φ) = (const)Pm
l (cos θ)eimφ. Now, the φ

integral gives a δm0. Thus the only non-vanishing moments in this case are ql0.

2. (a) As charges move into or out of a volume V , the total charge QV contained

in it changes. Show that the assumption of charge conservation leads to the

continuity equation ∂µJ
µ = 0.

(b) Consider a current distribution with local current density J(~x) in a volume V

placed in an external magnetic field ~B(~x). (i) Find the expression for the net

force ~F acting on the current distribution. (ii) If this current flows in a long,

straight, thin wire placed at angle θ with respect to a uniform magnetic field,

compute the force per unit length on the wire. (iii) If this force moves the wire,

compute the work done by the magnetic field.

(c) Describe magnetic hysteresis and its origin.

Solution (points: 5+6+5)

a) The rate of change of charge in volume V is ∂QV /∂t. Since total charge is

conserved, this change can take place only if some charge leaves or enters volume V .

This give rise to a current IS across the boundary of V and by charge conservation,

∂QV

∂t
= −IS

The negative sign corresponds to the convention that positive charge leaving volume

V gives rise to a positive current across its boundary. Let’s express QV and IS in

terms of charge and current densities,

QV =

∫
V

d3xρ , IS =

∫
O

∫
S

~J · ~dS =

∫
V

d3x~∇ · ~J

where the divergence theorem is used in the last step. This gives

∂ρ

∂t
+ ~∇ · ~J = 0 .

Denoting x0 = ct and J0 = cρ, this becomes, ∂µJ
µ = 0.

b) (i) The Lorentz force acting on a volume element d3x within the current distri-

bution is d~F =
1

c
(ρd3x)~v × ~B. Then the total force on the volume V is

~F =
1

c

∫
V

~J(~x)× ~B(~x) d3x .
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(ii) For a wire we can write d3x = ~ds · ~dl with ~dl along the length of the wire and ~ds

a surface element over the cross section of the wire. In the thin wire approximation,
~J is parallel to ~dl and the variation of ~B over the cross section can be neglected.

Then,
∫
V
d3x ~J(~x)× ~B(~x) =

∫
l

∫
S
(~ds · ~dl)( ~J× ~B) =

∫
l

∫
S
(~ds · ~J)(~dl× ~B) = I

∫
l
~dl× ~B.

Then, for a long straight wire of length L, say in the z-direction, and a uniform

field ~B that does not vary along the length of the wire, one obtains the force per unit

length as
~F

L
=
I

c
ẑ × ~B

(iii) The force is perpendicular to ẑ and hence moves the wire parallel to itself in

the x − y plane. For a displacement ~dr in this plane, the work done is ~F · ~dr 6= 0.

While a magnetic field does no work on free moving charges, that end up moving

in helical paths, the work is non-zero when the charges are confined to move in a

straight wire.

c) In a magnetic medium atoms and molecules could carry magnetic dipole moments.

In an external magnetic field, these microscopic magnetic dipoles tend to realign

themselves giving rise to a net magnetic field that is characterized by the magnetic

moment density or magnetization ~M of the medium. The total magnetic field ~B

is a sum of the field produced by ~M and the externally applied field ~H. These are

related by ~H = ~B − 4π ~M and it can be shown to satisfy ~∇ × ~H = 4π
c
~J where ~J is

the external “free” current density. Magnetic hysteresis describes the variation of

the magnetic field in ferromagnets as a function of a varying applied current.

Since H is determined by the applied current, one can alternatively consider B as a

function of H. For diamagnetic and paramagnetic material the relation between the

two is linear to a good degree of approximation, B = µH. However, ferromagnetic

material respond strongly to the applied field and the relation B = B(H) has the

following features: Initially, as H is increased from zero, B also increases due to

the fact that more and more microscopic magnetic dipoles in the material realign

themselves along the applied field, enhancing its strength. But when most of the

microscopic dipoles have realigned, the increase in B slows down and the B vs H

curve flattens out. Now, as H is decreased, B also decreases, but it starts lagging

behind H since the microscopic dipoles resist flipping their orientation. Even when

H is reduced to zero, there is still a residual B field. As H is made negative, B

reduces further and finally vanishes for some negative H. Beyond this, B increases

in the negative direction until most of the microscopic dipoles are aligned in the new

direction and beyond some negative H the curve again flattens out. In this way,

as H is varied sinusoidally, B traces a closed loop in the B − H plane called the

Hysteresis curve (it can be found in any standard textbook on electromagnetism) and

the phenomenon is referred to as hysteresis.

3. (a) Starting with the homogeneous Maxwell’s equations find the expression for ~E

and ~B in terms of the potentials ~A and φ.
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(b) Obtain the equations that the potentials satisfy in the Lorenz gauge (∇×(∇×
~Q) = −∇2 ~Q+∇(∇ · ~Q)).

(c) Write the plane wave solutions for the potentials and show that the ~E and
~B obtained from them are transverse to each other and to the direction of

propagation.

Solution (points: 5+5+6)

a) The homogeneous Maxwell’s equations are ~∇· ~B = 0 and ~∇× ~E+ 1
c
∂
∂t
~B = 0. The

first equation implies ~B = ~∇ × ~A, for some vector field ~A. With this, the second

equation becomes ~∇× ( ~E + 1
c
∂
∂t
~A) = 0 which implies ( ~E + 1

c
∂
∂t
~A) = −~∇Φ, for some

scalar potential Φ. Then we have ~E and ~B in terms of the potentials ~A and Φ as,

~B = ~∇× ~A , ~E = −~∇Φ− 1

c

∂

∂t
~A

b) The two inhomogeneous Maxwell equations are, ~∇ · ~E = 4πρ and ~∇ × ~B −
1
c
∂
∂t
~E = 4π

c
~J . Substituting for ~E and ~B in terms of the potentials leads to the

coupled equations,

∇2Φ +
1

c

∂

∂t
(~∇ · ~A) = −4πρ ,

∇2 ~A− 1

c2
∂2

∂t2
~A− ~∇(~∇ · ~A+

1

c

∂

∂t
Φ) = −4π

c
~J .

In the Lorenz gauge, ~∇ · ~A+ 1
c
∂
∂t

Φ = 0, the above equations reduce to,

(∇2 − 1

c2
∂2

∂t2
)Φ = −4πρ , (∇2 − 1

c2
∂2

∂t2
) ~A = −4π

c
~J .

c) The above equations have plane-wave solutions in the absence of sources,

(∇2 − 1

c2
∂2

∂t2
)Φ = 0 , (∇2 − 1

c2
∂2

∂t2
) ~A = 0

The monochromatic plane-wave solutions in the direction ~k are,

Φ = Φ0 expi(
~k·~x−ωt) , ~A = ~A0 expi(

~k·~x−ωt) ,

where,

ω = ± c |~k| .

The Lorenz gauge condition implies ~k · ~A0 = (ω/c)Φ0. The magnetic and electric

fields become, ~B = i~k × ~A and ~E = −i~kΦ + iω
c
~A (the physical fields are the real

parts of these). Note that ~B is normal to both ~k and ~A, hence it is normal to
~E and we have ~B · ~E = 0. This also implies ~k · ~B = 0. On the other hand,
~k · ~E = −i(k2Φ− ω

c
~k · ~A) = −i(k2 − ω2

c2
)Φ = 0.

4. Obtain the expression for the Poynting theorem. Clarify the physical meaning of the

various terms in the equation and show that the Poynting vector represents energy

flux carried by electric and magnetic fields.
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Solution (points: 16)

To obtain the Poynting theorem, we consider a region of space with current dis-

tribution ~J in the presence of electric and magnetic fields ~E and ~B. Start with
~J · ~E and, using Maxwell’s equations, rewrite ~J in terms of ~E and ~B. After some

manipulations (that should be carried out explicitly), one gets,

~J · ~E +
1

8π

∂

∂t

(
ε ~E · ~E +

1

µ
~B · ~B

)
+

c

4π
∇ · ( ~E × ~H) = 0

In the above we recognize the following terms: ~J · ~E is the power per unit volume

injected into the current distribution by the electric field. u = 1
8π

(
ε ~E · ~E + 1

µ
~B · ~B

)
is the energy density contained in the electric and magnetic fields. The equation

states that this energy density u changes partly because some energy is transferred

to the current system through ~J · ~E and partly because of some energy transfer

described by the quantity ~S = c
4π
~E × ~H. To see clearly what this means, integrate

the expression over a volume V of boundary ∂V . Then using the divergence theorem,

one gets, ∫
V

d3x

(
~J · ~E +

∂

∂t
(u)

)
+

∫
∂V

~da · ~S = 0

Then clearly the Poynting vector ~S = c
4π
~E× ~H is an energy flux leaving or entering

the volume V through its boundary ∂V to maintain energy conservation within V .

This is the energy transported by the electric and magnetic fields.

5. (a) Define contravariant and covariant vectors with respect to general coordinate

transformations.

(b) For a particle of rest mass m0 moving with velocity ~u in an inertial frame one

can define a relativistic 4-velocity Uµ = (γc, γ~u), where γ−1 =
√

1− u2/c2.
Now, for a point charge q consider the equation,

m0
dUµ

dτ
=
q

c
F µν Uν ,

where, τ is the time in the rest-frame of the moving charge (dt = γdτ). Write

down the spatial and temporal components of this equation in terms of elec-

tric and magnetic fields and describe the physical meaning of the resulting

equations.

(c) Find the electric and magnetic potentials, Φ, ~A, produced by a charged particle

in uniform motion, moving with speed u in the x1 direction.

Solution (points: 4+6+6)

a) Under a general coordinate transformation xµ → x̃µ, in general, covariant vectors

Wµ and contravariant vectors V µ transform in the same way as ∂µ and dxµ.

W̃µ(x̃) =
∂xν

∂x̃µ
Wν(x) , Ṽ µ(x̃) =

∂x̃µ

∂xν
V ν(x)
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b) Spatial components: For µ = i, the relativistic equation reduces to

m
dui

dt
+
m

γ

dγ

dt
ui = qF i0 − q

c
F ij uj

But, F i0 = Ei, F ij = −εijkBk and (~u × ~B)i = −εijkujBk (with ε123 = 1), and

therefore,

m
d~u

dt
+
m

γ

dγ

dt
~u = q ~E +

q

c
~u× ~B

where m = γm0. In terms of the momentum ~p = m0γ~u, it becomes,

d~p

dt
= q ~E +

q

c
~u× ~B

Note that γ being a function of the velocity ~u of the moving particle, is not constant

in time.

Temporal component: For µ = 0, it reduces to d(m0c
2γ)/dt = qEiui. We recognize

E = m0c
2γ as the relativistic energy of the particle. Hence d(E)/dt = q~u · ~E which

gives the power transferred to the charged particle from the electric field.

c) The electric potential φ(x) and magnetic potential ~A(x) combine into a 4-vector

Aµ = {A0 = φ, ~A} which under Lorentz transformations L transforms as

Ãµ(x̃) = LµνA
ν(L−1x̃)

In our case, φ and ~A = 0 are the fields in the rest frame of the particle. The

non-trivial components of L are, L0
0 = L1

1 = γ, and L1
0 = L0

1 = −γβ. Therefore

Lorentz transformation gives (suppressing the x̃ dependence)

φ̃ = γφ , Ã1 = −γβφ , Ã2 = Ã3 = 0

To complete the transformation, we have to express the xµ dependence of φ in terms

of x̃µ. For the given Lorentz transformation, x1 = γ(x̃1+βx̃0), x2 = x̃2 and x3 = x̃3,

so that x2 =
∑3

1 x
ixi = γ2(x̃1 + ut̃)2 + (x̃2)2 + (x̃3)2. Then,

φ̃(x̃) = γ
Q√

(γ2(x̃1 + ut̃)2 + (x̃2)2 + (x̃3)2)
, Ã1 = −βφ̃(x̃)
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