Condensed Matter Physics - FK7060 Feb. 1, 2018.

Lecture 6 – Bloch's theorem

Reading

Ashcroft & Mermin, Ch. 8, pp. 132 - 145.

Content

- Periodic potentials
- Bloch's theorem
- Born von Karman boundary condition
- Crystal momentum
- Band index
- Group velocity, external force
- Fermi surface
- Band gap
- Density of states
- van Hove singularities

Central concepts

• Periodic potentials

A periodic potential appears because the ions are arranged with a periodicity of their Bravais lattice, given by lattice vectors \mathbf{R} .

$$U(\mathbf{r} + \mathbf{R}) = U(\mathbf{r})$$

This potential enters into the Schrödinger equation

$$\hat{H}\psi = \left(-\frac{\hbar^2}{2m}\nabla^2 + U(\mathbf{r})\right)\psi = \varepsilon\psi$$

The electrons are no longer free electrons, but are now called *Bloch electrons*.

• Bloch's theorem

Theorem: The eigenstates ψ of the Hamitonian \hat{H} above can be chosen to have the form of a plane wave times a function with the periodicity of the Bravais lattice:

$$\psi_{n\mathbf{k}}(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}}u_{n\mathbf{k}}(\mathbf{r})$$

where

$$u_{n\mathbf{k}}(\mathbf{r} + \mathbf{R}) = u_{n\mathbf{k}}(\mathbf{r})$$

The quantum number *n* is called the *band index* and takes numbers n = 1, 2, 3, ... This quantum number corresponds to the appearance of independent eigenstates of different energies but with the same **k**, as will be shown later.

An alternative formulation of Bloch's theorem is that the eigenstates of \hat{H} can be chosen so that associated with each ψ is a wave vector **k** such that

$$\psi(\mathbf{r} + \mathbf{R}) = e^{i\mathbf{k}\cdot\mathbf{R}}\psi(\mathbf{r})$$

Born – von Karman boundary condition

Apply boundary condition of macroscopic periodicity. Generalize to volume commensurate with underlying Bravais lattice:

$$\psi(\mathbf{r} + N_i \mathbf{a}_i) = \psi(\mathbf{r}), \qquad i = 1, 2, 3$$

where \mathbf{a}_i are the primitive vectors and N_i are integers of order $N^{1/3}$ where $N = N_1 N_2 N_3$ is the total number of primitive cells in the crystal. The quantum number \mathbf{k} can be composed from the reciprocal lattice vectors with (non-integer) coefficients x_i ,

$$\mathbf{k} = x_1 \mathbf{b}_1 + x_2 \mathbf{b}_2 + x_3 \mathbf{b}_3$$

Since $\mathbf{a}_i \cdot \mathbf{b}_j = 2\pi \delta_{ij}$ the Bloch theorem then gives $e^{i2\pi x_i N_i} = 1$. Thus, $x_i = m_i/N_i$ and the allowed Bloch wave vectors are given by

$$\mathbf{k} = \sum_{i=1}^{3} \frac{m_i}{N_i} \mathbf{b}_i$$

with m_i integers. For a simple cubic Bravais lattice, the allowed wave vector components reduce to the earlier $k_x = 2\pi m_x/L$ etc., since $N_i = L/a$ and $\mathbf{b}_x = (2\pi/a)\mathbf{\hat{x}}$ etc.

As for the free electron case, the volume $\Delta \mathbf{k}$ per allowed \mathbf{k} is given by

$$\Delta \mathbf{k} = \frac{(2\pi)^3}{V}$$

Crystal momentum

For bloch electrons, $\psi_{n\mathbf{k}}$ is no longer a momentum eigenstate, i.e., $\mathbf{\hat{p}}\psi_{n\mathbf{k}} \neq \hbar \mathbf{k}\psi_{n\mathbf{k}}$. The relation $\mathbf{p} = \hbar \mathbf{k}$ is no longer valid. Some similarities remain, however, and $\hbar \mathbf{k}$ is called the *crystal momentum*.

• Band index

Any value of **k** that is outside the first Brillouin zone can be reduced to the first zone, since all wave vectors $\mathbf{k}' = \mathbf{k} + \mathbf{G}$ are associated with the same eigenstate ψ , as follows from the alternative formulation of Bloch's theorem. Allowing **k** to range outside the first Brillouin zone thus gives a redundant description. For a given **k**, there are many solutions to the Schrödinger equation with different eigenvalues ε_n . As a function of **k**, these are continuous functions $\varepsilon_n(\mathbf{k})$, called *bands* with *band index n*. The family of continuous functions $\varepsilon_{n\mathbf{k}} = \varepsilon_n(\mathbf{k})$ describes the *band structure* of the material. Since $\varepsilon_{n\mathbf{k}}$ is periodic, each band has an upper and a lower bound for the corresponding energies.

• Group velocity, external force

The mean (group) velocity of a Bloch electron given by n and k is

$$\mathbf{v}_n(\mathbf{k}) = \frac{1}{\hbar} \nabla_{\mathbf{k}} \varepsilon_n(\mathbf{k}) = \frac{1}{\hbar} \frac{\partial \varepsilon_n}{\partial \mathbf{k}}$$

(Compare with $\varepsilon = \hbar \omega$, $v_g = \partial \omega / \partial k$). This means that the electron does not collide with the periodic potential but remains in a stationary state if the lattice is ideal.

An external force F acting on an electron in the crystal gives rise to a change of k,

$$\frac{d\mathbf{k}}{dt} = \frac{\mathbf{F}}{\hbar}$$

To motivate this, study the force **F** acting during time δt . The added energy to the electron is given by force times distance, so that

$$\delta \varepsilon = \mathbf{F} \cdot \mathbf{v}_g \delta t = \mathbf{F} \cdot \left(\frac{1}{\hbar} \frac{\partial \varepsilon}{\partial \mathbf{k}}\right) \delta t$$

But $\delta \varepsilon$ can also be written as $\delta \varepsilon = (\partial \varepsilon / \partial \mathbf{k}) \delta \mathbf{k}$, and thus we see that $\delta \mathbf{k} / \delta t = \mathbf{F} / \hbar$.

• Fermi surface

The ground state of a system of Bloch electrons can be constructed by filling up energy levels just as in the free electron case. To count each level only once, **k** needs to be limited to a single primitive cell of the reciprocal lattice, typically the first Brillouin zone. The allowed **k** values are still spaced discretely, even though $\varepsilon_n(\mathbf{k})$ are continuous functions of **k**. Since the volume of the Brillouin zone is $8\pi^3/v_c$ and $\Delta \mathbf{k} = 8\pi^3/V$, the number of levels per band is $V/v_c = N$, which gives 2N electron states per band.

Depending on the number of valence electrons Z per cell v_c and the band structure $\varepsilon_n(\mathbf{k})$, one may obtain *completely filled* or *partially filled* bands. The Fermi surface is obtained from the condition that

$$\varepsilon_n(\mathbf{k}) = \varepsilon_F$$

• Band gap

If some bands are completely filled and all others remain empty, the gap between the highest occupied level and the lowest unoccupied level is called the *band gap*. In this case, there is no Fermi surface. This may happen - but does not need to happen - if Z is even. If Z is odd, there are always partially filled bands and a Fermi surface is formed. If the material has a Fermi surface, it also has metallic properties.

• Density of states

The density of states of the system with a periodic potential can be divided into each band,

$$g(\varepsilon) = \sum_{n} g_{n}(\varepsilon)$$

and it can be shown that

$$g_n(\varepsilon) = \frac{1}{4\pi^3} \int_{S_n(\varepsilon)} \frac{dS}{|\nabla_{\mathbf{k}} \varepsilon_n(\mathbf{k})|}$$

where $S_n(\varepsilon)$ is a surface of constant energy. The density of states at the Fermi energy is, thus, obtained by an integral over the Fermi surface. (For free electrons, $\nabla_{\mathbf{k}}\varepsilon(\mathbf{k}) = \hbar^2 k/m$ and $\int dS = 4\pi k^2$, so that $g(\varepsilon) = mk/\pi^2\hbar^2 = m(2m\varepsilon)^{1/2}/\pi^2\hbar^3$ as obtained earlier.)

• van Hove singularities

Since $\varepsilon_n(\mathbf{k})$ are periodic and continuous functions, there are values of \mathbf{k} at which $\nabla_{\mathbf{k}}\varepsilon_n(\mathbf{k}) = 0$. The integrand for $g_n(\varepsilon)$ then diverges. Such singularities are still integrable, but give divergences in the slope $dg_n/d\varepsilon$, which are called *van Hove singularities*.