
Final Examination Paper for Electrodynamics-I
Date: Friday, Oct 31, 2008, Time: 09:00 - 15:00 [Solutions]
Allowed help material: Physics and Mathematics handbooks or equivalent

Note: Please explain your reasoning and calculations clearly

Questions: 1 2 3 4 5 6 Total
Marks: 13 14 13 14 13 13 80

1. (a) Show that the energy density stored in an electrostatic field is given by w =
1
8π
~E · ~E (or the corresponding expression in SI units).

(b) Consider the solutions of the Poisson equation, ∇2φ = −4πρ, in a volume V

with a boundary S. Show that a solution is uniquely determined by specifying

either Neumann or Dirichlet boundary conditions on S.

Solution (points: 6+7)

a) Electrostatic fields are created by charge distributions and the energy stored in

them is the energy spent in building up the charge distribution adiabatically. This can

be calculated as follows: Consider a charge distribution specified by a charge density

ρ(~x). The resulting electrostatic potential φ then satisfies ∇2φ(~x) = −4πρ(~x). Let

us add a small extra amount of charge to change the distribution to ρ + δρ. The

electrostatic energy of the new charges in the old potential is δW =
∫
d3xδρ(~x)φ(~x)

and this is the work required to change the charge density infinitesimally. To compute

the total work, one needs to integrate this out from ρ = 0 to some final ρ. One way

of doing this is to realize that δρ is associated with a change δφ in the potential

satisfying, ∇2δφ(~x) = −4πδρ(~x). Hence, δW can be written as (on dropping a

surface term and using ~E = −~∇φ),

δW = − 1

4π

∫
d3x(∇2δφ)φ =

1

4π

∫
d3x(~∇δφ) · ~∇φ

=
1

4π

∫
d3x(δ ~E) · ~E =

1

8π

∫
d3xδ( ~E · ~E)

This clearly is a variation W = 1
8π

∫
d3x( ~E · ~E) as the charge density is varied. From

here the energy density can be read off as w = 1
8π
~E · ~E.

b) The strategy is to start with two possibly different solutions φ1 and φ2 of the Pois-

son equation satifying the same boundary conditions (either Neumann or Dirichlet).

Define U = φ2 − φ1 which then satisfies the Laplace equation. Green’s first identity

then leads to U = 0 (Dirichlet) or U = const (Neumann) from which the uniqueness

of the solution follows (for details of the proof, see section 1.9 of Jackson’s book, or

the class notes).

2. Consider an external electric field given by Ei = Ci +Dijx
j in a region of space free

of charges and currents.
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(a) Show that the matrix Dij is traceless (
∑

iDii = 0) and symmetric (Dij =

Dji). What is the external potential Φext(~x) corresponding to this electric field

(ignore the undetermined constant piece)?

(b) In this external field place a conducting sphere of radius R centred at ~x = 0

and carrying zero net charge. Suppose the polarisation of the sphere in the

external field is described by a dipole moment pi and a quadrupole moment Qij.

Write the expression for the induced potential Φin(~x) for |~x| ≥ R generated

by the multipole moments in terms of pi and Qij. What is the total potential

Φext + Φin inside the sphere (|~x| ≤ R)?

(c) Determine pi and Qij in terms of Ci, Dij and R and find the total potential

Φext + Φin outside the sphere (|~x| ≥ R).

(d) Compute the induced surface charge density on the sphere (Hint: If ei denote

the basis vectors in Cartesian coordinates, then ~x = xiei and for the radial

unit vector, x̂ = ~x/|~x| = x̂iei. In spherical coordinates one can write, xi = xx̂i

where x̂3 = cos θ, x̂1 = sin θ cosφ, x̂2 = sin θ sinφ. Hence, they do not vary

with radial distance x).

Solution (points: 4+3+4+3)

a) The electric field satisfies ~∇ · ~E =
∑

i ∂iE
i = 0 implying

∑
iDii = 0 and (~∇ ×

~E)i =
∑

jk ε
jk
i ∂jEk = 0 implying

∑
jk ε

jk
i Djk = 0 or Djk = Dkj. Therefore, the

matrix D is traceless and symmetric. The corresponding potential, consistent with
~E = −∇Φext, is

Φext = −
∑
i

Cix
i − 1

2

∑
ij

Dijx
ixj

(as stated in the problem, we have set the constant part of Φext equal to zero)

b) For |~x| ≥ R, the induced potential due to the polarized sphere is the same as that

due a dipole of moment ~p and a quadrupole of moment matrix Qij placed at the

origin,

Φin =
~p · ~x
x3

+
1

2

Qijx
ixj

x5

The total potential Φext + Φin inside the sphere is zero (up to a constant).

c) The sphere being conducting, the total potential Φin + Φext on its surface must

vanish, (
pix

i

R3
+

1

2

Qijx
ixj

R5
− Cixi −

1

2
Dijx

ixj
) ∣∣∣
|~x|=R

= 0

Since the xi vary on the surface, comparing terms with the same tensor structure,

one gets pi = R3Ci and Qij = R5Dij (note that in general the total potential on the

surface is a constant, not necessarily zero. However, the xi dependence of Φin+Φext

on the surface then shows that this constant is zero at long as we drop the constant

part of Φext as we are told to do). The total potential for |~x| ≥ R is then,

Φ = Φin + Φext = Cix
i

(
R3

x3
− 1

)
+

1

2
Dijx

ixj
(
R5

x5
− 1

)
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d) Using the notation described in the question, one can write the total potential φ

in spherical polar coordinates as

Φ = Cix̂
i

(
R3

x2
− x
)

+
1

2
Dijx̂

ix̂j
(
R5

x3
− x2

)
where x̂i are independent of x = |~x|, depending only on the angular variables. The

surface charge density is given by ( ~E2− ~E1) · n̂ = 4πσ where n̂ is the unit normal to

the surface of the sphere. In this case, ~E1 = 0 and ~E2 · n̂ = −∂Φ/∂x|x=R. Therefore,

σ = − 1

4π

∂Φ

∂x

∣∣∣
x=R

=
1

4π

(
3Cix̂

i +
5

2
RDijx̂

ix̂j
)

3. (a) Starting from the Biot-Savart law,

~B(~x) =
1

c

∫
d3x′ ~J(~x ′)× ~x− ~x ′

|~x− ~x ′|3

derive the two Maxwell equations involving ~∇· ~B and ~∇× ~B for time dependent

situations.

(b) The magnetic moment of current distribution is given by

~m =
1

2c

∫
d3x ′[~x ′ × ~J(~x ′)]

Derive the expression for ~m for a thin wire carrying current I. If the thin wire

is a circular loop of radius a, using your formula, find the potential energy of

the loop in a uniform magnetic field ~B

Solution (points: 7+6)

a) We need the following relations: ~∇× (~∇× ~A) = ~∇(~∇ · ~A)−∇2 ~A and

~∇ 1

|~x− ~x ′|
= − ~x− ~x ′

|~x− ~x ′|3
= −~∇′ 1

|~x− ~x ′|
, ∇2 1

|~x− ~x ′|
= −4πδ3(~x− ~x ′),

Note that ~∇ involves differentiations with respect to ~x while ~∇′ involves differenti-

ations with respect to ~x ′. This difference should be kept in mind. Using the above,

the Biot-Savart law can be rewritten as ~B(~x) = 1
c
~∇ × (

∫
d3x′ ~J(~x ′)/|~x− ~x ′|) from

which it immediately follows that ~∇ · ~B = 0 (by the vector identity ~∇ · ~∇× ( ) = 0).

Furthermore,

~∇× ~B(~x) =
1

c
~∇×

(
~∇×

∫
d3x′ ~J(~x ′)/|~x− ~x ′|

)
=

1

c
~∇
(∫

d3x′ ~J(~x ′) · ~∇ 1

|~x− ~x ′|

)
− 1

c

∫
d3x′ ~J(~x ′)∇2 1

|~x− ~x ′|
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= −1

c
~∇
(∫

d3x′ ~J(~x ′) · ~∇′ 1

|~x− ~x ′|

)
+

4π

c
~J(~x)

= −1

c
~∇
∫
d3x′

(
~∇′ ·

~J(~x ′)

|~x− ~x ′|
−
~∇′ · ~J(~x ′)

|~x− ~x ′|

)
+

4π

c
~J(~x)

= −1

c
~∇
∮

~dS ′ ·
~J(~x ′)

|~x− ~x ′|
− 1

c

∂

∂t
~∇
∫
d3x′

ρ(~x ′)

|~x− ~x ′|
+

4π

c
~J(~x)

The first integral is a surface term and vanishes. The second integral becomes,

−1

c

∂

∂t
~∇
∫
d3x′

ρ(~x′)

|~x− ~x′|
= −1

c

∂

∂t
~∇Φ(~x) =

1

c

∂

∂t
~E

and hence ~∇× ~B − 1
c
∂
∂t
~E = 4π

c
~J .

b) If ~dl is a small displacement along the thin wire, then,
∫
V
d3x′ =

∫
l

∫
S
~dl · ~dS,

where S is the cross section area at a point l. Furthermore, at the same point, ~J

and ~dl are parellel. Therefore,

~m =
1

2c

∫
l

∫
S

~dl · ~dS[~x ′ × ~J(~x ′)] =
1

2c

∫
l

∫
S

~J · ~dS[~x ′ × ~dl]

For a thin wire, at any point l along its length, the variation of ~x ′ over its cross

section is very small and hence it can be replaced by some ~x which is the average

of ~x ′ over the cross section. Now, the surface integral does not affect ~x and gives,∫
S
J · dS = I, leading to,

~m =
I

2c

∫
l

~x× ~dl

For a circular loop of radius a, choosing the origin at the center of the loop for

convenience, ~x × ~dl = a sin(π/2)n̂ dl, where n̂ is a unit vector normal to the loop

area and its direction given by the right-hand-rule relative to the direction of the

current I. Then, ~m = (I/2c)2πa2n̂ and the potential enery of the loop is given by

−~m · ~B = −πa2I
c
n̂ · ~B.

4. A straight piece of cylindrical wire of length L and radius a has a resistance R and

carries current I.

(a) Find the electric and magnetic fields on the surface of the wire and indicate

their directions.

(b) Evaluate the energy carried into the wire by the above electric and magnetic

fields.

(c) What happens to this energy in the steady state? Verify your answer using

the Poynting theorem in the thin wire approximation.

Solution (points: 5+5+4)

a)The electric field on the surface is given by E = Φ/L where the constant potential

difference Φ is given by Ohm’s law, Φ = IR. Hence, E = IR/L. The direction

4



of ~E is parallel to the current and hence to the wire. The magnetic field on the

surface is given by Ampere’s law as B = 2I/ca (This is obtained by integrating
~∇× ~B = (4π/c) ~J over a cross section of the wire and using the cylindrical symmetry

of the problem). The direction of ~B is given by the “right-hand-rule” which makes

it perpendicular to both ~E and the radius vector of the cylindrical wire. Hence the

direction of ~B is along the angular direction of the cylinder.

b) The energy carried into the wire by electric and magnetic fields is the surface

integral of the Poynting vector over the surface of the wire. The Poynting vector is
~S = (c/4π) ~E× ~B. Since ~E is perpendicular to ~B, we have, for the magnitude of the

Poynting vector, S = I2R/(2πaL). ~S is directed radially inward, ~S = −r̂ S. The

flux
∫
~ds · ~S evaluated over the surface of a segment of length L of the cylindrical

wire receives contributions only from the curved side-area of the cylinder (of area

2πaL) and not from the top and bottom caps (since then ~S is perpendicular to ~ds).

Hence the total flux is ∫
~ds · ~S = −I2R

The sign is due to fact that ~S is directed radially inward while, for the cylinder, ~ds

is directed radially outward. Physically, the negative sign signifies that energy enters

into the volume under consideration, rather than leave it.

c) Since in this problem the electric and magnetic fields are constant, the Poynting

theorem reduces to

−
∫
V

d3x~E · ~J =

∫
∂V

~ds · ~S

The left hand side is recognized as the expression for the energy injected into the

current distribution by the electric and magnetic fields. Thus the energy carried

into the wire by the Poynting vector is fully converted into the kinetic energy of the

charge carriers. Since the current is constant, the system is in steady state and

the extra kinetic energy acquired by the charges is dissipated into heat as a result of

collisions within the resistive medium. The left hand side can be computed in the

thin wire approximation. For our wire, d3x = ~dl · ~ds where ~dl is along the length of

the wire and the ~ds integration is over the cross sectional area of the wire. In the

thin wire approximation, ~J is parallel to ~dl, so that (~dl · ~ds)( ~J · ~E) = ( ~J · ~ds)(~dl · ~E).

Moreover, ~E can be taken to be constant over the cross section of the thin wire.

Then

−
∫
V

d3x~E · ~J ≈ −(

∫
~J · ~ds)(

∫
~dl · ~E) = −IΦ = −I2R

which verifies the result of part b) of the question.

5. (a) Write the expressions for the spherically symmetric advanced and retarded

Greens functions and describe their physical significance.

(b) The electric field satisfies the wave equation,

(∇2 − 1

c2
∂2

∂t2
) ~E = 4π(

1

c2
∂ ~J

∂t
+ ~∇ρ)
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Write down the solution in terms of the spherically symmetric retarded Green

function and work out Jefimenko’s generalization of the Coulomb law.

Solution (points: 6+7)

a) Corresponding to a wave equation (∇2 − 1
c2

∂2

∂t2
)ψ = −4πf(~xt), the equation for

the Greens function is(
∇2 − 1

c2
∂2

∂t2

)
G = −4πδ3(~x− ~x′)δ(t− t′)

and the spherically symmetric advanced and retarded solutions are given by

G+(~x, t; ~x′, t′) =
1

R
δ(t′ − t+R/c) (retarded)

G−(~x, t; ~x′, t′) =
1

R
δ(t′ − t−R/c) (advanced)

where, R = |~x− ~x ′|. The formal solution for ψ in terms of G is,

ψ(~x, t) = ψ0(~x, t) +

∫
d3x′

∫
dt′G(~x, t; ~x ′, t′)f(~x ′, t′)

where ψ0(~x, t) is the solution to the homogeneous equation (f = 0) and G is either

G+ or G−. Clearly, G+ 6= 0 only when t = t′ + R/c. Let us interpret t′ as the time

when a signal is emitted by the source f(~x ′, t′) at point ~x ′ (signal means a variation

of the source f). Then the above equations imply that this signal will reach a point

~x in space only at a later time t = t′+R/c, meaning that the signal requires a finite

travel time R/c. For the advance function, G− 6= 0 when t = t′ −R/c. If we retain

the same interpretation for t′ and ~x ′ as above, then the solution with G− describes

a situation where a signal emitted by the source at time t′ reached the observer at

point ~x at an earlier time t′ − R/c. In other words, naively, the advanced function

propagates a signal backwards in time.

b) Comparing the wave equation for ~E with the equations in part a), one can write

the solution at the retarded time t as

~E(~x, t) = − 1

c2

∫
d3x′

[
∂ ~J(~x′,t′)
∂t′

+ ~∇′ρ(~x′, t′)
]
t′=t−~x−~x′

c

|~x− ~x′|

To express [~∇′ρ]ret in term of ~∇′[ρ]ret, note that,

∂[ρ]ret
∂x′i

=
∂ρ(x′, t′ = t− |~x−~x

′|
c

)

∂x′i
=

[
∂ρ(x′, t′)

∂x′i

]
ret

+

[
∂ρ(x′, t′)

∂t′

]
ret

∂(t− |~x− ~x′|/c)
∂x′i

where, ∂(t−|~x−~x′|/c)
∂x′i

= −1
c
∂|~x−~x′|
∂x′i

= 1
c
∂|~x−~x′|
∂xi . In vector notation,

~∇′[ρ(x′, t′)]ret =
[
~∇′ρ(x′, t′)

]
ret

+
1

c

[
∂ρ(x′, t′)

∂t′

]
ret

~∇R
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We can use this to substitute for [~∇′ρ]ret in the expression for ~E in terms of ~∇′[ρ]ret.

Now the term involving
∫
d3x′~∇′[ρ]ret/R can be integrated by parts to get Jefimenko’s

generalization of Coulomb’s law,

~E(~x′, t′) =

∫
d3x′

(
[ρ(~x′, t′)]ret

R2
R̂ +

[
∂ρ(~x′, t′)

∂t′

]
ret

R̂

Rc
−

[
∂ ~J(~x′, t′)

∂t′

]
ret

1

Rc2

)

where R̂ = ~∇R

6. (a) Show that Maxwell’s 4 equations are contained in the two relativistic equations

∂µF
µν = 4π

c
Jν and ∂µFνρ + ∂ρFµν + ∂νFρµ = 0. Further, show that the two

relativistic equations have the same form in all inertial reference frames.

(b) Assume that an inertial reference frame S̃ is moving away from a frame S with

velocity v in the positive x1 direction. If the observer in S measures fields

corresponding to an electrostatic potential φ(~x) = Q/x, where x =
√∑3

1 x
ixi,

find the electric and magnetic potentials as measured by the observer in S̃.

Discuss the non-relativistic limit of your result.

Solution (points: 4+4+5)

a) We start by writing the equation with the source Jν seperately for ν = 0 and

ν = j (where j is a space index). The index µ is summed over so all its values are

retained,

∂iF
i0 =

4π

c
J0 ∂0F

0j + ∂iF
ij =

4π

c
J j

where we have used F 00 = 0. Now we note that J0 = cρ, F i0 = Ei, F ij = −εijkBk

and ∂iF
ij = −εijk∂iBk = (~∇ × ~B)j. Thus, we recover the two sourced Maxwell

equations (you may also avoid using εijk and write F12, etc., directly in terms of

Bi),

~∇ · ~E = 4πρ , ~∇× ~B − 1

c

∂

∂t
~E =

4π

c
~J

In the expression, Pµνρ = ∂µFνρ + ∂ρFµν + ∂νFρµ, the indices are not summed over.

Moreover using the antisymmetry of Fµν one can show that Pµνρ is antisymmetric

under the exchange of any two of its indices. So it is non-zero only when µ, ν, ρ all

take different values. Now, there are too possibilities: (1) all indices take spacial

values, say, µ = i, ν = j, ρ = l. Since each index can take only 3 values, all choices

are equivalent to µ = 1, ν = 2, ρ = 3. (2) One index denotes time and the two

other space, say, µ = 0, ν = j, ρ = k. In case (1), writing Fij = −εijkBk, one gets

P123 = −
∑3

k=1(ε23k∂1B
k + ε12k∂3B

k + ε31k∂2B
k). In each term, the value of the

index k cannot be the same as either of the other two indices on the ε-tensor. Hence

it has to equal the third possible value, which is the index on the derivative. Then,

P123 = −ε123(∂1B
1 + ∂2B

2 + ∂3B
3) = −~∇ · ~B = 0

using ε123 = 1.
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In case (2), P0ij = ∂0Fij + ∂jF0i + ∂iFj0 = ∂0F
ij − ∂jF 0i− ∂iF j0. Now, for {i, j} =

{1, 2}, {1, 3}, {2, 3}, one gets

P012 = −(∂0B
3 + ∂1E

2 − ∂2E
1) = −(~∇× ~E +

1

c

∂ ~B

∂t
)3

and the corresponding expressions for P013 and P023. Hence one recovers the two

sourceless Maxwell equations.

In a different Lorentz frame, the two expressions ∂µF
µν− 4π

c
Jν and ∂µF νρ+∂ρF µν+

∂νF ρµ take the form

∂̃µ̃F̃
µ̃ν̃ − 4π

c
J̃ ν̃ = Lν̃ν(∂µF

µν − 4π

c
Jν)

and

∂̃µ̃F̃ ν̃ρ̃ + ∂̃ρ̃F̃ µ̃ν̃ + ∂̃ ν̃F̃ ρ̃µ̃ = Lµ̃µL
ν̃
νL

ρ̃
ρ(∂

µF νρ + ∂ρF µν + ∂νF ρµ)

where Lµ̃µ are the components of the Lorentz transformation matrix. These expres-

sions have exactly the same form in the two frames and when the equations in the

original frame are stisfied, the corresponding equations in transformed frame also

hold.

b) The electric potential φ(x) and magnetic potential ~A(x) combine into a 4-vector

Aµ = {A0 = φ, ~A} which under Lorentz transformations L transforms as

Ãµ(x̃) = LµνA
ν(L−1x̃)

In our case, ~A = 0 and the non-trivial components of L are, L0
0 = L1

1 = γ,

and L1
0 = L0

1 = −γβ. Therefore Lorentz transformation gives (suppressing the x̃

dependence)

φ̃ = γφ , Ã1 = −γβφ , Ã2 = Ã3 = 0

To complete the transformation, we have to express the xµ dependence of φ in terms

of x̃µ. For the given Lorentz transformation, x1 = γ(x̃1+βx̃0), x2 = x̃2 and x3 = x̃3,

so that x2 =
∑3

1 x
ixi = γ2(x̃1 + vt̃)2 + (x̃2)2 + (x̃3)2. Then,

φ̃(x̃) = γ
Q√

(γ2(x̃1 + vt̃)2 + (x̃2)2 + (x̃3)2)
, Ã1 = −βφ̃(x̃)

In the non-relativistic limit, β = v/c→ 0 and γ → 1 so that,

φ̃(x̃) =
Q√

(x̃1 + vt̃)2 + (x̃2)2 + (x̃3)2
, Ã1 → 0
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