
Final Examination Paper for Electrodynamics-I
Date: Friday, Oct 30, 2009, Time: 09:00 - 15:00 [Solutions]
Allowed help material: Physics and Mathematics handbooks or equivalent

Note: Please explain your reasoning and calculations clearly

Questions: 1 2 3 4 5 6 Total
Marks: 13 13 13 13 14 14 80

1. (a) Consider the Poisson equation, ∇2φ = −4πρ, and the corresponding Green’s

function equation in a volume V with a boundary S. On S, φ satisfies either

Neumann or Dirichlet boundary conditions. Derive the general solution for φ

in terms of the Green’s function for both boundary conditions.

Solution (points: 13)

The solution is outlined here (for details see Jackson’s section 1.8 and 1.10, 3rd

edition): The Green’s function equation corresponding to the Laplace equation is

∇2G(~x− ~x′) = −4πδ(~x− ~x′) ⇒ G(~x− ~x′) =
1

|~x− ~x′|
+ F (~x, ~x′)

where ∇2F (~x, ~x′) = 0 within the volume V and F is chosen such that G satisfies

specified boundary conditions on the boundary S of V . Now, in Green’s second

identity, ∫
V

d3x′(ψ1∇′2ψ2 − ψ2∇′2ψ1) =

∮
S

ds′(ψ1
∂ψ2

∂n′
− ψ2

∂ψ1

∂n′
)

choose ψ1(~x
′) = φ(~x′) and ψ2(~x

′) = G(~x − ~x′) to get the formal solution to the

Laplace equation,

φ(~x) =

∫
V

d3x′ρ(~x′)G(~x− ~x′) +
1

4π

∮
S

ds′
[
G(~x− ~x′) ∂φ

∂n′
(~x′)− φ(~x′)

∂

∂n′
G(~x− ~x′)

]
For Dirichlet boundary conditions on φ, we are given φ(~x′) for all ~x′ on the surface

S. Then on G we need the Dirichlet boundary conditions

GD(~x− ~x′) = 0, for all ~x′ on S

leading to

φ(~x) =

∫
V

d3x′ρ(~x′)GD(~x− ~x′)− 1

4π

∮
S

ds′
[
φ(~x′)

∂

∂n′
GD(~x− ~x′)

]
For Neumann boundary conditions on φ, we are given ∂φ

∂n′ (~x
′) for all ~x′ on S. How-

ever, we cannot simply impose ∂
∂n′G(~x − ~x′) = 0 since this contradicts the defining

equation for G. Then the simplest boundary condition is

∂

∂n′
G(~x− ~x′) = −4π

A
, for all ~x′ on S
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where A is the total area of the boundary S. This leads to the solution

φ(~x) = 〈φ〉S +

∫
V

d3x′ρ(~x′)GN(~x− ~x′) +
1

4π

∮
S

ds′
[
GN(~x− ~x′) ∂φ

∂n′
(~x′)

]
where 〈φ〉S is average value of φ over the surface S.

2. (a) Consider a charge q placed a distance d in front of an infinite plane conductor

kept at zero potential. Determine the potential φ(~x) at any point in front of

the conductor using the method of images.

(b) Consider a macroscopic volume V within a polarized dielectric material con-

taining free charges of density ρf (~x
′) and a dipole moment density ~P (~x ′). Write

the expression for the electric potential φ(~x) at ~x due to free charges and dipoles

within V and show that the effect of the Polarization can be undersood in term

of a polarization charge density ρpol.

Solution (points: 7+6)

a) For simplicity, choose a coordinate system such that the z-axis is perpendicular

to the conducting plane and the charge q lies on the z-axis with position vector dẑ.

By the symmetry of the problem, the image charge q′ should also be located on the

z-axis at some position −ẑd′. Then, at some point ~x with respect to the origin of

our coordinate system, the potential is given by

φ(~x) =
q

|~x− ẑd|
+

q′

|~x+ ẑd′|

For points ~x on the conducting surface, φ(~x|surface) = 0, but also , ~x · ẑ = 0. Hence,

0 =
q√

|x2 + d2|
+

q′√
|x2 + d′2|

and it should hold for all values of x = |~x|. Simple manipulations then show that

d′ = d and q′ = −q. The potential at any point is then given by

φ(~x) =
q

|~x− ẑd|
− q

|~x+ ẑd|

b) Start with the expression for the electrostatic potential at ~x due to a dipole moment

density in a volume ∆V around a point ~x′, ∆V ~P (~x′) · (~x− ~x′)/|~x− ~x′|3. Then the

total potential at ~x is

Φ(~x) =

∫
V

d3x′(
ρf (~x

′)

|~x− ~x′|
+
~P (~x′) · (~x− ~x′)
|~x− ~x′|3

)

The second term becomes∫
V

d3x′ ~P (~x′) · ~∇′( 1

|~x− ~x′|
) = −

∫
V

d3x′
~∇′ · ~P (~x′)

|~x− ~x′|
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where we have dropped a surface term arising from an integration by parts. Now,

using ∇2
(x)(1/|~x− ~x′|) = −4πδ(~x− ~x′), one gets

~∇ · ~E = 4π(ρf − ~∇ · ~P )

Thus, we see that −∇ · ~P can be regarded as an effective charge density due to the

polarization of the medium.

3. (a) Consider moving charges giving rise to a current density ~J within a volume

V in the presence of electric and magnetic fields. Show that the total power

injected into the current distribution by the fields is given by
∫
V
d3x ~J · ~E.

(b) Using Maxwell’s equations, derive the Poynting theorem [You may need the

vector identity ∇ · (~P × ~Q) = (∇× ~P ) · ~Q− ~P · (∇× ~Q)].

(c) Give the physical interpretation of each term in the mathematical expression for

the Poynting theorem. What is the physical meaning of the Poynting theorem?

Solution (points: 4+5+4)

a) The power transferred to a point charge q on which a force ~F acts is the rate of

change of its kinetic energy, 1
2
mv2, that is, d(1

2
mv2)/dt = ~F · ~v. Using the Lorentz

force law and ~v · (~v × ~B) = 0, this becomes q~v · ~E. For charges contained in volume

d3x within a continuous charge distribution, one has q → ρd3x. Using ~J = ρ~v and

integrating over the volume of the current distribution, leads to the desired result.

b) To obtain the Poynting theorem, start with ~J · ~E and, using Maxwell’s equations,

rewrite ~J in terms of ~E and ~B. After some manipulations, one gets,

~J · ~E +
1

8π

∂

∂t

(
ε ~E · ~E +

1

µ
~B · ~B

)
+

c

4π
∇ · ( ~E × ~H) = 0

c) ~J · ~E: power injected into the current distribution by the electric field/unit volume.
1
8π

∂
∂t

(
ε ~E · ~E + 1

µ
~B · ~B

)
: Rate of change of energy densities of the electric and mag-

netic fields.
c

4π
∇· ( ~E× ~H): Energy flux per unit time per unit volume carried by the electromag-

netic fields. c
4π

( ~E × ~H) is the Poynting vector that corresponds to the energy flux

per unit area per unit time across a surface as follows from the divergence theorem,∫
V
d3x∇ · ( ~E × ~H) =

∫
S
~dS · ( ~E × ~H). The Poynting theorem is a statement of

conservation of energy and also provides a mathematical expression for the energy

carried by electromagnetic waves in the form of the Poynting vector.

4. (a) A current described by density ~J flows within a volume V in a magnetic field
~B. Compute the total force acting on the current distribution. Derive the

corresponding expression for a thin wire carrying total current I.

(b) Consider Maxwell’s equations in free space and in the absence of sources. For

solutions with space-time dependence given by ei(
~k·~x−ωt), show that ~E, ~B and

the wave vector ~k are all perpendicular to each other.
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Solution (points: 7+6)

a) The Lorentz force acting on a volume element d3x within the current distribution

is d~F =
1

c
(ρd3x)~v× ~B so that the force on the volume V is ~F = 1

c

∫
V
~J(~x)× ~B(~x) d3x.

For a wire we can write d3x = ~ds · ~dl with ~dl along the length of the wire and ~ds a

surface element over the cross section of the wire. In the thin wire approximation,
~J is parallel to ~dl and the variation of ~B over the cross section can be neglected.

Then,
∫
V
d3x ~J(~x)× ~B(~x) =

∫
l

∫
S
(~ds · ~dl)( ~J× ~B) =

∫
l

∫
S
(~ds · ~J)(~dl× ~B) = I

∫
l
~dl× ~B.

b) The given solutions are of the type,

~E(~x, t) = ~Eoe
i(~k·~x−ωt) , ~B(~x, t) = ~Boe

i(~k·~x−ωt)

which give ~∇· ~E = i~k · ~E (and similarly for ~B). Then ~∇· ~E = 0 and ~∇· ~B = 0 imply
~k · ~E = 0, ~k · ~B = 0. Now substituting the solutions in the remaining two Maxwell’s

equations gives ~k × ~E =
ω

c
~B and ~k × ~B = −ω

c
~E which proves that ~E and ~B are

also perpendicular to each other.

5. (a) Suppose we demand that equations ∇ · ~E = 4πρ and ∇ · ~B = 0 are valid only

at one instant of time t = t0. Show that the remainig two Maxwell’s equations

then insure that the above equations remain valid at all times.

(b) Starting with the wave equation for the vector potential ~A in Lorenz gauge,

write down the solution in terms of the spherically symmetric retarded Green’s

function (the Green’s function need not be derived) for a localized source
~J(~x, t) = ~J(~x)e−iωt. How does one characterize the Near, Intermediate and

Far zones? Discuss the solution in the Near zone.

Solution (points: 5+9)

a) Taking the divergences of ~∇× ~B − 1
c
∂ ~E
∂t

= 4π
c
~J and ~∇× ~E + 1

c
∂ ~B
∂t

= 0 and using

the continuity equation gives,

∂

∂t
(~∇ · ~E − 4πρ) = 0 ,

∂

∂t
(~∇ · ~B) = 0

which proves the result.

b) The wave equation for the vector potential in Lorenz gauge is

∇2 ~A− 1

c2
∂2 ~A

∂t2
= −4π

c
~J

The solution in terms of the spherically symmetric retarded Green’s function is

~A(~x, t) =
1

c

∫
d3x′

[
~J(~x′, t′)

]
ret

|~x− ~x′|

where the numerator is to be evaluatred at the retarded time t′ = t − |~x − ~x′|/c.
Hence,

[
~J(~x′, t′)

]
ret

= ~J(~x′, t′ = t−|~x−~x′|/c), and for the given sinusoidal current,

~A(~x, t) =
e−iωt

c

∫
d3x′

~J(~x′) eik|~x−~x
′|

|~x− ~x′|
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where k = ω/c (= 2π/λ, say). There are three length scales in the problem: 1)

the linear extension of the current distribution denoted by d (then, with the origin

of the coordinate system chosen within the current distribution, one has x′ . d),

2) the length λ which is the distance that a signal travels during one oscillation of

the source (note that 2π/ω = T is the time period of the oscillating source), 3) the

distance to the observer denoted by x = |~x|. For a well localized source, we always

assume that d << x, λ. Now, the space around the source may be devided into three

different zones depending on the position of the observer relative to the “wavelength”

λ: (i) d << x << λ: “near zone”, (ii) d << x ∼ λ: “intermediate zone” and (iii)

d << λ << x: “far zone”. In the near zone, we can make the approximation

k|~x− ~x′| ∼ k|~x| << 1 or eik|~x−~x
′| ∼ 1, so that

~A(~x, t) =
e−iωt

c

∫
d3x′

~J(~x′)

|~x− ~x′|

Except for the overall time modulation, this has the character of a magnetostatic

field.

6. (a) i. Verify that the two sourced Maxwell’s equations are contained in the rel-

ativistic equation ∂µF
µν = 4π

c
Jν .

ii. Show that this leads to the continuity equation in covariant form.

iii. Further, show that the relativistic equations of part (i) and (ii) have the

same form in all inertial reference frames.

(b) Assume that an inertial reference frame S̃ is moving away from a frame S with

velocity v in the positive x1 direction. If the observer in S measures fields

corresponding to an electrostatic potential φ(~x) = Q/x, where x =
√∑3

1 x
ixi,

find the electric and magnetic potentials as measured by the observer in S̃.

Interpret your result in physical terms.

Solution (points: 7+7)

a) (i) We start by writing the equation with the source Jν seperately for ν = 0 and

ν = j (where j is a space index). The index µ is summed over so all its values are

retained,

∂iF
i0 =

4π

c
J0 ∂0F

0j + ∂iF
ij =

4π

c
J j

where we have used F 00 = 0. Now we note that J0 = cρ, F i0 = Ei, F ij = −εijkBk

and ∂iF
ij = −εijk∂iBk = (~∇ × ~B)j. Thus, we recover the two sourced Maxwell

equations (you may avoid using εijk and write F12, etc., directly in terms of Bi),

~∇ · ~E = 4πρ , ~∇× ~B − 1

c

∂

∂t
~E =

4π

c
~J

(ii) Since ∂µ and ∂ν commute and F µν = −F νµ we have ∂µ∂νF
µν = 0. Hence the

given relativistic equation leads to ∂µJ
µ = 0.
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(iii) In a different Lorentz frame, the expressions ∂µF
µν − 4π

c
Jν and ∂µJ

µ take the

form

∂̃µ̃F̃
µ̃ν̃ − 4π

c
J̃ ν̃ = Lν̃ν(∂µF

µν − 4π

c
Jν)

and ∂̃µJ̃
µ = ∂µJ

µ, where Lµ̃µ are the components of the Lorentz transformation

matrix. Thus the expressions have the same form in the two frames and when the

equations are satisfied in the original frame, the corresponding equations in trans-

formed frame also hold (since L is invertible).

b) The electric potential φ(x) and magnetic potential ~A(x) combine into a 4-vector

Aµ = {A0 = φ, ~A} which under Lorentz transformations L transforms as

Ãµ(x̃) = LµνA
ν(L−1x̃)

In our case, ~A = 0 and the non-trivial components of L are, L0
0 = L1

1 = γ,

and L1
0 = L0

1 = −γβ. Therefore Lorentz transformation gives (suppressing the x̃

dependence)

φ̃ = γφ , Ã1 = −γβφ , Ã2 = Ã3 = 0

To complete the transformation, we have to express the xµ dependence of φ in terms

of x̃µ. For the given Lorentz transformation, x1 = γ(x̃1+βx̃0), x2 = x̃2 and x3 = x̃3,

so that x2 =
∑3

1 x
ixi = γ2(x̃1 + vt̃)2 + (x̃2)2 + (x̃3)2. Then,

φ̃(x̃) = γ
Q√

(γ2(x̃1 + vt̃)2 + (x̃2)2 + (x̃3)2)
, Ã1 = −βφ̃(x̃)

Physical interpretation: Ignoring relativistic effects, simply because of the relative

motion, the stationary charge Q at the origin of S appears, to the S̃ observer, as

a moving charge Q at a varying x1 distance x̃1 + vt̃, giving rise to a current −~vQ.

Hence it gives rise to both electric and magnetic fields. Factors of γ take care of

relativistic effects.
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