
Final Examination Paper for Electrodynamics-I
Date: Saturday, Jan 03, 2009, Time: 09:00 - 15:00 [Solutions]
Allowed help material: Physics and Mathematics handbooks or equivalent

Note: Please explain your reasoning and calculations clearly

Questions: 1 2 3 4 5 6 Total
Marks: 13 13 13 13 14 14 80

1. (a) Consider a charge q placed a distance d in front of an infinite plane conductor

kept at zero potential. Determine the potential Φ(~x) at any point in front of

the conductor using the method of images.

(b) Consider the Poisson equation, ∇2φ = −4πρ, in a volume V with a boundary S

over which Φ satisfies either Neumann or Dirichlet boundary conditions. Write

down the corresponding Green’s function equation and express the solutions Φ

in terms of the Neumann or Dirichlet Green’s functions.

Solution (points: 13)

a) For simplicity, choose a coordinate system such that the z-axis is perpendicular

to the conducting plane and the charge q lies on the z-axis with position vector dẑ.

By the symmetry of the problem, the image charge q′ should also be located on the

z-axis at some position −ẑd′. Then, at some point ~x with respect to the origin of

our coordinate system, the potential is given by

φ(~x) =
q

|~x− ẑd|
+

q′

|~x+ ẑd′|
.

For points ~x on the conducting surface, φ(~x|surface) = 0, but also , ~x · ẑ = 0. Hence,

0 =
q√

|x2 + d2|
+

q′√
|x2 + d′2|

,

and it should hold for all values of x = |~x|. Simple manipulations then show that

d′ = d and q′ = −q. The potential at any point is then given by

φ(~x) =
q

|~x− ẑd|
− q

|~x+ ẑd|
.

b) The solution is outlined here (for details see Jackson’s section 1.8 and 1.10, 3rd

edition): The Green’s function equation corresponding to the Laplace equation is

∇2G(~x− ~x′) = −4πδ(~x− ~x′) ⇒ G(~x− ~x′) =
1

|~x− ~x′|
+ F (~x, ~x′) ,
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where ∇2F (~x, ~x′) = 0 within the volume V and F is chosen such that G satisfies

specified boundary conditions on the boundary S of V . Now, in Green’s second

identity, ∫
V

d3x′(ψ1∇′2ψ2 − ψ2∇′2ψ1) =

∮
S

ds′(ψ1
∂ψ2

∂n′ − ψ2
∂ψ1

∂n′ ) ,

choose ψ1(~x
′) = φ(~x′) and ψ2(~x

′) = G(~x − ~x′) to get the formal solution to the

Laplace equation,

φ(~x) =

∫
V

d3x′ρ(~x′)G(~x− ~x′) +
1

4π

∮
S

ds′
[
G(~x− ~x′)

∂φ

∂n′ (~x
′)− φ(~x′)

∂

∂n′G(~x− ~x′)

]
.

For Dirichlet boundary conditions on φ, we are given φ(~x′) for all ~x′ on the surface

S. Then on G we need the Dirichlet boundary conditions

GD(~x− ~x′) = 0, for all ~x′ on S ,

leading to

φ(~x) =

∫
V

d3x′ρ(~x′)GD(~x− ~x′)− 1

4π

∮
S

ds′
[
φ(~x′)

∂

∂n′GD(~x− ~x′)

]
.

For Neumann boundary conditions on φ, we are given ∂φ
∂n′ (~x

′) for all ~x′ on S. How-

ever, we cannot simply impose ∂
∂n′G(~x − ~x′) = 0 since this contradicts the defining

equation for G. Then the simplest boundary condition is

∂

∂n′G(~x− ~x′) = −4π

A
, for all ~x′ on S ,

where A is the total area of the boundary S. This leads to the solution

φ(~x) = 〈φ〉S +

∫
V

d3x′ρ(~x′)GN(~x− ~x′) +
1

4π

∮
S

ds′
[
GN(~x− ~x′)

∂φ

∂n′ (~x
′)

]
,

where 〈φ〉S is average value of φ over the surface S.

2. (a) Consider an electric dipole of moment ~p placed at the origin. Evaluate the

electrostatic potential at a point ~x generated by this dipole.

(b) Consider a macroscopic volume V within a polarized dielectric material con-

taining free charges of density ρf (~x
′) and a dipole moment density ~P (~x ′). Com-

pute the electric potential φ(~x) due to free charges and dipoles within V. Ex-

press polarization charge density ρpol and the electric displacement vector ~D in

terms of ~P .

Solution (points: 13)

a) A dipole is constructed from charges q and −q a distance ~y apart. In the setup

given, the midpoint of ~y is the origin of the coordinate system. Then the potential

at any point ~x is given by,

Φ(~x) =
q

|~x− ~y/2|
− q

|~x+ ~y/2|
.
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Expanding in powers of 1/x (where x = |~x|),

1

|~x∓ ~y/2|
=

1

x
± ~y · ~x

2x3
+ · · · .

Then, in the limit ~y → 0, keeping ~p = q~y fixed, we obtain the dipole potential

Φ(~x) =
~p · ~x
x3

.

b) In a medium of dipole moment density ~P (~x), the dipole moment in volume ∆V

around a point ~x′ is ∆V ~P (~x′). This contributes to the electrostatic potential at ~x as

∆V ~P (~x′) · (~x− ~x′)/|~x− ~x′|3. Then the total potential at ~x is

Φ(~x) =

∫
V

d3x′

(
ρf (~x

′)

|~x− ~x′|
+
~P (~x′) · (~x− ~x′)

|~x− ~x′|3

)
.

The second term becomes∫
V

d3x′ ~P (~x′) · ~∇′(
1

|~x− ~x′|
) = −

∫
V

d3x′
~∇′ · ~P (~x′)

|~x− ~x′|
,

where we have dropped a surface term arising from an integration by parts. Now,

using ∇2
(x)(1/|~x− ~x′|) = −4πδ(~x− ~x′), one gets

~∇ · ~E = 4π(ρf − ~∇ · ~P ) .

Thus, we see that −∇ · ~P = ρpol can be regarded as an effective charge density

due to the polarization of the medium. The above equation can also be rewritten as
~∇ · ( ~E + 4π ~P ) = 4πρf . In terms of the electric displacement vector ~D = ~E + 4π ~P ,

this becomes ~∇ · ~D = 4πρf .

3. (a) Consider a length l of thin conducting wire, through which a current I flows,

placed in a magnetic field ~B. Derive the expression for the force that acts on

the wire segment. For a rectangular wire loop of height L and width w placed

in a uniform magnetic field which is perpendicular to the sides of length L,

compute the net force and torque acting on the the wire loop.

(b) Show that, in time dependent situations, the equation ~∇× ~B = (4π/c) ~J is not

consistent with charge conservation. Derive the modified equation by requiring

consistency with charge conservation.

Solution (points: 13)

a) The Lorentz force acting on a volume element d3x within the current distribution

is d~F =
1

c
(ρd3x)~v× ~B so that the force on the volume V is ~F = 1

c

∫
V
~J(~x)× ~B(~x) d3x.

For a wire we can write d3x = ~ds · ~dl with ~dl along the length of the wire and ~ds a

surface element over the cross section of the wire. In the thin wire approximation,

3



~J is parallel to ~dl and the variation of ~B over the cross section can be neglected.

Then,
∫

V
d3x ~J(~x)× ~B(~x) =

∫
l

∫
S
(~ds · ~dl)( ~J × ~B) =

∫
l

∫
S
(~ds · ~J)(~dl× ~B). This gives

the force on wire l due to the magnetic field ~B as,

~F =
I

c

∫
l

~dl × ~B .

Now consider a rectangular current loop with its height L parallel to the z-axis,

placed in a uniform magnetic field ~B in the ŷ direction. Clearly the loop edges of

length w are in the x− y plane. Let θ denote the angle between the vector normal to

the loop area and the magnetic field ~B along ŷ. Clearly this also is the angle between

the edge of length w and the x-axis. Now using the above formula, the forces on

the two edges Lẑ and −Lẑ are ∓(I/c)LBx̂, respectively. The forces on the top and

bottom edges of length w become ±(I/c)wB cos θẑ. The total force adds up to zero.

As for the torque, the forces along ẑ act colinearly and produce no torque. The pair

of forces along x̂ are not colinear and produce a torque ~τ = ~w× ~F , where ~w denotes

the vector length of top edge of the loop. Then,

~τ = wF sin θ ẑ = (I/c)wLB sin θ ẑ .

b) Taking the divergence of both sides of the equation, the left hand side vanishes
~∇ · (~∇ × ~B) = 0. But, on using the continuity equation, the right hand side is

proportional to ~∇ · ~J = −∂ρ/∂t which is non-zero in time dependent situations.

Hence in these cases, the equation is not consistent with charge conservation. To

restore consistency with charge conservation, we have to modify ~J on the right hand

side to some ~J + · · · so that the new quantity always remains divergenceless. Such a

quantity is obtained by combining the continuity equation with the Maxwell equation
~∇ · ~E = 4πρ which gives, ~∇ · ( ~J + 1

4π
∂ ~E/∂t) = 0. Hence, the modified equation

becomes ~∇× ~B − 1
c

∂ ~E
∂t

= 4π
c
~J .

4. Consider Maxwell’s equations in a medium of constant permittivity ε and perme-

ability µ in the absence of sources.

(a) Show that the equations admit plane-wave solutions. Determine the velocity

of the plane wave and explain the index of refraction.

(b) Show that ~E, ~B and the wave vector ~k are all perpendicular to each other.

Solution (points: 13)

a) To show that Maxwell’s equations in the absence of sources admit plane wave

solutions, one first shows that they reduce to wave equations for ~E and ~B. For this,

take curls of the two equations containing ~∇ × ~E and ~∇ × ~B and simplify using

the vector identity ~∇× (~∇× ~E) = −∇2 ~E + ~∇(~∇ · ~E). Now use the remaining two

Maxwell equations to get decoupled wave equations of ~E and ~B,(
∇2 − µε

c2
∂2

∂t2

)
~E = 0 ,

(
∇2 − µε

c2
∂2

∂t2

)
~B = 0 .
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These admit plane wave solutions,

~E = ~E0e
i(~k·~x−ωt) , ~B = ~B0e

i(~k·~x−ωt) , with k2 =
µε

c2
ω2 .

From the wave equations or from the solutions, one can read off the wave velocity

in the medium as v = c/
√
µε. The index of refraction for electromagnetic waves in

a medium is given by n = c/v =
√
µε.

b) For the above solutions, ~∇· ~E = i~k · ~E and ~∇× ~E = i~k× ~E with similar results for
~B. Then the Maxwell equations ~∇ · ~E = 0 and ~∇ · ~B = 0 imply ~k · ~E = 0, ~k · ~B = 0.

So ~E and ~B are perpendicular to the wave vector ~k. Now substituting the solutions

in the remaining two Maxwell’s equations gives ~k × ~E =
ω

c
~B and ~k × ~B = −ω

c
~E

which proves that ~E and ~B are also perpendicular to each other.

5. (a) Starting with Maxwell’s equations in the presence of sources, introduce the

potentials ~A and Φ and rewrite the equations in terms of the potentials in the

Lorenz gauge.

(b) Write down the solution for ~A in terms of the spherically symmetric retarded

Green’s function (the Green’s function need not be derived) for a localized

source with a sinusoidal time dependence, ~J(~x, t) = ~J(~x)e−iωt. How does one

characterize the Near, Intermediate and Far zones? Discuss the solution in the

Near zone.

Solution (points: 14)

a) Let us consider the two homogeneous equations (the ones without sources). ~∇· ~B =

0 implies that one can always express the magnetic field as ~B = ~∇× ~A. Using this,

the remaining homogeneous equation becomes, ~∇×( ~E+ 1
c
∂ ~A/∂t) = 0, which implies

the existence of a scalar potential such that ~E = −~∇Φ− 1
c
∂ ~A/∂t = 0.

Now we substitute these into the equations with sources. ~∇ · ~E = 4πρ gives,

∇2Φ +
1

c

∂

∂t
(~∇ · ~A) = −4πρ .

The Maxwell equation sourced by ~J gives (on using ~∇×(~∇× ~A) = −∇2 ~A+~∇(~∇· ~A)),

∇2 ~A− 1

c2
∂2 ~A

∂t2
− ~∇

(
~∇ · ~A+

1

c

∂Φ

∂t

)
= −4π

c
~J .

The Lorenz gauge condition ~∇ · ~A + 1
c
(∂Φ/∂t) = 0 decouples these two equations

giving,

∇2Φ− 1

c2
∂2Φ

∂t2
= −4πρ , ∇2 ~A− 1

c2
∂2 ~A

∂t2
= −4π

c
~J .

b) The solution of the above equation for ~A in terms of the spherically symmetric

retarded Green’s function is

~A(~x, t) =
1

c

∫
d3x′

[
~J(~x′, t′)

]
ret

|~x− ~x′|
,
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where the numerator is to be evaluated at the retarded time t′ = t−|~x−~x′|/c. Hence,[
~J(~x′, t′)

]
ret

= ~J(~x′, t′ = t− |~x− ~x′|/c), and for the given sinusoidal current,

~A(~x, t) =
e−iωt

c

∫
d3x′

~J(~x′) eik|~x−~x′|

|~x− ~x′|
,

where k = ω/c (= 2π/λ, say). There are three length scales in the problem: 1)

the linear extension of the current distribution denoted by d (then, with the origin

of the coordinate system chosen within the current distribution, one has x′ . d),

2) the length λ which is the distance that a signal travels during one oscillation of

the source (note that 2π/ω = T is the time period of the oscillating source), 3) the

distance to the observer denoted by x = |~x|. For a well localized source, we always

assume that d << x, λ. Now, the space around the source may be divided into three

different zones depending on the position of the observer relative to the “wavelength”

λ: (i) d << x << λ: “near zone”, (ii) d << x ∼ λ: “intermediate zone” and (iii)

d << λ << x: “far zone”. In the near zone, we can make the approximation

k|~x− ~x′| ∼ k|~x| << 1 or eik|~x−~x′| ∼ 1, so that

~A(~x, t) =
e−iωt

c

∫
d3x′

~J(~x′)

|~x− ~x′|
.

Except for the overall time modulation, this has the character of a magnetostatic

field.

6. (a) Show that Maxwell’s 4 equations are contained in the two relativistic equations

∂µF
µν = 4π

c
Jν and ∂µFνρ + ∂ρFµν + ∂νFρµ = 0. Further, show that the two

relativistic equations have the same form in all inertial reference frames.

(b) Assume that an inertial reference frame S̃ is moving away from a frame S with

velocity v in the positive x1 direction. If the observer in S measures fields

corresponding to an electrostatic potential φ(~x) = Q/x, where x =
√∑3

1 x
ixi,

find the electric and magnetic potentials as measured by the observer in S̃.

Solution (points: 14)

a) We start by writing the equation with the source Jν separately for ν = 0 and

ν = j (where j is a space index). The index µ is summed over, so all its values are

retained,

∂iF
i0 =

4π

c
J0 , ∂0F

0j + ∂iF
ij =

4π

c
J j ,

where we have used F 00 = 0. Now we note that J0 = cρ, F i0 = Ei, F ij = −εijkBk

and ∂iF
ij = −εijk∂iB

k = (~∇ × ~B)j. Thus, we recover the two sourced Maxwell

equations (you may also avoid using εijk and write F12, etc., directly in terms of

Bi),

~∇ · ~E = 4πρ , ~∇× ~B − 1

c

∂

∂t
~E =

4π

c
~J .
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In the expression, Pµνρ = ∂µFνρ + ∂ρFµν + ∂νFρµ, the indices are not summed over.

Moreover using the antisymmetry of Fµν one can show that Pµνρ is antisymmetric

under the exchange of any two of its indices. So it is non-zero only when µ, ν, ρ all

take different values. Now, there are too possibilities: (1) all indices take spacial

values, say, µ = i, ν = j, ρ = l. Since each index can take only 3 values, all choices

are equivalent to µ = 1, ν = 2, ρ = 3. (2) One index denotes time and the two

other space, say, µ = 0, ν = j, ρ = k. In case (1), writing Fij = −εijkBk, one gets

P123 = −
∑3

k=1(ε23k∂1B
k + ε12k∂3B

k + ε31k∂2B
k). In each term, the value of the

index k cannot be the same as either of the other two indices on the ε-tensor. Hence

it has to equal the third possible value, which is the index on the derivative. Then,

P123 = −ε123(∂1B
1 + ∂2B

2 + ∂3B
3) = −~∇ · ~B = 0 ,

using ε123 = 1.

In case (2), P0ij = ∂0Fij + ∂jF0i + ∂iFj0 = ∂0F
ij − ∂jF

0i − ∂iF
j0. Now, for {i, j} =

{1, 2}, {1, 3}, {2, 3}, one gets

P012 = −(∂0B
3 + ∂1E

2 − ∂2E
1) = −(~∇× ~E +

1

c

∂ ~B

∂t
)3 ,

and the corresponding expressions for P013 and P023. Hence one recovers the two

sourceless Maxwell equations.

In a different Lorentz frame, the two expressions ∂µF
µν− 4π

c
Jν and ∂µF νρ +∂ρF µν +

∂νF ρµ take the form

∂̃µ̃F̃
µ̃ν̃ − 4π

c
J̃ ν̃ = Lν̃

ν(∂µF
µν − 4π

c
Jν) ,

and

∂̃µ̃F̃ ν̃ρ̃ + ∂̃ρ̃F̃ µ̃ν̃ + ∂̃ ν̃F̃ ρ̃µ̃ = Lµ̃
µL

ν̃
νL

ρ̃
ρ(∂

µF νρ + ∂ρF µν + ∂νF ρµ) ,

where Lµ̃
µ are the components of the Lorentz transformation matrix. These expres-

sions have exactly the same form in the two frames and when the equations in the

original frame are satisfied, the corresponding equations in transformed frame also

hold.

b) The electric potential φ(x) and magnetic potential ~A(x) combine into a 4-vector

Aµ = {A0 = φ, ~A} which under Lorentz transformations L transforms as

Ãµ(x̃) = Lµ
νA

ν(L−1x̃) .

In our case, ~A = 0 and the non-trivial components of L are, L0
0 = L1

1 = γ,

and L1
0 = L0

1 = −γβ. Therefore Lorentz transformation gives (suppressing the x̃

dependence)

φ̃ = γφ , Ã1 = −γβφ , Ã2 = Ã3 = 0 .

To complete the transformation, we have to express the xµ dependence of φ in terms

of x̃µ. For the given Lorentz transformation, x1 = γ(x̃1+βx̃0), x2 = x̃2 and x3 = x̃3,

so that x2 =
∑3

1 x
ixi = γ2(x̃1 + vt̃)2 + (x̃2)2 + (x̃3)2. Then,

φ̃(x̃) = γ
Q√

(γ2(x̃1 + vt̃)2 + (x̃2)2 + (x̃3)2)
, Ã1 = −βφ̃(x̃) .
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