
Final Examination Paper for Electrodynamics-I
Allowed help material: Physics and Mathematics handbooks

Date: Saturday, Nov 05, 2005, Time: 09:00 - 15:00 [Solutions]

Questions: 1 2 3 4 5 6 Total
Marks: 10 10 20 10 10 10 70

1. Consider a grounded conducting sphere of radius a the centre of which coincides

with the origin of the coordinate system. Place a point charge q at ~y outside it.

(a) Find the value q′ and the position ~y ′ of the image charge inside the sphere.

(b) Evaluate the potential φ at any point ~x outside the sphere.

(c) Evaluate the surface charge density σ induced on the surface of the sphere.

Solution

a) The potential due to q and q′ at ~x outside the sphere is

φ(~x) =
q

|~x− ~y|
+

q′

|~x− ~y ′|

Then, φ(|~x| = a) = 0 gives q′ = −aq/y and y′ = a2/y

b) The potential at any ~x is (with x̂ and ŷ unit vectors along ~x and ~y, respectively)

φ(~x) =
q

|xx̂− yŷ|
− aq

y

1

|xx̂− a2

y
ŷ|

c) σ is related to the discontinuity in the normal component of the electric field

across the surface of the sphere:

( ~Eout − ~Ein) · x̂ = 4πσ

Since ~Ein = 0 and ~Eout = −~∇φ, one gets,

σ = − 1

4π
~∇φ · x̂|x=a = − 1

4π

∂φ

∂x
|x=a = − 1

4π

q

ay

1 − a2/y2

(1 + a2/y2 − 2x̂ · ŷ a/y)3/2

2. (a) Show that the equation ∂ρ/∂t + ~∇ · ~J = 0 implies the conservation of charge.

(b) Starting from the Biot-Savart law,

~B(~x) =
1

c

∫
d3x′ ~J(~x′) × (~x− ~x′)

|~x− ~x′|3

show that

~∇× ~B − 1

c

∂ ~E

∂t
=

4π

c
~J when ~∇ · ~J 6= 0

1



Solution

a) Charge in a volume V is given by QV =
∫

V
d3xρ. Then,

∂QV

∂t
=

∫
V

d3x
∂ρ

∂t
= −

∫
V

d3x~∇ · ~J = −
∮

S

~dS · ~J = −IS

where, IS is the current flowing through the boundary S of the volume V , and we

have used the divergence theorem. Thus, any change in the charge QV contained in

volume V is entirely due to the flow of charge into or out of V , across the surface

S. There is no creation or destruction of charge inside V .

b)We need the following relations,

~∇ 1

|~x− ~x′|
= − ~x− ~x′

|~x− ~x′|3
= −~∇′ 1

|~x− ~x′|
, ∇2 1

|~x− ~x′|
= −4πδ3(~x− ~x′),

and ~∇ × (~∇ × ~A) = ~∇(~∇ · ~A) − ∇2 ~A. Note that ~∇ involves differentiations with

respect to ~x while ~∇′ involves differentiations with respect to ~x′. This difference

should be kept in mind. Then ~B(~x) = 1
c
~∇×

∫
d3x′ ~J(~x′)/|~x− ~x′| and

~∇× ~B(~x) =
1

c
~∇×

(
~∇×

∫
d3x′ ~J(~x′)/|~x− ~x′|

)
=

1

c
~∇
(∫

d3x′ ~J(~x′) · ~∇ 1

|~x− ~x′|

)
− 1

c

∫
d3x′ ~J(~x′)∇2 1

|~x− ~x′|

= −1

c
~∇
(∫

d3x′ ~J(~x′) · ~∇′ 1

|~x− ~x′|

)
+

4π

c
~J(~x)

= −1

c
~∇
∫

d3x′

(
~∇′ ·

~J(~x′)

|~x− ~x′|
−

~∇′ · ~J(~x′)

|~x− ~x′|

)
+

4π

c
~J(~x)

= −1

c
~∇
∮

~dS ′ ·
~J(~x′)

|~x− ~x′|
− 1

c

∂

∂t
~∇
∫

d3x′ ρ(~x′)

|~x− ~x′|
+

4π

c
~J(~x)

(1)

The first integral is a surface term and vanishes. The second integral becomes,

−1

c

∂

∂t
~∇
∫

d3x′ ρ(~x′)

|~x− ~x′|
= −1

c

∂

∂t
~∇Φ(~x) =

1

c

∂

∂t
~E

and hence the result.

3. (a) Show that the function G′
k = eikR

R
with R = |~x− ~x′| is a solution to(

∇2 + k2
)
G′

k = −4πδ3(~x− ~x′)

(b) Using this result, construct the spherically symmetric retarded Green function

G+(~x, t; ~x′, t′) as a solution of(
∇2 − 1

c2

∂2

∂t2

)
G = −4πδ3(~x− ~x′)δ(t− t′)
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(c) Using the retarded Green function, show that the wave equation for the scalar

potential ∇2Φ − (1/c2)(∂2/∂t2)Φ = −4πρ has a solution,

Φ(~x, t) =

∫
d3x′

[
ρ(~x′, t′)

|~x− ~x′|

]
t′ = t− ~x− ~x′

c

Comment on the difference with the generalised Coulomb law of electrostatics.

Solution

a) To show this, we need

~∇R =
~R

R
, ∇2R =

2

R
, ~∇(

1

R
) = −

~R

R3
, ∇2(

1

R
) = −4πδ3(~x− ~x′)

Now, ~∇G′
k = ik~∇R eikR

R
+ ~∇( 1

R
)eikR so that

∇2G′
k =

(
ik

R
∇2R + 2ik~∇R · ~∇(

1

R
) + ∇2(

1

R
) − k2

R
~∇R · ~∇R

)
eikR

=

(
−k2

R
− 4πδ3(~x− ~x′)

)
eikR

Therefore, (∇2 + k2) G′
k = −4πδ3(~x − ~x′)eikR = −4πδ3(~x − ~x′). The last step

follows from the fact that the delta-function is non-zero only for R = 0 and hence

the exponential becomes redundant.

b) Using the Fourier transform of G+(~x, t; ~x′, t′) and the representation of the time

delta-function,

G+(~x, t; ~x′, t′) =

∫
dωGω e−iωt , δ(t− t′) =

∫
dω e−iω(t−t′) ,

the equation reduces to(
∇2 +

ω2

c2

)
Gω = −4πδ3(~x− ~x′)eiωt′

Now, with k2 = ω2/c2 and G′
k = Gωe−iωt′ it becomes,(

∇2 + k2
)
G′

k = −4πδ3(~x− ~x′)

The solution of this equation was given in part a) as G′
k = eikR

R
. Using this, the

Fourier transform for G+ becomes,

G+(~x, t; ~x′, t′) =

∫
dω

eikR

R
eiω(t′−t) =

1

R

∫
dω eiω(t′−t + R/c) =

1

R
δ(t′ − t + R/c)

Thus, G+ 6= 0 for t = t′ + R/c

c) The equation of part b) is the Green’s function equation associated with ∇2Φ −
(1/c2)(∂2/∂t2)Φ = −4πρ. Hence the solution for Φ is given by

Φ(~x, t) =

∫
d3x′

∫
dt′G+(~x, t; ~x′, t′)ρ(~x′, t′) =

∫
d3x′

[
ρ(~x′, t′)

|~x− ~x′|

]
t′ = t− ~x− ~x′

c
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where the solution for G+ has been used. If ρ is time independent, then this reduces

to the generalized Coulomb law of electrostatics. In that case, if we introduce a time

dependence in ρ by hand, then Φ will have the same time dependence, implying that

a change in ρ at x′ is instantly transmitted to Φ at x giving rise to action at a

distance. However the use of the retarded Green’s function implies that a change in

ρ propagates outward at the velocity of light and not instantaneously.

4. A straight wire of length L and radius a has a resistance R and carries current I.

(a) Find the electric and magnetic fields on the surface of the wire and indicate

their directions.

(b) Show that the flux of the Poynting vector across the surface of the wire is I2R.

Interpret this result in terms of the Poynting theorem.

Solution

a)The electric field on the surface is given by E = Φ/L where the constant potential

difference Φ is given by Ohm’s law, Φ = IR. Hence, E = IR/L. The direction

of ~E is parallel to the current and hence to the wire. The magnetic field on the

surface is given by Ampere’s law as B = 2I/ca (This is obtained by integrating
~∇× ~B = (4π/c) ~J over a cross section of the wire and using the cylindrical symmetry

of the problem). The direction of ~B is given by the “right-hand-rule” which makes

it perpendicular to both ~E and the radius vector of the cylindrical wire. Hence the

direction of ~B is along the angular direction of the cylinder.

b) The Poynting vector is ~S = (c/4π) ~E × ~B. Since ~E is perpendicular to ~B, we

have for the magnitude of S = I2R/(2πaL). ~S is directed radially inward. The flux∫
~ds · ~S evaluated over the surface of a segment of length L of the cylindrical wire

receives contributions only from the curved side-area of the cylinder (of area 2πaL)

and not from the top and bottom caps (since ~S is parallel to them). Hence the total

flux is I2R.

Since the electric and magnetic fields are constant, the Poynting theorem reduces

to the statement that the energy carried into the wire by the Poynting vector is

fully converted into the kinetic energy of the charge carriers. Since the current is

constant, the system is in steady state and the extra kinetic energy acquired by the

charges is dissipated into heat as a result of collisions within the resistive medium.

The resulting Ohmic power loss as we know is I2R consistent with the Poynting

theorem.

5. (a) Starting from the fact that the conservation of electric charge holds in all

inertial frames, find the transformation properties of electric current and charge

densities under Lorentz transformations.

(b) In relativistic electrodynamics, the Lorentz force law is contained in

m0
dUµ

dτ
=

q

c
F µν Uν
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where Uµ = (γc, γ~u) is the relativistic 4-velocity, τ is time in the rest-frame of

the moving charge (dt = γdτ) and γ−1 =
√

1 − u2/c2.

i. Show how this modifies the non-relativistic Lorentz force law, m(d~u/dt) =

q ~E + (q/c)~u× ~B.

ii. Besides this equation,what other equation is contained in the relativistic

force law? Explain its physical significance.

Solution

a) The conservation law of electric charge is expressed in terms of the continu-

ity equation ∂ρ/∂t + ~∇ · ~J = 0, which can be re-expressed as ∂µj
µ = 0, where

∂µ = { ∂
c∂t

, ∂
∂x1 ,

∂
∂x2 ,

∂
∂x3} and jµ = {cρ, j1, j2, j3}, for µ = 0, 1, 2, 3. It is known that

under Lorentz transformations, the quantity ∂µ transforms as a covariant 4-vector.

Since the conservation law must hold in all Lorentz frames, ∂µj
µ must be a scalar

which is true if jµ transforms as a contravariant 4-vector. Thus under a Lorentz

transformation x′µ = Lµ
νx

ν one has j′µ = Lµ
νj

ν, or ρ′ = 1
c
L0

νj
ν and j′i = Li

νj
ν for

i = 1, 2, 3.

b)(i) For µ = i, the relativistic equation reduces to m(dui)/dt) + m0u
i(dγ/dt) =

qEi + (q/c)εijkujBk. where m = γm0. The relativistic correction is the term involv-

ing dγ/dt. Note that γ being a function of the velocity ~u of the moving particle, is

not constant in time.

b)(ii) For µ = 0, it reduces to d(m0c
2γ)/dt = qEiui. We recognize E = m0c

2γ as

the relativistic energy of the particle. Hence d(E)/dt = q~u · ~E which gives the power

transferred to the charged particle from the electric field.

6. An observer in a frame S measures the non-zero components of the electric and

magnetic fields as E2(~x) and B3(~x). If a frame S̃ is moving with respect to S with

velocity v in the positive x1 direction, find the components Ẽi(~̃x) and Bi(~̃x) of the

electric and magnetic fields as measured by the observer in S̃.

Solution

In the matrix notation, under Lorentz transformations, the electromagnetic fieldstrength

tensor F µν transforms as F̃ (x̃) = L F (x) LT , where at the end xµ in the right hand side

should be expressed in terms of x̃µ using x = L−1x̃. In this case, the matrices F and L

are given by

F =


0 0 −E2 0
0 0 −B3 0

E2 B3 0 0
0 0 0 0

 L =


γ −γv/c 0 0

−γv/c γ 0 0
0 0 1 0
0 0 0 1


leading to

Ẽ1 = 0 B̃1 = 0

Ẽ2 = γ(E2 − βB3) B̃2 = 0

Ẽ3 = 0 B̃3 = γ(B3 − βE2)

The arguments of E2 and B3 should now be expressed in terms of x̃µ using x = L−1x̃.
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