
Final Examination Paper for Electrodynamics-I
Date: Thursday, Jan 03, 2008, Time: 09:00 - 15:00 [Solutions]
Allowed help material: Physics and Mathematics handbooks or equivalent

Note: Please explain your reasoning and calculations clearly

Questions: 1 2 3 4 5 6 Total
Marks: 13 14 14 13 13 13 80

1. Consider a grounded conducting sphere of radius a centred at the origin of the

coordinate system. Place a point charge q at position ~y outside the sphere.

(a) Construct the image problem by finding the value q′ and the position ~y ′ of the

image charge inside the sphere. Evaluate the potential φ(~x) outside the sphere.

(b) Write the expression for the force that acts on the charge q due to the charge

that the conducting sphere has soaked up from the ground.

(c) Compute the total charge transfered to the conducting sphere from the ground.

Solution (points: 6+4+3)

a) The potential due to q and q′ at ~x outside the sphere is

φ(~x) =
q

|~x− ~y|
+

q′

|~x− ~y ′|

Then, φ(|~x| = a) = 0 gives q′ = −aq/y and y′ = a2/y (work out the details). The

potential at any point ~x can now be easily written using the image problem (with x̂

and ŷ unit vectors along ~x and ~y, respectively)

φ(~x) =
q

|xx̂− yŷ|
− aq

y

1

|xx̂− a2

y
ŷ|

b) The force on q due to the sphere is the same as that due to q′. Hence,

~F =
qq′

|~y − ~y′|2
ŷ = − q2(a/y)

(y − a2/y)2
ŷ

c) Consider a surface S that fully encloses the sphere and lies very close to its sur-

face. The total charge on the sphere is then given by the Gauss law as (1/4π)
∫
S
~ds· ~E,

where ~E is the electric field on the surface S. The field ~E outside the sphere is the

same as that in the image problem and therefore the integral gives the total charge

of the sphere as q′.

2. Consider an external electric field given by Ei = Ci +Dijx
j in a region of space free

of charges and currents.
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(a) Show that the matrix Dij is traceless (
∑

iDii = 0) and symmetric (Dij =

Dji). What is the external potential Φext(~x) corresponding to this electric field

(ignore the undetermined constant piece)?

(b) In this external field place a conducting sphere of radius R centred at ~x = 0

and carrying zero net charge. Suppose the polarisation of the sphere in the

external field is described by a dipole moment pi and a quadrupole moment Qij.

Write the expression for the induced potential Φin(~x) for |~x| ≥ R generated

by the multipole moments in terms of pi and Qij. What is the total potential

Φext + Φin inside the sphere (|~x| ≤ R)?

(c) Determine pi and Qij in terms of Ci, Dij and R and find the total potential

Φext + Φin outside the sphere (|~x| ≥ R).

(d) Compute the induced surface charge density on the sphere (Hint: In spherical

coordinates one can write, xi = xx̂i where x̂i are the Cartesian components

of the radial unit vector x̂, e.g., x̂3 = cos θ, x̂1 = sin θ cosφ, x̂2 = sin θ sinφ.

Hence, they do not vary with radial distance x).

Solution (points: 4+3+4+3)

a) The electric field satisfies ~∇ · ~E =
∑

i ∂iE
i = 0 implying

∑
iDii = 0 and (~∇ ×

~E)i =
∑

jk ε
jk
i ∂jEk = 0 implying

∑
jk ε

jk
i Djk = 0 or Djk = Dkj. Therefore, the

matrix D is traceless and symmetric. The corresponding potential, consistent with
~E = −∇Φext, is

Φext = −
∑
i

Cix
i − 1

2

∑
ij

Dijx
ixj

(as stated in the problem, we have set the constant part of Φext equal to zero)

b) For |~x| ≥ R, the induced potential due to the polarized sphere is the same as that

due a dipole of moment ~p and a quadrupole of moment matrix Qij placed at the

origin,

Φin =
~p · ~x
x3

+
1

2

Qijx
ixj

x5

The total potential Φext + Φin inside the sphere is zero (up to a constant).

c) The sphere being conducting, the total potential Φin + Φext on its surface must

vanish, (
pix

i

R3
+

1

2

Qijx
ixj

R5
− Cixi −

1

2
Dijx

ixj
) ∣∣∣
|~x|=R

= 0

Since the xi vary on the surface, comparing terms with the same tensor structure,

one gets pi = R3Ci and Qij = R5Dij (note that in general the total potential on the

surface is a constant, not necessarily zero. However, the xi dependence of Φin+Φext

on the surface then shows that this constant is zero at long as we drop the constant

part of Φext as we are told to do). The total potential for |~x| ≥ R is then,

Φ = Φin + Φext = Cix
i

(
R3

x3
− 1

)
+

1

2
Dijx

ixj
(
R5

x5
− 1

)
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d) Using the notation described in the question, one can write the total potential φ

in spherical polar coordinates as

Φ = Cix̂
i

(
R3

x2
− x
)

+
1

2
Dijx̂

ix̂j
(
R5

x3
− x2

)
where x̂i are independent of x = |~x|, depending only on the angular variables. The

surface charge density is given by ( ~E2− ~E1) · n̂ = 4πσ where n̂ is the unit normal to

the surface of the sphere. In this case, ~E1 = 0 and ~E2 · n̂ = −∂Φ/∂x|x=R. Therefore,

σ = − 1

4π

∂Φ

∂x

∣∣∣
x=R

=
1

4π

(
3Cix̂

i +
5

2
RDijx̂

ix̂j
)

3. (a) Using the expansion

1

|~x− ~x′|
=
∞∑
l=0

l∑
m=−l

4π

2l + 1

r′l

rl+1
Y ∗lm(θ′, φ′)Ylm(θ, φ)

develop the multipole expansion of the potential Φ(~x) due to a localized charge

distribution ρ(~x′) in terms of the multipole moments qlm of ρ. Discuss how and

under what conditions this expansion can be used to simplify a problem.

(b) Show that for a spherically symmetric charge distribution, all multipole mo-

ments beyond the monopole moment vanish.

(c) Show that if the charge distribution has axial symmetry (that is, it is invariant

under rotations about the z-axis), then the only non-zero multipole moments

are ql0.

(d) Using the above results, for two point charges q and −q placed on the z-axis

at z = a and z = −a, compute the non-vanishing component of the dipole

moment (given Y10 = (
√

3/4π) cos θ).

Solution (points: 5+3+3+3)

a) The potential due to a localized charge distribution is given by

Φ(~x) =

∫
d3x′

ρ(~x ′)

|~x− ~x′|

Using the expansion given in the question, it becomes,

Φ(~x) =
∞∑
l=0

m=l∑
m=−l

4π

2l + 1
qlm

Ylm(θ, φ)

rl+1

This is the multipole expansion of the potential in terms of the multipole moments

qlm of the charge distribution given by

qlm =

∫
d3x′ρ(~x ′)r′

l
Y ∗lm(θ′, φ′)
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The multipole expansion allows us to parametrize the charge distribution in terms of

its multipole moments. Further, the contribution of a moment qlm to the potential

falls off as 1/rl+1. Therefore, at large distances from a localized charge distribution,

only a few non-zero multipole moments with the lowest values of l make significant

contributions to Φ and are relevant. The remaining moments could be neglected.

This allows us to parametrize even complicated charge distributions in terms of a

few lowest l mutipole moments. The condition under which this approximation is

valid is that the distance to the observation point (at which Φ is measured) is much

larger as compared to the size of the charge distribution.

b) For a spherically symmetric charge distribution, ρ(~x) ≡ ρ(r, θ, φ) = ρ(r), inde-

pendent of the angular variables. Therefore we can write the multipole moments as

a product of the radial and angular integrals,

qlm =

(∫ ∞
0

r′
2
dr′ρ(r′)r′

l

)(∫ π

0

sin θ′dθ′
∫ 2π

0

dφ′Y ∗lm(θ′, φ′)

)
Since Y00(θ

′, φ′) = 1/
√

4π, we can insert Y00(θ
′, φ′)
√

4π = 1 in the angular integra-

tion. Now, from the orthogonality property of spherical harmonics it follows that the

angular integral is proportional to δl0 and hence vanishes for all l ≥ 1 (l = 0 being

the monopole moment).

c) In the case of axial symmetry about the z-axis, ρ is independent of the azimuthal

coordinate φ. In this case,

qlm = (const)

(∫ ∞
0

r′
2
dr′
∫ π

0

sin θ′dθ′ρ(r′, θ′)r′
l
Pm
l (cos θ′)

)(∫ 2π

0

dφ′e−imφ
′
)

where we have used the fact that Ylm(θ, φ) = (const)Pm
l (cos θ)eimφ. Now, the φ

integral gives a δm0. Thus the only non-vanishing moments in this case are ql0.

d) In this case the charge density is given by ρ = qδ(x′)δ(y′) (δ(z′ − a)− δ(z′ + a)).

The three components of the dipole moment are q1m, for m = 1, 0,−1. Since the

problem has axial symmetry about the z-axis, the only non-vanishing component is

q10 which is now given by (using the expressions for Y10, ρ and noting that r′ =√
x′2 + y′2 + z′2)

q10 =

∫
d3x′ρ(~x ′)r′Y ∗10(θ

′, φ′) =

√
3

4π

∫
dx′
∫
dy′
∫
dz′

×qδ(x′)δ(y′) (δ(z′ − a)− δ(z′ + a))
√
x′2 + y′2 + z′2 cos θ

=

√
3

4π

∫
dz′q (δ(z′ − a)− δ(z′ + a)) |z′| = aq

√
3

π

(1)

4. (a) Consider moving charges giving rise to a current density ~J within a volume

V in the presence of electric and magnetic fields. Show that the total power

injected into the current distribution by the fields is given by
∫
V
d3x ~J · ~E.
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(b) Using Maxwell’s equations, derive the Poynting theorem [You may need the

vector identity ∇ · (~P × ~Q) = (∇× ~P ) · ~Q− ~P · (∇× ~Q)].

(c) Give the physical interpretation of each term in the mathematical expression for

the Poynting theorem. What is the physical meaning of the Poynting theorem?

Solution (points: 5+4+4)

a) The power transferred to a point charge q on which a force ~F acts is the rate of

change of its kinetic energy, 1
2
mv2, that is, d(1

2
mv2)/dt = ~F · ~v. Using the Lorentz

force law and ~v · (~v × ~B) = 0, this becomes q~v · ~E. For charges contained in volume

d3x within a continuous charge distribution, one has q → ρd3x. Using ~J = ρ~v and

integrating over the volume of the current distribution, leads to the desired result.

b) To obtain the Poynting theorem, start with ~J · ~E and, using Maxwell’s equations,

rewrite ~J in terms of ~E and ~B. After some manipulations, one gets,

~J · ~E +
1

8π

∂

∂t

(
ε ~E · ~E +

1

µ
~B · ~B

)
+

c

4π
∇ · ( ~E × ~H) = 0

c) ~J · ~E: power injected into the current distribution by the electric field/unit volume.
1
8π

∂
∂t

(
ε ~E · ~E + 1

µ
~B · ~B

)
: Rate of change of energy densities of the electric and mag-

netic fields.
c

4π
∇· ( ~E× ~H): Energy flux per unit time per unit volume carried by the electromag-

netic fields. c
4π

( ~E × ~H) is the Poynting vector that corresponds to the energy flux

per unit area per unit time across a surface as follows from the divergence theorem,∫
V
d3x∇ · ( ~E × ~H) =

∫
S
~dS · ( ~E × ~H). The Poynting theorem is a statement of

conservation of energy and also indicates that energy is carried by electromagnetic

waves in the form of the Poynting vector.

5. (a) Consider the wave equation (∇2− 1
c2

∂2

∂t2
)ψ = −4πf(~x, t). Write down the equa-

tion for the corresponding Green function G and express the formal solution for

ψ in terms of G. For the retarded Green function G(~x, t; ~x′, t′) = 1
R
δ(t′−t+R/c)

(where R = |~x− ~x′|) provide a physical interpretation for the behaviour of the

solution.

(b) Maxwell’s equations lead to the following wave equation for the electric field,

(∇2 − 1

c2
∂2

∂t2
) ~E = 4π(

1

c2
∂ ~J

∂t
+ ~∇ρ)

Write down the solution in terms of the retarded Green function and by re-

expressing [~∇′ρ]ret in term of ~∇′[ρ]ret, work out Jefimenko’s generalization of

the Coulomb law.

Solution (points: 6+7)

a) The equation for the Greens function is(
∇2 − 1

c2
∂2

∂t2

)
G = −4πδ3(~x− ~x′)δ(t− t′)
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The formal solution for ψ in terms of G is given by

ψ(~x, t) = ψ0(~x, t) +

∫
d3x′

∫
dt′G(~x, t; ~x ′, t′)f(~x ′, t′)

where ψ0(~x, t) is the solution to the homogeneous equation (f = 0). For the retarded

Greens function G(~x, t; ~x′, t′) = 1
R
δ(t′ − t+R/c), the solution becomes,

ψ(~x, t) =

∫
d3x′

[f(~x′, t′)]
t′=t− |~x−~x′|

c

|~x− ~x′|

where we have evaluated the time integral and dropped ψ0 for simplicity. The physical

interpretation of the solution is as follows: A variation of the source f at point ~x′

and time t′ affects the field ψ at a point ~x at a later time t provided t = t′ + |~x−~x′|
c

or equivalently, |~x − ~x′| = c(t − t′). Thus the information about the variation of f

travels at speed c.

b) Comparing the wave equation for ~E with the equation in part a), one can write

the solution as

~E(~x, t) = − 1

c2

∫
d3x′

[
∂ ~J(~x′,t′)
∂t′

+ ~∇′ρ(~x′, t′)
]
t′=t−~x−~x′

c

|~x− ~x′|

To express [~∇′ρ]ret in term of ~∇′[ρ]ret, note that,

∂[ρ]ret
∂x′i

=
∂ρ(x′, t′ = t− |~x−~x

′|
c

)

∂x′i
=

[
∂ρ(x′, t′)

∂x′i

]
ret

+

[
∂ρ(x′, t′)

∂t′

]
ret

∂(t− |~x− ~x′|/c)
∂x′i

where, ∂(t−|~x−~x′|/c)
∂x′i

= −1
c
∂|~x−~x′|
∂x′i

= 1
c
∂|~x−~x′|
∂xi . In vector notation,

~∇′[ρ(x′, t′)]ret =
[
~∇′ρ(x′, t′)

]
ret

+
1

c

[
∂ρ(x′, t′)

∂t′

]
ret

~∇R

We can use this to substitute for [~∇′ρ]ret in the expression for ~E in terms of ~∇′[ρ]ret.

Now the term involving
∫
d3x′~∇′[ρ]ret/R can be integrated by parts to get Jefimenko’s

generalization of Coulomb’s law,

~E(~x′, t′) =

∫
d3x′

(
[ρ(~x′, t′)]ret

R2
R̂ +

[
∂ρ(~x′, t′)

∂t′

]
ret

R̂

Rc
−

[
∂ ~J(~x′, t′)

∂t′

]
ret

1

Rc2

)

where R̂ = ~∇R

6. (a) Consider the linear transformation x̃µ = Lµνx
ν . What are the conditions on

the matrix L for this to be a Lorentz transformation? [You need not derive

this]. In this case, derive an expression for L−1 in terms of LT .

(b) Show that the the continuity equation ∂ρ/∂t+ ~∇· ~J follows from ∂µF
µν = 4π

c
Jν .
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(c) Assume that an inertial reference frame S̃ is moving away from a frame S

with velocity v in the positive x1 direction. If the observer in S measures a

static charge distribution ρ(~x) = Qe−x
2/a, where x2 =

∑3
1 x

ixi, find the charge

and current distributions as measured by the observer in S̃. Discuss the non-

relativistic limit of your result.

Solution (points: 4+4+5)

a) The condition on L is

LTηL = η , where, η =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


(This follows from the invariance of the space-time interval, (x0)2− (x1)2− (x2)2−
(x3)2 = xTηx under the transformation x̃ = Lx, implying x̃T = xTLT . Here L is

the 4 × 4 matrix with elements Lµν, with µ running over rows and ν running over

the columns of the matrix. Then xTηx = x̃Tηx̃ leads to the above condition.)

The defining equation for L, i.e., LTηL = η implies (on multiplying from the left by

η−1 and from the right by L−1) that, L−1 = η−1LTη

b) Differentiating ∂µF
µν = 4π

c
Jν with respect to xν gives ∂ν∂µF

µν = 4π
c
∂νJ

ν. Now,

∂ν∂µ = ∂µ∂ν but F µν = −F νµ. Therefore ∂ν∂µF
µν = 0 and hence ∂νJ

ν = 0 which is

the continuity equation in the 4-vector notation, where x0 = ct and J0 = cρ.

c) The charge density ρ(~x) and current density ~J(~x) combine into a 4-vector Jµ =

{J0 = cρ, ~J} which under Lorentz transformations L transforms as

J̃µ(x̃) = LµνJ
ν(L−1x̃)

In our case, ~J = 0 and the non-trivial components of L are, L0
0 = L1

1 = γ, and

L1
0 = L0

1 = −γβ. Therefore the Lorentz transformation gives (suppressing the x̃

dependence)

ρ̃ = γρ , J̃1 = −γvρ , J̃2 = J̃3 = 0

To complete the transformation, we have to express the xµ dependence of ρ in terms

of x̃µ. For the given Lorentz transformation, x1 = γ(x̃1+βx̃0), x2 = x̃2 and x3 = x̃3,

so that x2 =
∑3

1 x
ixi = γ2(x̃1 + vt̃)2 + (x̃2)2 + (x̃3)2. Then,

ρ̃(x̃) = γ Qe−(γ2(x̃1+vt̃)2+(x̃2)2+(x̃3)2)/a, , J̃1 = −vρ̃(x̃)

In the non-relativistic limit, β = v/c→ 0 and γ → 1 so that,

ρ̃(x̃) = Qe−((x̃1+vt̃)2+(x̃2)2+(x̃3)2)/a, , J̃1 = −vρ̃(x̃)

which is the expected result from Galilean transformations.

7


