
Final Examination Paper for Electrodynamics-I
Date: Friday, Nov 03, 2006, Time: 12:30 - 18:30 [Solutions]
Allowed help material: Physics and Mathematics handbooks

Note: Please explain your reasoning clearly

Questions: 1 2 3 4 5 6 Total
Marks: 10 15 15 15 10 15 80

1. (a) Show that if ∇ × ~E = 0, then one can always find a function Φ such that
~E = −∇Φ.

(b) If ~E is the electric field due to a charge distribution of density ρ, what is the

equation obeyed by Φ? For a localized charge distribution , write the solution

for Φ in the absence of boundaries.

Solution

a) This is worked out in the lecture notes “Rapid Review of Vector Calculus” section

1.4. The strategy is as follows: Stokes’s theorem leads to
∮

l
~E · ~dl = 0 for a closed

path l, which shows the path independence of the integral. To see this, split the

path l into two parts, l = lAB + lBA. Keeping lBA fixed and varying lAB one sees

that
∫ rB

rA

~E · dl(= −
∫ rA

rB

~E · dl) remains unchanged which implies that it can only

depend on the end points of the path (~rA, ~rB) and not on the actual shape of the path

connecting these two points, that is,
∫ rB

rA

~E · ~dl = Φ(~rA, ~rB). A small variation of

the point B, ~rB → ~rB + ~δrB results in
∫ rB+δrB

rA

~E · ~dl = Φ(~rA, ~rB + δrB). Comparing

the two equations one sees that for a small δrB, the variation of the left hand side

is ~E · δ~rB while that of the right hand side is ~∇Φ · δ~rB. Since this is true for any

small δ~rB, one concludes that ~E = −∇φ (the extra negative sign introduced here is

a matter of convention and does not change the result).

b) In this case, ~∇ · ~E = 4πρ so that ∇2Φ = −4πρ. Since ρ corresponds to a

localized charge distribution, and there are no boundary effects, the solution for Φ is

Φ(~x) =
∫

d3x′ρ(~x′)/|~x−~x′|. This can be verified using ∇2(1/|~x−~x′|) = −4πδ3(~x−~x′).

2. Consider an external electric field given by Ei = Ci +Dijx
j in a region of space free

of charges and currents.

(a) Show that the matrix Dij is traceless (
∑

i Dii = 0) and symmetric (Dij =

Dji). What is the external potential Φext(~x) corresponding to this electric field

(ignore the undetermined constant piece)?

(b) In this external field place a conducting sphere of radius R centered at ~x = 0

and carrying zero net charge. Suppose the polarization of the sphere in the

external field is described by a dipole moment pi and a quadrupole moment Qij.

Write the expression for the induced potential Φin(~x) for |~x| ≥ R generated

1



by these multipole moments. What is the total potential Φext + Φin inside the

sphere (|~x| ≤ R)?

(c) Determine pi and Qij in terms of Ci, Dij and R and find the total potential

Φext + Φin outside the sphere (|~x| ≥ R).

(d) Compute the induced surface charge density on the sphere (Hint: In spherical

coordinates one can write, xi = xx̂i where x̂i are the Cartesian components

of the radial unit vector x̂, e.g., x̂3 = cos θ, x̂1 = sin θ cos φ, x̂2 = sin θ sin φ.

Hence, they do not vary with radial distance x).

Solution

a) The electric field satisfies ~∇ · ~E =
∑

i ∂iE
i = 0 implying

∑
i Dii = 0 and

(~∇ × ~E)i =
∑

jk ε jk
i ∂jEk = 0 implying

∑
jk ε jk

i Djk = 0. Therefore, the matrix

D is traceless and symmetric. The corresponding potential is Φext = −
∑

i Cix
i −

1
2

∑
ij Dijx

ixj, consistent with ~E = −∇Φext.

b) The induced potential for |~x| ≥ R due to the polarized sphere is that due a dipole

of moment ~p and a quadrupole of moment matrix Qij,

Φin =
~p · ~x
x3

+
1

2

Qijx
ixj

x5

The total potential Φext + Φin inside the sphere is zero (up to a constant).

c) The sphere being conducting, the total potential Φin + Φext on its surface must

vanish, (
pix

i

R3
+

1

2

Qijx
ixj

R5
− Cix

i − 1

2
Dijx

ixj

) ∣∣∣
|~x|=R

= 0

Comparing terms with the same tensor structure, one gets pi = R3Ci and Qij =

R5Dij. The total potential for |~x| ≥ R is

Φ = Φin + Φext = Cix
i

(
R3

x3
− 1

)
+

1

2
Dijx

ixj

(
R5

x5
− 1

)

d) Using the notation described in the question, one can write the total potential φ

in spherical polar coordinates as

Φ = Cix̂
i

(
R3

x2
− x

)
+

1

2
Dijx̂

ix̂j

(
R5

x3
− x2

)
where x̂i are independent of x = |~x|, depending only on the angular variables. The

surface charge density is given by ( ~E2− ~E1) · n̂ = 4πσ where n̂ is the unit normal to

the surface of the sphere. In this case, ~E1 = 0 and ~E2 · n̂ = −∂Φ/∂x|x=R. Therefore,

σ = − 1

4π

∂Φ

∂x

∣∣∣
x=R

=
1

4π

(
3Cix̂

i − 5

2
RDijx̂

ix̂j

)
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3. (a) Consider a surface on which an electric current of surface current density ~K

flows. Assuming steady state, work out the behaviour of the normal and tan-

gential components of the magnetic field ~B across the surface. Argue that this

result remains valid even when the steady state condition is relaxed.

(b) In a magnetic medium, what is the significance of the field ~H in comparison

to the field ~B? Briefly describe the phenomenon of magnetic hysteresis.

Solution

a) In steady state the magnetic field satisfies ~∇ · ~B = 0 and ~∇ × ~B = 4π
c

~J . First,

draw a small, so called, “Gaussian pill-box” of height h across the surface. The top

and bottom faces of the pill-box have areas ∆S each and are parallel to the surface.

Denote the value of the magnetic field on the bottom face of the box by ~B1 and

on the top face of the box by ~B2. The unit normals to these faces are n̂1 and n̂2

(n̂2 = −n̂1 = n̂). Then,

0 = lim
h→0

∫
pill−box

d3x~∇ · ~B = lim
h→0

∫
∂(pill−box)

~ds · ~B = ( ~B2 · n̂2 + ~B1 · n̂1)∆S

where the contribution from the sides have dropped in the limit h → 0. Hence we

have,

( ~B2 − ~B1) · n̂ = 0

Let us now replace the pill-box by a rectangular loop that has its longer sides of

length ∆l parallel to the surface and its shorter sides of height h perpendicular to

the surface and going through it. A unit vector along the lower side of the rectangle

is t̂1 and one along the upper side is t̂2, both being parallel to the surface. Picking

an orientation along the loop, one has t̂2 = −t̂1 = t̂. Integrate ~∇× ~B over the loop

area, ∫
loop area

~∇× ~B · ~ds =
4π

c

∫
loop area

~J · ~ds

In the limit of h → 0, the left hand side gives,

lim
h→0

∫
loop

~B · ~dl = ( ~B2 · t̂2 + ~B1 · t̂1)∆l

The right and side gives the total current flowing through the loop area. In the limit

h → 0, this is simply the surface current over the length ∆l of the squashed loop. A

unit vector normal to the loop area (it i.e., along ~ds is) t̂′ = n̂× t̂. Hence,

lim
h→0

∫
loop area

~J · ~ds = ~K · t̂′∆l

and therefore,

( ~B2 − ~B1) · t̂ =
4π

c
~K · t̂′

This is true for all orientations of the loop, or equivalently, for all unit tangent

vectors t̂ to the surface. The above relation can be rewritten in a form that is
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independent of the choice of a tangent vector t̂ by noting that t̂ = t̂′× n̂. Then using

the cyclic property of the triple product, ( ~B2 − ~B1) · (t̂′ × n̂) = t̂′ · (n̂ × ( ~B2 − ~B1))

and the fact that the equation is valid for all orientations of the loop (that is, all t̂′

tangent to the surface), one has the alternate form

n̂× ( ~B2 − ~B1) =
4π

c
~K

When the steady state condition is relaxed, ~∇ · ~B = 0 still holds and therefore

the behaviour of the normal component of ~B does not change. However the second

equation is modified to ~∇× ~B− 1
c
∂ ~E/∂t = 4π

c
~J . This could give an extra contribution

to the equation for the tangential component of ~B coming from

limh→0

∫
loop area

∂ ~E

∂t
· ~ds

But in the limit, the loop area (integration domain) shrinks to zero size while the

integrand is finite and as a result the integral vanishes. Hence the steady state results

are also applicable to non-steady state situations.

b) In a magnetic medium atoms and molecules could carry magnetic dipole moments.

In an external magnetic field, these microscopic magnetic dipoles tend to realign

themselves giving rise to a net magnetic field that is characterized by the magnetic

moment density or magnetization ~M of the medium. The total magnetic field we

measure is a sum of the field produced by ~M and the externally applied field. This

we denote by ~B. The field ~H is related to these by ~H = ~B − 4π ~M and it can be

shown to satisfy ~∇× ~H = 4π
c

~J where ~J is the external “free” current density. It is

then clear that ~H is the part of the magnetic field that is entirely due to the external

currents and has no contribution from the response of the medium.

Magnetic Hysteresis: Since H is the part of the total magnetic field that can be

tuned externally, it is natural to regard B as a function of H. For diamagnetic

and paramagnetic material the relation between the two is linear to a good degree of

approximation, B = µH. However, ferromagnetic material respond strongly to the

applied field and the relation B = B(H) has the following features: Initially, as H is

increased from zero, B also increases due to the fact that more and more microscopic

magnetic dipoles in the material realign themselves along the applied field, enhancing

its strength. But when most of the microscopic dipoles have realigned, the increase

in B slows down and the B vs H curve flattens out. Now, as H is decreased, B also

decreases, but it starts lagging behind H since the microscopic dipoles resist flipping

their orientation. Even when H is reduced to zero, there is still a residual B field.

As H is made negative, B reduces further and finally vanishes for some negative

H. Beyond this, B increases in the negative direction until most of the microscopic

dipoles are aligned in the new direction and beyond some negative H the curve again

flattens out. In this way, as H is varied sinusoidally, B traces a closed loop in the

B − H plane called the Hysteresis curve (it can be found in any standard textbook

on electromagnetism) and the phenomenon is referred to as hysteresis.
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4. A straight wire of length L and radius a has a resistance R and carries current I.

(a) Find the electric and magnetic fields on the surface of the wire and indicate

their directions.

(b) Evaluate the energy carried into the wire by the above electric and magnetic

fields.

(c) What happens to this energy in the steady state? Verify your answer using

the Poynting theorem in the thin wire approximation.

Solution

a)The electric field on the surface is given by E = Φ/L where the constant potential

difference Φ is given by Ohm’s law, Φ = IR. Hence, E = IR/L. The direction

of ~E is parallel to the current and hence to the wire. The magnetic field on the

surface is given by Ampere’s law as B = 2I/ca (This is obtained by integrating
~∇× ~B = (4π/c) ~J over a cross section of the wire and using the cylindrical symmetry

of the problem). The direction of ~B is given by the “right-hand-rule” which makes

it perpendicular to both ~E and the radius vector of the cylindrical wire. Hence the

direction of ~B is along the angular direction of the cylinder.

b) The energy carried into the wire by electric and magnetic fields is the surface

integral of the Poynting vector over the surface of the wire. The Poynting vector is
~S = (c/4π) ~E× ~B. Since ~E is perpendicular to ~B, we have, for the magnitude of the

Poynting vector, S = I2R/(2πaL). ~S is directed radially inward, ~S = −r̂ S. The

flux
∫

~ds · ~S evaluated over the surface of a segment of length L of the cylindrical

wire receives contributions only from the curved side-area of the cylinder (of area

2πaL) and not from the top and bottom caps (since then ~S is perpendicular to ~ds).

Hence the total flux is ∫
~ds · ~S = −I2R

The sign is due to fact that ~S is directed radially inward while, for the cylinder, ~ds

is directed radially outward. Physically, the negative sign signifies that energy enters

into the volume under consideration, rather than leave it.

c) Since in this problem the electric and magnetic fields are constant, the Poynting

theorem reduces to

−
∫

V

d3x~E · ~J =

∫
∂V

~ds · ~S

The left hand side is recognized as the expression for the energy injected into the

current distribution by the electric and magnetic fields. Thus the energy carried

into the wire by the Poynting vector is fully converted into the kinetic energy of the

charge carriers. Since the current is constant, the system is in steady state and

the extra kinetic energy acquired by the charges is dissipated into heat as a result of

collisions within the resistive medium. The left hand side can be computed in the

thin wire approximation. For our wire, d3x = ~dl · ~ds where ~dl is along the length of

the wire and the ~ds integration is over the cross sectional area of the wire. In the
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thin wire approximation, ~J is parallel to ~dl, so that (~dl · ~ds)( ~J · ~E) = ( ~J · ~ds)(~dl · ~E).

Moreover, ~E can be taken to be constant over the cross section of the thin wire.

Then

−
∫

V

d3x~E · ~J ≈ −(

∫
~J · ~ds)(

∫
~dl · ~E) = −IΦ = −I2R

which verifies the result of part b) of the question.

5. (a) Show that Maxwell’s equations are consistent with the conservation of electric

charge.

(b) The equation for the vector potential ~A in the Lorenz gauge and in the presence

of a current source has a solution

~A(~x, t) =
1

c

∫
d3x′

[
~J(~x′, t′)

]
ret

|~x− ~x′|
in terms of the spherically symmetric retarded Green function. Evaluate this

expression for a sinusoidal source term, ~J(~x, t) = ~J(~x)e−iωt. Write and discuss

the solution in the “near zone” and the “far zone” approximations.

Solution

a) Start with the two Maxwell equations containing the sources ρ and ~J . Taking

a time derivative of the first equation and a divergence of the second, one gets

∂ρ/∂t +∇ · ~J = 0 which is a statement of charge conservation.

b) We know that
[
~J(~x′, t′)

]
ret

= ~J(~x′, t′ = t− |~x− ~x′|/c), so for the given sinusoidal

current,

~A(~x, t) =
e−iωt

c

∫
d3x′

~J(~x′) eik|~x−~x′|

|~x− ~x′|
where k = ω/c = 2π/λ. Let d denote the linear extension of the current distribution

(x′ . d). In the near zone, d << x << λ where x = |~x|. We then make the

approximation k|~x− ~x′| << 1 or eik|~x−~x′| ∼ 1, so that

~A(~x, t) =
e−iωt

c

∫
d3x′

~J(~x′)

|~x− ~x′|
Except for the overall time modulation this has the character of a magnetostatic field.

In the far zone, d << λ << x. Then, |~x− ~x′| ∼ x− ~x · ~x′/x and 1/|~x− ~x′| → 1/x,

leading to

~A(~x, t) =
1

c

ei(kr−ωt)

x

∫
d3x′ ~J(~x′) e−ik~x·~x′/x

The factor in front of the integral shows that this has the character of an expanding

spherical wave.

6. (a) In relativistic electrodynamics, the Lorentz force law is contained in

m0
dUµ

dτ
=

q

c
F µν Uν

where Uµ = (γc, γ~u) is the relativistic 4-velocity, τ is time in the rest-frame of

the moving charge (dt = γdτ) and γ−1 =
√

1− u2/c2.
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i. Show how this modifies the non-relativistic Lorentz force law, m(d~u/dt) =

q ~E + (q/c)~u× ~B.

ii. Besides this equation,what other equation is contained in the relativistic

force law? Explain its physical significance.

(b) Consider an inertial reference frame S̃ moving with respect to frame S with

velocity v in the positive x direction. If the observer in S measures static

charge distribution ρ(~x), find the charge and current distributions as measured

by the observer in S̃. Discuss the non-relativistic limit of your result.

Solution

a) (i) For µ = i, the relativistic equation reduces to

m
dui

dt
+

m

γ

dγ

dt
ui = qF i0 − q

c
F ij uj

But, F i0 = Ei, F ij = −εij
kB

k and (~u × ~B)i = −εi
jku

jBk (with ε123 = 1), and

therefore,

m
d~u

dt
+

m

γ

dγ

dt
~u = q ~E +

q

c
~u× ~B

where m = γm0. The relativistic correction is the term involving dγ/dt. Note that

γ being a function of the velocity ~u of the moving particle, is not constant in time.

The left hand side has a compact expression in terms of the momentum ~p = m0γ~u

which again makes it resemble a Newtonian force.

(ii) For µ = 0, it reduces to d(m0c
2γ)/dt = qEiui. We recognize E = m0c

2γ as the

relativistic energy of the particle. Hence d(E)/dt = q~u · ~E which gives the power

transferred to the charged particle from the electric field.

b) The charge density ρ(~x) and current density ~J(~x) combine into a 4-vector Jµ =

{J0 = cρ, ~J} which under Lorentz transformations L transforms as

J̃µ(x̃) = Lµ
νJ

ν(L−1x̃)

In our case, ~J = 0 and the non-trivial components of L are, L0
0 = L1

1 = γ, and

L1
0 = L0

1 = −γβ. Therefore the Lorentz transformation gives (suppressing the x̃

dependence)

ρ̃ = γρ , J̃1 = −γvρ , J̃2 = J̃3 = 0

In the non-relativistic limit, β = v/c → 0 and γ → 1 so that,

ρ̃ = ρ , J̃1 = −vρ

which is the expected result.
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