Final Examination Paper for Electrodynamics-I

Allowed help material: Physics and Mathematics handbooks
Date: Friday, April 02, 2004, Time: 09:00-15:00
Number of questions: 6

1. Consider a continuous charge distribution $\rho(x)$ giving rise to an electric field $\vec{E}(x)$. Show that the electrostatic energy density of the system is given by

$$
w=\frac{1}{8 \pi}|\vec{E}|^{2}
$$

In what major respect does the energy of a continuous charge distribution differ from that of a discrete charge distribution? Comment qualitatively.
2. (a) Consider a potential problem which is invariant under rotations around the z-axis (that is, with azimuthal symmetry). Assume that we are given an expression for the potential along a line that makes an angle θ_{0} with the z-axis as,

$$
\Phi\left(r, \theta_{0}\right)=\sum_{l=0}^{\infty} \frac{A_{l}\left(\theta_{0}\right)}{r^{l+1}}
$$

Write down the solution for arbitrary angle θ in terms of the coefficients $A_{l}\left(\theta_{0}\right)$, using the uniqueness of such expansions.
(b) Show that, up to a constant, the solutions of the Poisson equation, $\nabla^{2} \phi=$ $-4 \pi \rho$, are uniquely specified by Neumann and Dirichlet boundary conditions. (Hint: You need Green's first identity, $\left.\int_{V}\left(\phi \nabla^{2} \psi+\vec{\nabla} \phi \cdot \vec{\nabla} \psi\right) d^{3} x=\oint_{S} \phi \frac{\partial \psi}{\partial n} d S\right)$.
3. (a) For two closely separated charges $+q$ and $-q$, write down the potential at a far away point in terms of the dipole moment \vec{p} of the system.
(b) Consider two colinear, but oppositely oriented dipoles \vec{p} and $-\vec{p}$. Evaluate the dipole and quadrupole moments of this system.
4. Consider a straight conducting wire (of infinite length) through which a total electric current I flows. Using Maxwell's equations show that the magnetic field $|\vec{B}|$ at a distance \vec{r} from the wire is given by

$$
|\vec{B}(r)|=\frac{2 I}{c r}
$$

5. (a) Prove the Poynting theorem,

$$
\vec{J} \cdot \vec{E}+\frac{1}{8 \pi} \frac{\partial}{\partial t}\left(\epsilon \vec{E} \cdot \vec{E}+\frac{1}{\mu} \vec{B} \cdot \vec{B}\right)+\frac{c}{4 \pi} \nabla \cdot(\vec{E} \times \vec{H})=0
$$

(Hint: You will need the vector identity $\nabla \cdot(\vec{P} \times \vec{Q})=(\nabla \times \vec{P}) \cdot \vec{Q}-\vec{P} \cdot(\nabla \times \vec{Q})$)
(b) Give the physical interpretation of each term in this equation. What is the significance of the Poynting theorem?
6. Consider two frames S and \widetilde{S} related by a Lorentz transformation matrix L so that $\widetilde{X}^{\mu}=L^{\mu}{ }_{\nu} X^{\nu}$. Remember that $\mu=0,1,2,3$ and $X^{0}=c t$.
(a) Argue that the two postulates of Special Relativity (that the speed of light is a constant c and the laws of physics have the same form in all inertial reference frames) imply that

$$
\left(X^{0}\right)^{2}-\left(X^{1}\right)^{2}+\left(X^{2}\right)^{2}+\left(X^{3}\right)^{2}=\left(\widetilde{X}^{0}\right)^{2}-\left(\widetilde{X}^{1}\right)^{2}+\left(\widetilde{X}^{2}\right)^{2}+\left(\widetilde{X}^{3}\right)^{2}
$$

(b) Find the restriction on the matrix L that follows from the above property of Lorentz transformations. Using this, express L^{-1} in terms of L^{T}.

