Electrodynamics I - Extra problems

Extra problem no. 1

Consider a hollow sphere of radius R in vacuum. There is a surface charge, $\sigma=\sigma_{0} \cos \theta$, on the sphere but no other charges are present. Compute the electrostatic potential and the electric field inside and outside of the sphere.

Extra problem no. 2

Start from the Biot-Sawart law,

$$
\begin{equation*}
\mathbf{B}=\frac{\mu_{0}}{4 \pi} \int \mathbf{J}\left(\mathbf{x}^{\prime}\right) \times \frac{\mathbf{x}-\mathbf{x}^{\prime}}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|^{3}} d^{3} x^{\prime} \tag{1}
\end{equation*}
$$

to show Gilberts law

$$
\begin{equation*}
\nabla \cdot \mathbf{B}=0 \tag{2}
\end{equation*}
$$

Then go on to show that the above, together with the continuity equation, leads to the Maxwell-Ampere law

$$
\begin{equation*}
\nabla \times \mathbf{B}=\mu_{0} \mathbf{J}+\mu_{0} \frac{\partial \mathbf{E}}{\partial t} \tag{3}
\end{equation*}
$$

Extra problem no. 3

Show, using Maxwell's equations, that The \vec{E} and \vec{B} fields obey the wave equation and that the electric charge is a conserved quantity.

Extra problem no. 4

Explain why we are allowed to choose gauges without changing the physics. Also explain the difference in arbitrariness of the gauge transformation between the Lorentz and the Coulomb gauge. (Hint: Think of the differences between the solutions of hyperbolic and elliptic differential equations.)

Extra problem no. 5

Derive the expression for length contraction from the constancy of the speed of light.

Extra problem no. 6

Consider two frames S and \widetilde{S} with relative velocity v in the x_{1} direction.
a) Obtain the electric and magnetic fields \vec{E} and \vec{E} in terms of \vec{E} and \vec{B}.
b) Place a charge q in frame S, at rest with coordinates x_{i}. Evaluate the electric and magnetic fields \vec{E} and \vec{E} as measured by an observer in frame \widetilde{S}.

Extra problem no. 7

Consider a scalar field of the form

$$
\begin{equation*}
\phi(\vec{r})=\frac{1}{r^{2}}, \quad r^{2}=x^{2}+y^{2}+z^{2} . \tag{4}
\end{equation*}
$$

Perform a Lorentz boost in the t-x plane, and express the new function ϕ^{\prime} as a function of the coordinates ($\mathrm{t}, \mathrm{x}, \mathrm{y}, \mathrm{z}$).

Extra problem no. 8

Derive the Lorentz-force from the action

$$
\begin{equation*}
\mathcal{S}=\int d \tau\left\{-m \sqrt{-\dot{x}_{\alpha} \dot{x}^{\alpha}}+e \dot{x}_{\alpha} A^{\alpha}(x(\tau))\right\} . \tag{5}
\end{equation*}
$$

(Hint: You might find the problem easier by fixing $\tau=x^{0}=t$ which gives the action $\mathcal{S}=\int d t\left\{-m \sqrt{1-\dot{x}_{i} \dot{x}_{i}}+e \dot{x}_{i} A_{i}+e A_{0}\right\}$.)

Extra problem no. 9

Show that Maxwell's equations can be obtained from

$$
\begin{equation*}
\mathcal{S}[A]=-\int d^{4} x\left(\frac{1}{16 \pi} F_{\alpha \beta} F^{\alpha \beta}+A_{\alpha} J^{\alpha}\right), \tag{6}
\end{equation*}
$$

where $F_{\alpha \beta} \equiv \partial_{\alpha} A_{\beta}-\partial_{\beta} A_{\alpha}$ and $J^{\alpha}(x)$ is a fixed external current. Also show that the action is invariant under the gauge transformation

$$
\begin{equation*}
A_{\alpha}(x) \rightarrow A_{\alpha}^{\prime}(x)=A_{\alpha}(x)+\partial_{\alpha} \Lambda(x), \quad J^{\alpha} \rightarrow J^{\prime \alpha}=J^{\alpha} \tag{7}
\end{equation*}
$$

if J^{α} satisfies a simple (and familiar!) condition. What is the physical significance of this condition?

