Final Examination Paper for Electrodynamics-I

Allowed help material: Physics and Mathematics handbooks

Date: Saturday, October 30, 2004, Time: 09:00 - 15:00

Questions:	1a	1b	2a	2b	3a	Зb	4a	4b	4c	4d	5a	5b	6a	6b	6c	Total
Marks:	3	7	4	4	5	3	4	4	4	4	5	5	10	6	2	70

1. (a) Prove Green's first identity,

$$\int_{V} (\phi \nabla^{2} \psi + \vec{\nabla} \phi \cdot \vec{\nabla} \psi) d^{3} x = \oint_{S} \phi \frac{\partial \psi}{\partial n} dS$$

for two arbitrary functions ϕ and ψ .

(b) Show that the solutions of the Poisson equation, $\nabla^2 \phi = -4\pi\rho$, are uniquely specified by *Neumann* and *Dirichlet* boundary conditions (up to a constant).

Solution

a) Evaluate $\vec{\nabla} \cdot (\phi \vec{\nabla} \psi)$ and integrate the outcome over the volume V using the divergence theorem (worked out in Jackson, section 1.8)

b) For two possible solutions ϕ_1 and ϕ_2 satisfying the same boundary conditions, define $U = \phi_1 - \phi_2$ and show that U = 0 (Dirichlet) or U = const (Neumann) (for the proof, see Jackson, section 1.9 or the class notes)

2. (a) Consider the multipole moments of a charge distribution $\rho(r, \theta, \phi)$,

$$q_{lm} = \int r^2 dr \int \sin \theta d\theta \int d\phi \ \rho(r,\theta,\phi) \ r^l \ Y_{lm}^*(\theta,\phi)$$

Show that q_{00} is total charge and that for a *spherically symmetric* charge distribution all moments beyond this monopole moment vanish.

(b) Consider the boundary between two media of dielectric constants ϵ_1 and ϵ_2 . Let us denote the electric displacement vectors on the two sides of the boundary by \vec{D}_1 and \vec{D}_2 and the polarization densities by \vec{P}_1 and \vec{P}_2 , respectively. Show that even in the absence of free charges, a polarization charge density

$$\sigma_{pol} = (\vec{P}_1 - \vec{P}_2) \cdot \hat{n}$$

develops on the boundary (\hat{n} is a unit vector normal to the boundary).

Solution

a) Since $Y_{00}(\theta, \phi) = 1/\sqrt{4\pi}$, it is obvious that q_{00} determines the total charge Q as $q_{00} = Q/\sqrt{4\pi}$. This reminds us that Y_{00} is a constant, so we can insert $Y_{00}(\theta, \phi)/\sqrt{4\pi} = 1$ in the integral expression for q_{lm} . For a spherically symmetric charge distribution, $\rho(r, \theta, \phi) = \rho(r)$ and is not affected by the angular integrals. Then from the orthogonality of spherical harmonics it follows that $q_{lm} = 0$.

b) This directly follows from the fact that \vec{D} accross the surface is continuous while the discontinuity in $\vec{E} \cdot \hat{n}$ is given by the surface charge density and $\vec{D} = \vec{E} + 4\pi \vec{P}$. 3. (a) Show that the force acting on a current distribution \vec{J} placed in a magnetic field \vec{B} is given by

$$\vec{F} = \frac{1}{c} \int_{V} \vec{J}(\vec{x}) \times \vec{B}(\vec{x}) \, d^{3}x$$

(b) What is the physical significance of the equation $\vec{\nabla} \cdot \vec{B} = 0$?

Solution

a) This is the Lorentz force $d\vec{F} = \frac{1}{c}\rho\vec{v} \times \vec{B}d^3x$ applied to a current in a volume V b) Absence of magnetic monopoles

4. Maxwell's equations in the absence of sources have travelling wave solutions,

$$\vec{E}(\vec{x},t) = \vec{E}_{\rm o} e^{i(\vec{k}\cdot\vec{x}-\omega t)}, \qquad \vec{B}(\vec{x},t) = \vec{B}_{\rm o} e^{i(\vec{k}\cdot\vec{x}-\omega t)}$$

Show that for such solutions,

- (a) \vec{E} and \vec{B} are perpendicular to the wave-vector \vec{k} ($\vec{k} \cdot \vec{E} = \vec{k} \cdot \vec{B} = 0$).
- (b) \vec{E} and \vec{B} are perpendicular to each other and hence, along with \vec{k} , form a triplet of orthogonal vectors.
- (c) What is the velocity of the wave?
- (d) Show that for this solution, the energy density in the electric field is equal to the energy density in the magnetic field

[Hint: You may need the vector identity $(\vec{A} \times \vec{B}) \times \vec{C} = \vec{B} (\vec{A} \cdot \vec{C}) - \vec{A} (\vec{B} \cdot \vec{C})$] Solution

a) Since $\vec{\nabla} \cdot \vec{E} = i\vec{k} \cdot \vec{E}$ (and similarly for \vec{B}), the Maxwell's equations for $\vec{\nabla} \cdot \vec{E}$ and $\vec{\nabla} \cdot \vec{B}$ lead to this result.

b) Now substituting the solutions in the remaining two Maxwell's equations gives $\vec{k} \times \vec{E} = \frac{\omega}{c} \vec{B}$ and $\vec{k} \times \vec{B} = -\frac{\omega}{c} \vec{E}$ which proves the point.

c) Using the Hint, eliminate \vec{E} or \vec{B} between the two equations in b), leading to $c = \omega/|k| = \nu\lambda$.

d) From b) and c) it follows that $|\vec{E}| = |\vec{B}|$ so that $\frac{1}{8\pi}E^2 = \frac{1}{8\pi}B^2$.

5. (a) Prove the *Poynting theorem*,

$$\vec{J} \cdot \vec{E} + \frac{1}{8\pi} \frac{\partial}{\partial t} \left(\epsilon \vec{E} \cdot \vec{E} + \frac{1}{\mu} \vec{B} \cdot \vec{B} \right) + \frac{c}{4\pi} \nabla \cdot (\vec{E} \times \vec{H}) = 0$$

[Hint: You may need the vector identity $\nabla \cdot (\vec{P} \times \vec{Q}) = (\nabla \times \vec{P}) \cdot \vec{Q} - \vec{P} \cdot (\nabla \times \vec{Q})$]

(b) Give the physical interpretation of each term in this equation. What is the significance of the *Poynting theorem*?

Solution

- a) See section 6.8 in Jackson or the class notes
- b) First term: power injected into the current distribution by the electric field/unit

volume, Second term: rate of change of energy density of the electric and magnetic fields, Third term: energy flux per unit time per unit volume carried by the em fields. The Poynting theorem is a statement of conservation of energy and also indicates that energy is carried by electromagnetic waves.

- 6. (a) Consider a point charge q which is at rest at the origin of an inertial frame S. A frame S̃ is moving away from S in the x¹ direction with constant velocity v. Find the electric and magnetic potentials φ̃(x̃) and Ãⁱ(x̃) due to q as measured by an observer in the S̃ frame.
 - (b) Consider a Lorentz transformation L relating two reference frames S and \tilde{S} . Then the space-time coordinates of a particle measured in the two frames are related by

$$\tilde{x}^{\mu} = \sum_{\nu=0}^{3} L^{\mu}_{\ \nu} \, x^{\nu}$$

Assume that an observer in S measures the velocity of the particle as \vec{u} (so that in time Δt it is displaced by $\Delta x^i = u^i \Delta t$). Find the particle velocity \tilde{u}^i in the frame \tilde{S} in terms of $L^{\mu}_{\ \nu}$ and u^i .

(c) When frame \tilde{S} moves away from S with velocity v in the x^1 direction, check that the above relation between \tilde{u}^i and u^i reduces to the standard form of the law of addition of velocities,

$$\tilde{u}^{1} = \frac{u^{1} - v}{1 - \frac{vu^{1}}{c^{2}}}, \qquad \tilde{u}^{2} = \frac{u^{2}}{\gamma \left[1 - \frac{vu^{1}}{c^{2}}\right]} \qquad \tilde{u}^{3} = \frac{u^{3}}{\gamma \left[1 - \frac{vu^{1}}{c^{2}}\right]}$$

Solution

a) We use $\tilde{A}^{\mu}(\tilde{x}) = \sum_{\nu=0}^{3} L^{\mu}{}_{\nu} A^{\nu}(x)$. Since the charge is stationary in $S, \phi = q/r$, $A^{i} = 0$. Also for this problem, $L_{0}^{0} = L_{1}^{1} = \gamma$ and $L_{1}^{0} = L_{0}^{1} = -\gamma\beta^{1}$. It then follows that $\tilde{\phi}(\tilde{x}) = \gamma q/r$ and $\tilde{A}^{1} = -(\gamma v)q/cr$. This is still in terms of $r = \sqrt{(x^{1})^{2} + (x^{2})^{2} + (x^{3})^{2}}$ and should be expressed in terms of \tilde{x}^{i} . Under the Lorentz transformation, $x^{1} = \gamma(\tilde{x}^{1} + v\tilde{t})$ with x^{2} and x^{3} unchanged. Hence the final answer is, $\tilde{\phi}(\tilde{x}) = \gamma q/\sqrt{\gamma^{2}(\tilde{x}^{1} + v\tilde{t})^{2} + (x^{2})^{2} + (x^{3})^{2}}$ and $\tilde{A}^{1} = -(\gamma v)q/c\sqrt{\gamma^{2}(\tilde{x}^{1} + v\tilde{t})^{2} + (x^{2})^{2} + (x^{3})^{2}}$. b) Note that $\tilde{u}^{i}/c = \Delta \tilde{x}^{i}/\Delta \tilde{x}^{0}$ (i = 1, 2, 3), where $\Delta \tilde{x}^{\mu} = \sum_{\nu=0}^{3} L^{\mu}{}_{\nu} \Delta x^{\nu}$. Now, using the

b) Note that $u^i/c = \Delta x^i/\Delta x^0$ (i = 1, 2, 3), where $\Delta x^{\mu} = \sum_{\nu=0}^{\infty} L^{\mu}{}_{\nu} \Delta x^{\nu}$. Now, using the fact that $\Delta x^i = u^i \Delta t$ and $\Delta x^0 = c \Delta t$, we get

$$\frac{\tilde{u}^{i}}{c} = \frac{L^{i}_{\ j}u^{j} + L^{i}_{\ 0}c}{L^{0}_{\ j}u^{j} + L^{0}_{\ 0}c}$$

c) Using the form of L^{μ}_{ν} as given in the solution to part a) of the problem in the result in part b) we obtain the desired result.