
Final Examination Paper for Electrodynamics-I
Date: Friday, Nov 02, 2007, Time: 09:00 - 15:00 [Solutions]
Allowed help material: Physics and Mathematics handbooks or equivalent

Note: Please explain your reasoning and calculations clearly

Questions: 1 2 3 4 5 6 Total
Marks: 13 13 14 13 13 14 80

1. (a) Consider an electric field ~E = îx + ĵz + k̂(f(x, y) + z2). Determine f(x, y) and

compute the total charge contained in a cube specified by 0 ≤ x, y, z ≤ l.

(b) The electrostatic potential of a neutral atom can be modelled by

Φ(~r) =
q

r
e−r/a

where q = Ze is the atomic charge. Find the charge distribution ρ that pro-

duces this potential and show that the total charge is zero. (You may use
~∇r = r̂ and ∇2r = 2/r)

Solution (points: 6+7)

a) This is an electrostatic field with Ex = x, Ey = z, Ez = f(x, y) + z2 and should

satisfy ~∇× ~E = 0. In terms of components of ~E this gives ∂Ei/∂xj − ∂Ej/∂xi = 0

for the indices i and j taking the values x, y, z, which, in turn, leads to ∂f/∂x = 0

and ∂f/∂y − 1 = 0. The unknown function f(x, y) is therefore given by f = y + c

for an arbitrary constant c. So we have, ~E = îx + ĵz + k̂(y + z2 + c). From this, we

can compute the charge density using ~∇ · ~E = 4πρ and get ρ = (2z + 1)/4π. The

total charge is then given by

Q =
1

4π

∫ l

0

dx

∫ l

0

dy

∫ l

0

dz(1 + 2z) =
1

4π
(l3 + l4)

(the total charge can also be computed using the Gauss law)

b) The charge distribution can be determined using ∇2Φ = −4π and is given by

ρ = qe−r/a

(
δ(r)− 1

4π

1

ra2

)
This clearly corresponds to a positive nuclear point charge and a negative electronic

charge cloud surrounding it. The total charge is given by

Q =

∫
d3xρ = q − q

a2

∫ ∞

0

e−r/ar dr = 0

where we have used
∫

d3x =
∫

sin θdθ
∫

dφ
∫

r2dr = 4π
∫

r2dr because of the spher-

ical symmetry of the problem, along with
∫ ∞

0
e−r/a dr = a, which on differentiating

with respect to “a” gives
∫ ∞

0
e−r/ar dr = a2.
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2. Consider the boundary between two media of dielectric constants ε1 and ε2 and let

the electric displacement vectors on the two sides of the boundary be denoted by ~D1

and ~D2, and the polarization densities by ~P1 and ~P2, respectively. In the absence of

free charges on the boundary, Maxwell equations are ~∇ · ~D = 0 and ~∇× ~E = 0.

(a) Use these equations to investigate the continuity of the normal and tangential

components of ~D and ~E across the boundary.

(b) Show that the polarization surface charge density that develops on the bound-

ary is given by

σpol = (~P1 − P2) · n̂ ,

where n̂ is a unit normal to the boundary.

Solution (points: 8+5)

a) In general, in steady state the fields ~D and ~E satisfy ~∇· ~D = 4πρf and ~∇× ~E = 0,

where ρf . is the density of free charges. To explore the behaviour of the normal

component of ~D, first, draw a small, so called, “Gaussian pill-box” of height h

across the boundary. The top and bottom faces of the pill-box have areas ∆S each

and are parallel to the boundary surface. Denote the value of the displacement field

on the bottom face of the box by ~D1 and on the top face of the box by ~D2. The unit

normals to these faces are n̂1 and n̂2 (n̂2 = −n̂1 = n̂). Then, integrating ~∇ · ~D over

the pill-box volume and using the divergence theorem gives,

lim
h→0

∫
pill−box

d3x~∇ · ~D = lim
h→0

∫
∂(pill−box)

~ds · ~D = ( ~D2 · n̂2 + ~D1 · n̂1)∆S = 4πσf∆S

where σf is the density of free charges on the boundary and the contribution from

the sides have dropped in the limit h → 0. Hence we have,

( ~D2 − ~D1) · n̂ = 4πσf

In our problem, there are no free charges on the boundary and hence ( ~D2− ~D1)·n̂ = 0.

So the normal component of the ~D field is continuous across the boundary.

To investigate the behaviour of the tengential component of the field, let us now

replace the pill-box by a rectangular loop that has its longer sides of length ∆l parallel

to the surface and its shorter sides of height h perpendicular to the surface and going

through it. A unit vector along the lower side of the rectangle is t̂1 and one along

the upper side is t̂2, both being parallel to the surface. Picking an orientation along

the loop, one has t̂2 = −t̂1 = t̂. Integrate ~∇× ~E over the loop area to get

lim
h→0

∫
loop area

~∇× ~E · ~ds = lim
h→0

∫
loop

~E · ~dl = ( ~E2 · t̂2 + ~E1 · t̂1)∆l

where in the limit h → 0 we have dropped the contributions from the sides of the

loop. This is true for all orientations of the loop, or equivalently, for all unit tangent

vectors t̂ to the surface. Therefore we have, ( ~E2 − ~E1) · t̂ = 0 or equivalently,
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( ~E2 − ~E1) × n̂ = 0. Hence the tangential component of ~E is continuous across the

surface.

b) Applying the pill-box construction above to ~∇ · ~E = 4πρ where ρ = ρf + ρnf

includes both free and non-free (i.e., bound) charges, one gets,

( ~E2 − ~E1) · n̂ = 4π(σf + σnf )

Now, for σf = 0 on the boundary, ~D · n̂ is continuous across the boundary. Using

this and the relation ~D = ~E + 4π ~P , one has,

( ~E2 − ~E1) · n̂ = 4π(~P1 − P2) · n̂

From this we can read off the surface density of non-free charges on the boundary

which are due to the polarization of the media as σnf = σpol = (~P1−P2) · n̂. In short,

this directly follows from the fact that ~D accross the surface is continuous while the

discontinuity in ~E · n̂ is given by the surface charge density and ~D = ~E + 4π ~P .

3. (a) Using the expansion

1

|~x− ~x′|
=

∞∑
l=0

l∑
m=−l

4π

2l + 1

r′l

rl+1
Y ∗

lm(θ′, φ′)Ylm(θ, φ)

develop the multipole expansion of the potential Φ(~x) due to a localized charge

distribution ρ(~x′) in terms of the multipole moments qlm of ρ. Discuss how and

under what conditions this expansion can be used to simplify a problem.

(b) Show that for a spherically symmetric charge distribution, all multipole mo-

ments beyond the monopole moment vanish.

(c) Show that if the charge distribution has axial symmetry (that is, it is invariant

under rotations about the z-axis), then the only non-zero multipole moments

are ql0.

(d) Using the above results, for two point charges q and −q placed on the z-axis

at z = a and z = −a, compute the non-vanishing component of the dipole

moment (given Y10 = (
√

3/4π) cos θ).

Solution (points: 5+3+3+3)

a) The potential due to a localized charge distribution is given by

Φ(~x) =

∫
d3x′

ρ(~x ′)

|~x− ~x′|

Using the expansion given in the question, it becomes,

Φ(~x) =
∞∑
l=0

m=l∑
m=−l

4π

2l + 1
qlm

Ylm(θ, φ)

rl+1
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This is the multipole expansion of the potential in terms of the multipole moments

qlm of the charge distribution given by

qlm =

∫
d3x′ρ(~x ′)r′

l
Y ∗

lm(θ′, φ′)

The multipole expansion allows us to parametrize the charge distribution in terms of

its multipole moments. Further, the contribution of a moment qlm to the potential

falls off as 1/rl+1. Therefore, at large distances from a localized charge distribution,

only a few non-zero multipole moments with the lowest values of l make significant

contributions to Φ and are relevant. The remaining moments could be neglected.

This allows us to parametrize even complicated charge distributions in terms of a

few lowest l mutipole moments. The condition under which this approximation is

valid is that the distance to the observation point (at which Φ is measured) is much

larger as compared to the size of the charge distribution.

b) For a spherically symmetric charge distribution, ρ(~x) ≡ ρ(r, θ, φ) = ρ(r), inde-

pendent of the angular variables. Therefore we can write the multipole moments as

a product of two integrals,

qlm =

∫ ∞

0

r′
2
dr′ρ(r′)r′

l

∫ π

0

sin θ′dθ′
∫ 2π

0

dφ′Y ∗
lm(θ′, φ′)

Since Y00(θ
′, φ′) = 1/

√
4π, we can insert Y00(θ

′, φ′)
√

4π = 1 in the angular integra-

tion. Now, from the orthogonality property of spherical harmonics it follows that the

angular integral is proportional to δl0 and hence vanishes for all l ≥ 1 (l = 0 being

the monopole moment).

c) In the case of axial symmetry about the z-axis, ρ is independent of the azimuthal

coordinate φ. In this case,

qlm = (const)

∫ ∞

0

r′
2
dr′

∫ π

0

sin θ′dθ′ρ(r′, θ′)r′
l
Pm

l (cos θ′)

∫ 2π

0

dφ′e−imφ′

where we have used the fact that Ylm(θ, φ) = (const)Pm
l (cos θ)eimφ. Now, the φ

integral gives a δm0. Thus the only non-vanishing moments in this case are ql0.

d) In this case the charge density is given by ρ = qδ(x′)δ(y′) (δ(z′ − a)− δ(z′ + a)).

The three components of the dipole moment are q1m, for m = 1, 0,−1. Since the

problem has axial symmetry about the z-axis, the only non-vanishing component is

q10 which is now given by (using the expressions for Y10, ρ and noting that r′ =√
x′2 + y′2 + z′2)

q10 =

∫
d3x′ρ(~x ′)r′Y ∗

10(θ
′, φ′) =

√
3

4π

∫
dx′

∫
dy′

∫
dz′

×qδ(x′)δ(y′) (δ(z′ − a)− δ(z′ + a))
√

x′2 + y′2 + z′2 cos θ

=

√
3

4π

∫
dz′q (δ(z′ − a)− δ(z′ + a)) |z′| = aq

√
3

π

Note that δ(x′) and δ(y′) force ~x ′ to be in the z direction and hence, θ = 0.
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4. (a) Discuss the consistency of the magnetostatic equation ~∇× ~B = 4π
c

~J with the

continuity equation ~∇ · ~J = −∂ρ

∂t
.

(b) Show that the work done by a magnetic field ~B on a charged particle, moving

with velocity ~v under the influence of ~B, is zero.

(c) Starting with the magnetostatic equation given in part (a) derive Ampere’s

law for a stright conducting wire carrying current I.

Solution (points: 5+4+4)

a) The magnetostatic equation implies that ~∇ · ~J = c
4π

~∇ · (~∇× ~B) = 0. Hence, it is

consistent with the continuity equation only when ∂ρ
∂t

= 0. On the other hand, from

the Gauss law equation it follows that ∂ρ
∂t

= 1
4π

~∇ · (∂ ~E
∂t

). Therefore, if the magneto-

static equation is modified to ~∇× ~B− 1
c
(∂ ~E

∂t
) = 4π

c
~J , it becomes fully consistent with

the continuity equation.

b) The elemental work done on a charged particle of velocity ~v moving in a magnetic

field is dW = ~F · ~dx = q
c
(~v × ~B) · ~dx. But in this case, ~dx = ~vdt and since ~v × ~B is

perpendicular to ~v (and of course also to ~B), it follows that (~v × ~B) · ~v = 0.

c) On a plane perpendicular to the current carrying conductor consider a disc of

radius r centred at the conductor. Integrate the magnetostatic equation over the

area of this disc. Then
∫

d~S · J = I and
∫

d~S · (~∇ × ~B) =
∮

~B · ~dl = 2πrBφ,

where, Bφ is the component of ~B tangent to the boundary of the disc. From the

symmetry of the problem, this clearly is the only non-vanishing component of ~B.

Hence, ~B = (2I/rc)φ̂.

5. (a) Starting from Maxwell equations, derive the wave equation satisfied by the

vector potential ~A in the Lorenz gauge. (You may need the vector identity~∇×
(~∇× ~A) = −∇2 ~A + ~∇(~∇ · ~A))

(b) The equation for the vector potential ~A in the Lorenz gauge and in the presence

of a current source has a solution

~A(~x, t) =
1

c

∫
d3x′

[
~J(~x′, t′)

]
ret

|~x− ~x′|

in terms of the retarded time t′ = t− |~x− ~x′|/c. For a sinusoidal source term,
~J(~x, t) = ~J(~x)e−iωt, write down and discuss the nature of the solution in the

“near zone” and the “far zone” approximations.

Solution (points: 6+7)

a) Start with the Maxwell equation containing the source term ~J and substitute for

the electric and magnetic fields in terms of the potentials, ~E = −~∇Φ − 1
c
(∂ ~A/∂t)

and ~B = ~∇× ~A. This gives

∇2 ~A− 1

c2

∂2 ~A

∂t2
− ~∇

(
~∇ · ~A +

1

c

∂Φ

∂t

)
= −4π

c
~J
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On imposing the Lorenz gauge condition ~∇ · ~A + 1
c
(∂Φ/∂t) = 0 one gets the desired

equation,

∇2 ~A− 1

c2

∂2 ~A

∂t2
~∇ = −4π

c
~J

b) We know that
[
~J(~x′, t′)

]
ret

= ~J(~x′, t′ = t− |~x− ~x′|/c), so for the given sinusoidal

current,

~A(~x, t) =
e−iωt

c

∫
d3x′

~J(~x′) eik|~x−~x′|

|~x− ~x′|
where k = ω/c = 2π/λ. There are three length scales in the problem: 1) the

linear extension of the current distribution denoted by d (then, with the origin of

the coordinate system chosen within the current distribution, one has x′ . d), 2)

the length λ which is the distance that a signal travels during one oscillation of the

source (note that 2π/ω = T is the time period of the oscillating source), 3) the

distance to the observer denoted by x = |~x|. For a well localized source, we always

assume that d << x, λ. Now, the “near zone” is characterized by , d << x << λ.

We then make the approximation k|~x− ~x′| ∼ k|~x| << 1 or eik|~x−~x′| ∼ 1, so that

~A(~x, t) =
e−iωt

c

∫
d3x′

~J(~x′)

|~x− ~x′|
Except for the overall time modulation, this has the character of a magnetostatic

field. The “far zone” is characterized by , d << λ << x. Then we can make the

approximation |~x− ~x′| ∼ x− ~x · ~x′/x and 1/|~x− ~x′| → 1/x, leading to

~A(~x, t) =
1

c

ei(kr−ωt)

x

∫
d3x′ ~J(~x′) e−ik~x·~x′/x

The factor in front of the integral shows that this has the character of an expanding

spherical wave.

6. (a) Consider the linear transformation x̃µ = Lµ
νx

ν . Find the constraint that the

invariance of the space-time interval (x0)2 − (x1)2 − (x2)2 − (x3)2 imposes on

the matrix L, showing the steps in your calculation clearly.

(b) If a 4-vector V µ transforms as a contravariant vector under Lorentz transfor-

mations, work out the transformation of Vµ = ηµρV
ρ.

(c) Show that the two Maxwell equations with sources are contained in the rela-

tivistic expression

∂µF
µν =

4π

c
Jν

Solution (points:(5+4+5)

a) In matrix notation, the space-time interval can be written as (x0)2 − (x1)2 −
(x2)2 − (x3)2 = xT ηx, where,

η =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 , x =


x0

x1

x2

x3

 , xT =
(

x0 x1 x2 x3
)
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The linear transformation takes the form x̃ = Lx, where L is the 4 × 4 matrix

with elements Lµ
ν (with µ running over rows and ν running over the columns of

the matrix). For xT the transformation reads x̃T = xT LT . The invariance of the

interval means that xT ηx = x̃T ηx̃ from which the constraint on L follows as

LT ηL = η

b) In matrix notation the relation between Vµ and V µ can be written as Vµ = ηµρV
ρ =

(ηV )µ where the column matrix V is constructed from the components of the con-

travariant vector. After the transformation, we have Ṽµ = (ηṼ )µ where, Ṽ = LV .

Hence we have, Ṽµ = (ηLV )µ = (ηLη−1ηV )µ or,

Ṽµ = (ηLη−1) ν
µ Vν

This is the transformation of a contravariant vector.

c) We start by writing the relativistic expression seperately for ν = 0 and ν = j

(where j is a space index),

∂iF
i0 =

4π

c
J0 ∂0F

0j + ∂iF
ij =

4π

c
J j

where we have used F 00 = 0. Now we note that J0 = cρ, F i0 = Ei, F ij = εji
kB

k and

∂iF
ij = εji

k∂iB
k = (~∇× ~B)j. Using these we recover the two Maxwell equations,

~∇ · ~E = 4πρ , ~∇× ~B − 1

c

∂

∂t
~E =

4π

c
~J
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