
Final Examination Paper for Electrodynamics-I
Date: Friday, Oct 28, 2011, Time: 09:00 - 14:00 [Solutions]
Allowed help material: Physics and Mathematics handbooks or equivalent

Questions: 1 2 3 4 5 Total

Marks: 16 16 16 16 16 80

Note: Please explain your reasoning and calculations clearly

1. (a) Prove Green’s first and second identities.

(b) Using Green’s second identity describe how boundary conditions are incorpo-

rated in the solutions of the Poisson equation.

Solution (points: 8+8)

a) & b) See Jackson’s book, sections 1.8 and 1.10 (or the lecture notes, set-II).

2. (a) Consider two neutral media with dielectric constants ε1 and ε2, in contact

through a surface S. After an electric field is switched on, compute the induced

surface charge density on S in terms of the value of the electric field in one of

the media. Also describe the physical origin of the induced surface charge.

(b) Consider solutions of the Laplace equation, ∇2Φ(r, θ, φ) = 0, in situations

with azimuthal symmetry (derivation not needed). Describe in what sense the

r-dependence of the solution uniquely determines its θ-dependence?

Solution (points: 8+8)

a) Since there are no free charges on the surface S, the electric displacement vectors

on the two sides of it satisfy ( ~D2 − ~D1) · n̂ = 0 implying (ε2 ~E2 − ε1 ~E1) · n̂ = 0.

But the induced polarization charges produce a discontinuity in the electric field

given by the induced surface charge density, ( ~E2 − ~E1) · n̂ = 4πσind. Hence, σind =
1
4π

( ε1
ε2
−1) ~E1 ·n̂ = 1

4π
(1− ε2

ε1
) ~E2 ·n̂. The origin of σind is in the unequal polarizations of

the two media. In each medium, the applied electric field causes a small displacement

of the positive and negative “charge clouds” with respect to each other. Since these

displacements in the two media are unequal, there is an accumulation of charge on

the boundary where the behaviour changes.

b) The general solution of the Laplace equation in spherical polar coordinates is,

Φ(r, θ, φ) =
∞∑
l=0

l∑
m=−l

(
Almr

l +Blmr
−l−1) Ylm(θ, φ) ,

in terms of the spherical harmonics Ylm(θ, φ) ∼ Pm
l (cos θ)eimφ. A given power of r

is associated with different θ dependences depending on the value of m. In problems
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with azimuthal symmetry, Φ is independent of φ. Hence all Alm and Blm for m 6= 0

vanish and the solution reduces to

Φ(r, θ) =
∞∑
l=0

(
Alr

l +Blr
−l−1) Pl(θ) .

Clearly here any power of r is associated with a unique θ dependence given by the

Legendre polynomial. Hence, knowing the r dependence, the θ dependence can be

uniquely determined.

3. (a) Consider a current distribution with local current density ~J(~x) in a volume V

placed in an external magnetic field ~B(~x). Find the expression for the net force
~F acting on the current distribution.

(b) Work out the expression for the force acting between two thin wires carrying

currents I1 and I2 (the wires are not necessarily straight and parallel).

Solution (points: 8+8)

a) The Lorentz force acting on a volume element d3x within the current distribution

is d~F =
1

c
(ρd3x)~v× ~B so that the force on the volume V is ~F = 1

c

∫
V
~J(~x)× ~B(~x) d3x

b) For a wire we can write d3x = ~ds · ~dl with ~dl along the length of the wire and ~ds a

surface element over the cross section of the wire. In the thin wire approximation, ~J

is parallel to ~dl and the variation of ~B over the cross section can be neglected. Then,∫
V
d3x ~J(~x) × ~B(~x) =

∫
l

∫
S
(~ds · ~dl)( ~J × ~B) =

∫
l

∫
S
(~ds · ~J)(~dl × ~B) = I1

∫
l1
~dl × ~B.

This gives the force on wire 1 due to the field ~B. Also in this approximation and

using the same arguments, the magnetic field produced by a current I2 becomes,
~B(~x) = I2

c

∫
l2
~dl′ × (~x−~x′)

|~x−~x′|3 . Using this in the force expression gives,

F12 =
I1I2
c2

∫
l1

∫
l2

~dl × ~dl′ × (~x− ~x′)
|~x− ~x′|3

4. (a) Consider the monochromatic plane-wave solutions of the source-free Maxwell

equations in a medium, say, of the form ~E0 cos(~k ·~x−ωt) and ~B0 cos(~k ·~x−ωt)
with ω/k = c/

√
εµ. Verify that the Poynting vector reproduces the expected

energy current, ~S = ~v u, where u is the energy density of the electromagnetic

field and ~v its propagation velocity.

(b) Derive the Poynting theorem. Explain what it means physically and describe

the meaning of each term in the expression.

Solution (points: 8+8)

a) The energy density of ~E and ~B is u = 1
8π

(εE2 + 1
µ
B2). Demanding that the

given solutions satisfy the Maxwell’s equations implies that ~E, ~B and ~k are all

perpendicular to each other and also that | ~B| = √µε| ~E|. Hence for these solutions,

u = ε
4π
E2. On the other hand, in this case the Poynting vector becomes ~S ≡

c
4πµ

~E× ~B = c
4πµ

√
µεE2 k̂. Expressed in terms of u, ~S = c√

µε
u k̂. This is the expected
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result on realizing that c√
µε
k̂ is the propagation velocity of light in the medium.

b) To obtain the Poynting theorem, start with ~J · ~E and, using Maxwell’s equations,

rewrite ~J in terms of ~E and ~B. After some manipulations, one gets,

~J · ~E +
1

8π

∂

∂t

(
ε ~E · ~E +

1

µ
~B · ~B

)
+

c

4π
∇ · ( ~E × ~H) = 0

The various terms have the following meanings:
~J · ~E: power injected into the current distribution by the electric field/unit volume.
1
8π

∂
∂t

(
ε ~E · ~E + 1

µ
~B · ~B

)
: Rate of change of energy densities of the electric and mag-

netic fields.
c
4π
∇ · ( ~E × ~H): Energy flux per unit time per unit volume carried by the electro-

magnetic fields. This is the Poynting vector. That it corresponds to the energy flux

per unit area per unit time across a surface follows from the divergence theorem,∫
V
d3x∇ · ( ~E × ~H) =

∫
S
~dS · ( ~E × ~H).

The Poynting theorem is a statement of conservation of energy (as is obvious form

the meaning of the various terms appearing in it). It also provides a mathemati-

cal expression for the energy carried by electromagnetic waves in the form of the

Poynting vector.

5. (a) Consider a linear transformation x̃µ = Lµνx
ν . Derive the condition that the

invariance of spacetime intervals impose on the matrix L.

(b) Consider a frame S̃ moving away from a frame S with velocity v in the x1

direction. If the observer in S measures an electric field ~E and no mangnetic

field, derive the expression for the fields
~̃
E and

~̃
B that the observer in S̃ will

measure.

(c) Find the electric and magnetic fields produced by a charged particle in uniform

motion, moving in the x1 direction.

Solution (points: 4+6+6)

a) The space time interval is (∆x0)2− (∆x1)2− (∆x2)2− (∆x3)2 ≡ ∆xµηµν∆x
ν. In

matrix notion, this can be written as (∆x)Tη∆x. Under the given transformation,

∆x̃µ = Lµν∆x
ν. The invariance of the interval, ∆x̃µηµν∆x̃

ν = ∆xµηµν∆x
ν then

implies,

LTηL = η

b) The Lorentz transformation of electric and magnetic fields ~E and ~B are contained

in F̃ µν(x̃) = LµρF
ρσ(x)(LT ) ν

σ , or simply, in F̃ (x̃) = LF (x)LT . In this problem,

L =


γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1

 , F =


0 −E1 −E2 −E3

E1 0 0 0
E2 0 0 0
E3 0 0 0

 .
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Then carrying out the multiplication, one obtains the fields,

Ẽ1 = E1

Ẽ2 = γE2

Ẽ3 = γE3

B̃1 = 0

B̃2 = γβE3

B̃3 = −γβE2

c) To solve this, we use the answer to part (b). Consider a reference frame S moving

along with the charged particle (and for convenience, centered at the location of the

particle). In this frame, the particle is at rest and its electric field is given by
~E(~x) = q~x/|x|3. This is time independent and the magnetic field vanishes. Take S̃

to be the frame of the observer in which the particle (and hence the frame S) moves

with velocity u in the x1 direction. Then S̃ moves with respect to S with velocity

v = −u. The fields observed by an observer in S̃ are given in the answer to part (b)

above with v = −u. But we have to express the xµ, on which ~E depends, in terms

of x̃µ. That gives, x1 = γ(x̃1 + βx̃0), where β = v/c = −u/c, and

|x|3 ≡ [(x1)2 + (x2)2 + (x3)2]3/2 = [γ2(x̃1 + βx̃0)2 + (x̃2)2 + (x̃3)2]3/2 .

Explicitly,

Ẽ1 = γq
(x̃1 − ux̃0/c)
|x|3

, B̃1 = 0 ,

Ẽ2 = γq
x̃2

|x|3
, B̃2 = −γuq x̃3

c|x|3
,

Ẽ3 = γq
x̃3

|x|3
, B̃3 = γuq

x̃2

c|x|3
,

where |x|3 is given above.
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