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Lecture 6 – Bloch’s theorem

Reading
Ashcroft & Mermin, Ch. 8, pp. 132 – 145.
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Central concepts
• Periodic potentials

A periodic potential appears because the ions are arranged with a periodicity of their Bravais lattice, given
by lattice vectors R.

U(r + R) = U(r)

This potential enters into the Schrödinger equation

Ĥψ =

(
−
~2

2m
∇2 + U(r)

)
ψ = εψ

The electrons are no longer free electrons, but are now called Bloch electrons.

• Bloch’s theorem
Theorem: The eigenstates ψ of the Hamitonian Ĥ above can be chosen to have the form of a plane wave
times a function with the periodicity of the Bravais lattice:

ψnk(r) = eik·runk(r)

where
unk(r + R) = unk(r)

The quantum number n is called the band index and takes numbers n = 1, 2, 3, . . . This quantum number
corresponds to the appearance of independent eigenstates of different energies but with the same k, as will
be shown later.

An alternative formulation of Bloch’s theorem is that the eigenstates of Ĥ can be chosen so that associated
with each ψ is a wave vector k such that

ψ(r + R) = eik·Rψ(r)



• Born – von Karman boundary condition
Apply boundary condition of macroscopic periodicity. Generalize to volume commensurate with underly-
ing Bravais lattice:

ψ(r + Niai) = ψ(r), i = 1, 2, 3

where ai are the primitive vectors and Ni are integers of order N1/3 where N = N1N2N3 is the total number
of primitive cells in the crystal. The quantum number k can be composed from the reciprocal lattice vectors
with (non-integer) coefficients xi,

k = x1b1 + x2b2 + x3b3

Since ai · b j = 2πδi j the Bloch theorem then gives ei2πxiNi = 1. Thus, xi = mi/Ni and the allowed Bloch
wave vectors are given by

k =

3∑
i=1

mi

Ni
bi

with mi integers. For a simple cubic Bravais lattice, the allowed wave vector components reduce to the
earlier kx = 2πmx/L etc., since Ni = L/a and bx = (2π/a)x̂ etc.

As for the free electron case, the volume ∆k per allowed k is given by

∆k =
(2π)3

V

• Crystal momentum
For bloch electrons, ψnk is no longer a momentum eigenstate, i.e., p̂ψnk , ~kψnk. The relation p = ~k is no
longer valid. Some similarities remain, however, and ~k is called the crystal momentum.

• Band index
Any value of k that is outside the first Brillouin zone can be reduced to the first zone, since all wave vectors
k′ = k+G are associated with the same eigenstate ψ, as follows from the alternative formulation of Bloch’s
theorem. Allowing k to range outside the first Brillouin zone thus gives a redundant description. For a given
k, there are many solutions to the Schrödinger equation with different eigenvalues εn. As a function of k,
these are continuous functions εn(k), called bands with band index n. The family of continuous functions
εnk = εn(k) describes the band structure of the material. Since εnk is periodic, each band has an upper and
a lower bound for the corresponding energies.

• Group velocity, external force
The mean (group) velocity of a Bloch electron given by n and k is

vn(k) =
1
~
∇kεn(k) =

1
~

∂εn

∂k

(Compare with ε = ~ω, vg = ∂ω/∂k). This means that the electron does not collide with the periodic
potential but remains in a stationary state if the lattice is ideal.

An external force F acting on an electron in the crystal gives rise to a change of k,

dk
dt

=
F
~

To motivate this, study the force F acting during time δt. The added energy to the electron is given by force
times distance, so that

δε = F · vgδt = F ·
(

1
~

∂ε

∂k

)
δt

But δε can also be written as δε = (∂ε/∂k)δk, and thus we see that δk/δt = F/~.



• Fermi surface
The ground state of a system of Bloch electrons can be constructed by filling up energy levels just as in
the free electron case. To count each level only once, k needs to be limited to a single primitive cell of
the reciprocal lattice, typically the first Brillouin zone. The allowed k values are still spaced discretely,
even though εn(k) are continuous functions of k. Since the volume of the Brillouin zone is 8π3/vc and
∆k = 8π3/V , the number of levels per band is V/vc = N, which gives 2N electron states per band.

Depending on the number of valence electrons Z per cell vc and the band structure εn(k), one may obtain
completely filled or partially filled bands. The Fermi surface is obtained from the condition that

εn(k) = εF

• Band gap
If some bands are completely filled and all others remain empty, the gap between the highest occupied level
and the lowest unoccupied level is called the band gap. In this case, there is no Fermi surface. This may
happen - but does not need to happen - if Z is even. If Z is odd, there are always partially filled bands and a
Fermi surface is formed. If the material has a Fermi surface, it also has metallic properties.

• Density of states
The density of states of the system with a periodic potential can be divided into each band,

g(ε) =
∑

n

gn(ε)

and it can be shown that
gn(ε) =

1
4π3

∫
S n(ε)

dS
|∇kεn(k)|

where S n(ε) is a surface of constant energy. The density of states at the Fermi energy is, thus, obtained
by an integral over the Fermi surface. (For free electrons, ∇kε(k) = ~2k/m and

∫
dS = 4πk2, so that

g(ε) = mk/π2~2 = m(2mε)1/2/π2~3 as obtained earlier.)

• van Hove singularities
Since εn(k) are periodic and continuous functions, there are values of k at which∇kεn(k) = 0. The integrand
for gn(ε) then diverges. Such singularities are still integrable, but give divergences in the slope dgn/dε,
which are called van Hove singularities.


