Electrodynamics-I, Problem set 3

Due date: Wednesday, Oct 31, 2012

Please explain your reasoning clearly and show the steps in your calculations

1. Consider two parallel conducting wires of infinite length placed a distance d apart and carrying currents I_{1} and I_{2}, respectively. Calculate the force per unit length between the wires. Indicate when the force is attractive and when repulsive.
2. Consider the current density $\vec{J}(\vec{x})=\sum_{i} q_{i} \vec{v}(\vec{x}) \delta\left(\vec{x}-\vec{x}_{i}\right)$ corresponding to discrete charges q_{i} moving with velocities \vec{v}_{i}. Evaluate the magnetic moment \vec{m} of the system in terms of its angular momentum. What is the potential energy of the system when placed in a magnetic field \vec{B} ?
3. Write down monocromatic plane-wave solutions for the vector and scalar potentials \vec{A} and Φ in the Lorenz gauge and in the absence of sources. What is the implication of the Lorenz gauge condition? From this derive the expressions for the electric field \vec{E} and the magnetic field \vec{B} and show that, along with the wave vector \vec{k} they form a set of three perpendicular vectors.
4. (a) Consider a reference frame \widetilde{S} moving away from a frame S with velocity v along the x^{1}-axis (there is no relative motion in the x^{2} and x^{3} directions). Show that the corresponding Lorentz transformations keep the space time interval invariant, i.e.,

$$
\left(\widetilde{x}^{0}\right)^{2}-\left(\widetilde{x}^{1}\right)^{2}-\left(\widetilde{x}^{2}\right)^{2}-\left(\widetilde{x}^{3}\right)^{2}=\left(x^{0}\right)^{2}-\left(x^{1}\right)^{2}-\left(x^{2}\right)^{2}-\left(x^{3}\right)^{2}
$$

(b) For the above frames, derive the transformation laws for $\frac{\partial}{\partial x^{0}}$ and $\frac{\partial}{\partial x^{1}}$. Using these show that if J^{μ} is a contravariant 4 -vector, then $\partial_{\mu} J^{\mu}$ is Lorentz invariant, i.e.,

$$
\sum_{\mu=0}^{3} \frac{\partial \widetilde{J}^{\mu}}{\partial \widetilde{x}^{\mu}}=\sum_{\mu=0}^{3} \frac{\partial J^{\mu}}{\partial x^{\mu}}
$$

