
Final Examination Paper for Electrodynamics-I
Date: Tuesday, Jan 05, 2010, Time: 09:00 - 15:00 [Solutions]
Allowed help material: Physics and Mathematics handbooks

Note: Please explain your reasoning and calculations clearly

Questions: 1 2 3 4 5 6 Total
Marks: 13 14 13 13 14 13 80

1. (a) Consider an electric field ~E = îx+ ĵz+ k̂(f(x, y) + z2). Determine f(x, y) and

compute the total charge contained in a cube specified by 0 ≤ x, y, z ≤ l.

(b) Derive the expression for the potential energy of a dipole in an electric field.

Solution (points: 7+6)

a) This is an electrostatic field with Ex = x, Ey = z, Ez = f(x, y) + z2 and should

satisfy ~∇× ~E = 0. In terms of components of ~E this gives ∂Ei/∂x
j − ∂Ej/∂xi = 0

for the indices i and j taking the values x, y, z, which, in turn, leads to ∂f/∂x = 0

and ∂f/∂y − 1 = 0. The unknown function f(x, y) is therefore given by f = y + c

for an arbitrary constant c. So we have, ~E = îx+ ĵz+ k̂(y+ z2 + c). From this, we

can compute the charge density using ~∇ · ~E = 4πρ and get ρ = (2z + 1)/4π. The

total charge is then given by

Q =
1

4π

∫ l

0

dx

∫ l

0

dy

∫ l

0

dz(1 + 2z) =
1

4π
(l3 + l4)

(the total charge can also be computed using the Gauss law)

b) Let us assume that the dipole is made of two charges q and −q placed a small

distance ~l apart, in the limit ~l → 0 keeping ~p = q~l fixed. In an electric field ~E(~x) =

−~∇Φ(~x), the potential energy of the system, before taking the limit, is qΦ(~x+ 1
2
~l)−

qΦ(~x− 1
2
~l), where ~x is the position of the center of the charge system and ~l is taken

to point from −q to q. Using the Taylor expansion Φ(~x+ 1
2
~l) = Φ(~x)+ 1

2
~l · ~∇Φ(~x)+· · ·

and taking the limit ~l→ 0, one gets the dipole potential energy as −~p · ~E(~x).

2. Consider an external electric field given by Ei = Ci +Dijx
j in a region of space free

of charges and currents.

(a) Show that the matrix Dij is traceless (
∑

iDii = 0) and symmetric (Dij = Dji).

What is the external potential Φext(~x) corresponding to this electric field (use

Φext(0) = C0)?

(b) In this external field place a conducting sphere of radius R cantered at ~x = 0

and carrying zero net charge. Suppose the polarization of the sphere in the

external field is described by a dipole moment pi and a quadrupole moment

Qij. Write the general expression for the induced potential Φin(~x) for |~x| ≥ R

generated by the multipole moments.
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(c) Determine pi and Qij in terms of Ci, Dij and R and find the total potential

Φext + Φin outside the sphere (|~x| ≥ R).

(d) Compute the induced surface charge density on the sphere (Hint: If ei denote

the basis vectors in Cartesian coordinates, then ~x = xiei and for the radial

unit vector, x̂ = ~x/|~x| = x̂iei. In spherical coordinates one can write, xi = xx̂i

where x̂3 = cos θ, x̂1 = sin θ cosφ, x̂2 = sin θ sinφ. Hence, they do not vary

with radial distance x).

Solution (points: 4+3+4+3)

a) The electric field satisfies ~∇ · ~E =
∑

i ∂iE
i = 0 implying

∑
iDii = 0 and (~∇ ×

~E)i =
∑

jk ε
jk
i ∂jEk = 0 implying

∑
jk ε

jk
i Djk = 0 or Djk = Dkj. Therefore, the

matrix D is traceless and symmetric. The corresponding potential, consistent with
~E = −∇Φext, is

Φext = −
∑
i

Cix
i − 1

2

∑
ij

Dijx
ixj + C0

b) For |~x| ≥ R, the induced potential due to the polarized sphere is the same as that

due a dipole of moment ~p and a quadrupole of moment matrix Qij placed at the

origin,

Φin =
~p · ~x
x3

+
1

2

Qijx
ixj

x5

c) The sphere being conducting, the total potential Φin + Φext on its surface must be

constant (
pix

i

R3
+

1

2

Qijx
ixj

R5
− Cixi −

1

2
Dijx

ixj + C0

) ∣∣∣
|~x|=R

= const.

Since the xi vary on the surface, comparing terms with the same tensor structure,

one gets pi = R3Ci and Qij = R5Dij. Also the constant potential on the surface

equals C0. The total potential for |~x| ≥ R is then,

Φ = Φin + Φext = Cix
i

(
R3

x3
− 1

)
+

1

2
Dijx

ixj
(
R5

x5
− 1

)
+ C0

d) Using the notation described in the question, one can write the total potential φ

in spherical polar coordinates as

Φ = Cix̂
i

(
R3

x2
− x
)

+
1

2
Dijx̂

ix̂j
(
R5

x3
− x2

)
+ C0

where x̂i are independent of x = |~x|, depending only on the angular variables. The

surface charge density is given by ( ~E2− ~E1) · n̂ = 4πσ where n̂ is the unit normal to

the surface of the sphere. In this case, ~E1 = 0 and ~E2 · n̂ = −∂Φ/∂x|x=R. Therefore,

σ = − 1

4π

∂Φ

∂x

∣∣∣
x=R

=
1

4π

(
3Cix̂

i +
5

2
RDijx̂

ix̂j
)
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3. (a) Using the expansion

1

|~x− ~x′|
=
∞∑
l=0

l∑
m=−l

4π

2l + 1

r′l

rl+1
Y ∗lm(θ′, φ′)Ylm(θ, φ)

develop the multipole expansion of the potential Φ(~x) due to a localized charge

distribution ρ(~x′) in terms of the multipole moments qlm of ρ. Discuss how and

under what conditions this expansion can be used to simplify a problem.

(b) Show that if the charge distribution has axial symmetry (that is, it is invariant

under rotations about the z-axis), then the only non-zero multipole moments

are ql0.

(c) Using the above results, for two point charges q and −q placed on the z-axis

at z = a and z = −a, compute the non-vanishing component of the dipole

moment (given Y10 = (
√

3/4π) cos θ).

Solution (points: 5+4+4)

a) The potential due to a localized charge distribution is given by

Φ(~x) =

∫
d3x′

ρ(~x ′)

|~x− ~x′|

Using the expansion given in the question, it becomes,

Φ(~x) =
∞∑
l=0

m=l∑
m=−l

4π

2l + 1
qlm

Ylm(θ, φ)

rl+1

This is the multipole expansion of the potential in terms of the multipole moments

qlm of the charge distribution given by

qlm =

∫
d3x′ρ(~x ′)r′

l
Y ∗lm(θ′, φ′)

The multipole expansion allows us to parametrize the charge distribution in terms of

its multipole moments. Further, the contribution of a moment qlm to the potential

falls off as 1/rl+1. Therefore, at large distances from a localized charge distribution,

only a few non-zero multipole moments with the lowest values of l make significant

contributions to Φ and are relevant. The remaining moments could be neglected.

This allows us to parametrize even complicated charge distributions in terms of a

few lowest l mutipole moments. The condition under which this approximation is

valid is that the distance to the observation point (at which Φ is measured) is much

larger as compared to the size of the charge distribution.

b) In the case of axial symmetry about the z-axis, ρ is independent of the azimuthal

coordinate φ. In this case,

qlm = (const)

(∫ ∞
0

r′
2
dr′
∫ π

0

sin θ′dθ′ρ(r′, θ′)r′
l
Pm
l (cos θ′)

)(∫ 2π

0

dφ′e−imφ
′
)
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where we have used the fact that Ylm(θ, φ) = (const)Pm
l (cos θ)eimφ. Now, the φ

integral gives a δm0. Thus the only non-vanishing moments in this case are ql0.

c) In this case the charge density is given by ρ = qδ(x′)δ(y′) (δ(z′ − a)− δ(z′ + a)).

The three components of the dipole moment are q1m, for m = 1, 0,−1. Since the

problem has axial symmetry about the z-axis, the only non-vanishing component is

q10 which is now given by (using the expressions for Y10, ρ and noting that r′ =√
x′2 + y′2 + z′2)

q10 =

∫
d3x′ρ(~x ′)r′Y ∗10(θ

′, φ′) =

√
3

4π

∫
dx′
∫
dy′
∫
dz′

×qδ(x′)δ(y′) (δ(z′ − a)− δ(z′ + a))
√
x′2 + y′2 + z′2 cos θ

=

√
3

4π

∫
dz′q (δ(z′ − a)− δ(z′ + a)) |z′| = aq

√
3

π

(1)

4. (a) Consider a current distribution with local current density ~J(~x) in a volume V

placed in an external magnetic field ~B(~x). Find the expression for the net force
~F acting on the current distribution.

(b) Work out the expression for the force acting between two thin wires carrying

currents I1 and I2 (the wires are not necessarily straight and parallel).

Solution (points: 6+7)

a) The Lorentz force acting on a volume element d3x within the current distribution

is d~F =
1

c
(ρd3x)~v× ~B so that the force on the volume V is ~F = 1

c

∫
V
~J(~x)× ~B(~x) d3x

b) For a wire we can write d3x = ~ds · ~dl with ~dl along the length of the wire and ~ds a

surface element over the cross section of the wire. In the thin wire approximation, ~J

is parallel to ~dl and the variation of ~B over the cross section can be neglected. Then,∫
V
d3x ~J(~x) × ~B(~x) =

∫
l

∫
S
(~ds · ~dl)( ~J × ~B) =

∫
l

∫
S
(~ds · ~J)(~dl × ~B) = I1

∫
l1
~dl × ~B.

This gives the force on wire 1 due to the field ~B. Also in this approximation and

using the same arguments, the magnetic field produced by a current I2 becomes,
~B(~x) = I2

c

∫
l2
~dl′ × (~x−~x′)

|~x−~x′|3 . Using this in the force expression gives,

F12 =
I1I2
c2

∫
l1

∫
l2

~dl × ~dl′ × (~x− ~x′)
|~x− ~x′|3

5. Consider a straight piece of length L and radius a of a long cylindrical wire which

has resistance R and carries current I.

(a) Find the electric and magnetic fields on the surface of the wire and indicate

their directions.

(b) Evaluate the energy carried into the wire by the above electric and magnetic

fields.
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(c) What happens to this energy in the steady state? Verify your answer using

the Poynting theorem in the thin wire approximation.

Solution (points: 5+5+4)

a)The electric field on the surface is given by E = Φ/L where the constant potential

difference Φ is given by Ohm’s law, Φ = IR. Hence, E = IR/L. The direction

of ~E is parallel to the current and hence to the wire. The magnetic field on the

surface is given by Ampere’s law as B = 2I/ca (This is obtained by integrating
~∇× ~B = (4π/c) ~J over a cross section of the wire and using the cylindrical symmetry

of the problem). The direction of ~B is given by the “right-hand-rule” which makes

it perpendicular to both ~E and the radius vector of the cylindrical wire. Hence the

direction of ~B is along the angular direction of the cylinder.

b) The energy carried into the wire by electric and magnetic fields is the surface

integral of the Poynting vector over the surface of the wire. The Poynting vector is
~S = (c/4π) ~E× ~B. Since ~E is perpendicular to ~B, we have, for the magnitude of the

Poynting vector, S = I2R/(2πaL). ~S is directed radially inward, ~S = −r̂ S. The

flux
∫
~ds · ~S evaluated over the surface of a segment of length L of the cylindrical

wire receives contributions only from the curved side-area of the cylinder (of area

2πaL) and not from the top and bottom caps (since then ~S is perpendicular to ~ds).

Hence the total flux is ∫
~ds · ~S = −I2R

The sign is due to fact that ~S is directed radially inward while, for the cylinder, ~ds

is directed radially outward. Physically, the negative sign signifies that energy enters

into the volume under consideration, rather than leave it.

c) Since in this problem the electric and magnetic fields are constant, the Poynting

theorem reduces to

−
∫
V

d3x~E · ~J =

∫
∂V

~ds · ~S

The left hand side is recognized as the expression for the energy injected into the

current distribution by the electric and magnetic fields. Thus the energy carried

into the wire by the Poynting vector is fully converted into the kinetic energy of the

charge carriers. Since the current is constant, the system is in steady state and

the extra kinetic energy acquired by the charges is dissipated into heat as a result of

collisions within the resistive medium. The left hand side can be computed in the

thin wire approximation. For our wire, d3x = ~dl · ~ds where ~dl is along the length of

the wire and the ~ds integration is over the cross sectional area of the wire. In the

thin wire approximation, ~J is parallel to ~dl, so that (~dl · ~ds)( ~J · ~E) = ( ~J · ~ds)(~dl · ~E).

Moreover, ~E can be taken to be constant over the cross section of the thin wire.

Then

−
∫
V

d3x~E · ~J ≈ −(

∫
~J · ~ds)(

∫
~dl · ~E) = −IΦ = −I2R

which verifies the result of part b) of the question.
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6. (a) For a coordinate transformation xµ → x̃µ define covariant and contravariant

vectors. For the special case of Lorentz transformations, show that if xµ trans-

forms as a contravariant vector, x̃µ = Lµνx
ν , then xµ = ηµνx

ν transforms as a

covariant vector.

(b) Consider,

m0
dUµ

dτ
=
q

c
F µν Uν

where Uµ = (γc, γ~u) is the relativistic 4-velocity of a particle of charge q and

rest mass m0, τ is time in the rest-frame of the moving charge (dt = γdτ) and

γ−1 =
√

1− u2/c2.

i. Show that this contains the relativistic version of the Lorentz force law.

ii. What other information is contained in the above equation? Explain its

physical significance.

Solution (points: 6+(7=4+3))

a) In general, covariant vectors Wµ and contravariant vectors V µ transform as

W̃µ(x̃) =
∂xν

∂x̃µ
Wν(x) , Ṽ µ(x̃) =

∂x̃µ

∂xν
V ν(x)

For the Lorentz transformation x̃µ = Lµνx
ν, we get ∂exµ

∂xν = Lµν and ∂xν

∂exµ = (L−1)νµ so

that Ṽ µ(x̃) = LµνV
ν(x) and W̃µ(x̃) = (L−1)νµWν(x) or, in matrix notation,

Ṽ = LV , W̃ = (L−1)TW

where V and W stand for 4-component column vectors. The defining equation for

L, i.e., LTηL = η implies that LT = ηL−1η−1 or (LT )−1 = ηLη−1. Using this, the

Lorentz transformation of a covariant vector becomes, in matrix notation,

W̃ = ηLη−1W

Let us now look at the Lorentz transformation of ηµνx
ν. In matrix notation, the

Lorentz transformed quantity is

ηx̃ = ηLx = ηLη−1(ηx)

which is the Lorentz transformation of a covariant vector.

b)(i) For µ = i, the relativistic equation reduces to

m
dui

dt
+
m

γ

dγ

dt
ui = qF i0 − q

c
F ij uj

But, F i0 = Ei, F ij = −εijkBk and (~u × ~B)i = −εijkujBk (with ε123 = 1), and

therefore,

m
d~u

dt
+
m

γ

dγ

dt
~u = q ~E +

q

c
~u× ~B
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where m = γm0. In terms of the momentum ~p = m0γ~u, it becomes,

d~p

dt
= q ~E +

q

c
~u× ~B

Note that γ being a function of the velocity ~u of the moving particle, is not constant

in time.

(ii) For µ = 0, it reduces to d(m0c
2γ)/dt = qEiui. We recognize E = m0c

2γ as the

relativistic energy of the particle. Hence d(E)/dt = q~u · ~E which gives the power

transferred to the charged particle from the electric field.
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