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The Kitaev chain: prototypical model with Majorana
Zero-modes:

HKit——JZ (] ]+1+CT]+1+h c) hszzl(l—2chcj)
In terms of Pauli matrices (after Jordan—Wigner):

L—1 e
HKit _JZ ]+1—h2

Hy.. is a free-fermion model, solvable by a canonical
transformation on the fermion operators:

Hy; = ZJ-Lzl € (2]?]5' o 1)
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For |h| < |J]|, the Kitaev chain has a (strong) zero
mode: €; & 0, or better €; = e le
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Kitaev chain
He= X6 (2= 1)

J

For |h| < |J]|, the Kitaev chain has a (strong) zero
mode: €; & 0, or better €; = e le

Thus, the ground-state is two-fold degenerate. The
associated Majorana bound states live at the edges.

In fact, the full many-body spectrum is two-fold
degenerate. Energy levels are given by

E=i€1i€2i€3“’i€L

Operator connecting the pairs: oy
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Generically, zero modes come in two types:
e Strong: the full spectrum is degenerate
 Weak: only the ground state is degenerate

Conditions for ¥ to be a strong zero mode:

(H Y] =& | & | < e e ([H, ] ~ 0)
[H,P] =0
[P, P] #0

Eigenstates of H pairup: |1_) ®x W|4,) E, = E,

+

/Zero mode of free-fermion models is strong.

More non-trivial example: XYZ chain (Fendley)
Question: is the strong zero mode due to integrability or
can non-integrable models have a strong zero mode”?
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Kitaev - Hubbard chain

A natural interaction term for the Kitaev chain is of
Hubbard type,

L
HKH——JZ cicl +cley +h.c.) —h ) (1-2c/c)
j=1

+UZ (1=2¢/¢;) (1 =2¢, ¢41)

In terms of Pauli matrices (after Jordan-Wigner):

L-1 x P
HKH_ ]Z Oit1 _hz + UZ ]+1

Parity is a good quantum number:

L L
P = szlg; — sz1(1 —2c¢fc)=%1
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| Topological

J=1

Trivial

For attractive interaction, there is no frustration. Deep In
the trivial phase, the ground state has all sites empity.

There Is a direct transition to the topological phase,
described by Ising CFT (h > 0)
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Phase diagram, U > 0 (DMRG)

1.2}

1.0

Trivial

| Topological

/ For repL
there Is

ISIve Interaction,
rustration, and

J=1

various phases emerge.

(1,0,1,0,1,...)

CDW phase at large U: ground states are 0.

Topological & CDW phases separated by a gapless
incommensurate phase and a ‘exited state CDW’
phase (ground state resembles an exited state of the
CDW phase)
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(L=240) clearly show the four phases.
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L owest states in the two parity sectors, at h = 0.7
(L=240) clearly show the four phases.

Other observables used: entanglement entropy, site
occupation, scaling of the gap.
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Topological

We can exclude a strong zero
mode Iin a large part of the
topological phase.

Consider the line (i), U(s))iﬂ the topological phase

aﬂd |OOk at —H. —H(h, U)_Zo' ]+1+hZG—UZGO-+1
j=1

Performing the rotation ¢; — (=1Y6* 67 - — o7 gives
—H(h,U) = H(h, — U)

Highest excited state of H, U) Is the ground state of
H(h,— U)!

Ground state in the trivial phase is non-degenerate, so we
can exclude a strong zero mode above the dashed line.
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Strong zero mode?

In the remainder, we study the strong zero mode via
the edge-magnetization (Fendley et al.)

Spin-auto correlation function is defined as
A1) = (j| o505 (0) | )

Pairing due to a strong zero mode gives
lim lim A7) # O for arbitrary state j:

t—oo L—>o0
(E. —E. .
Ay =) BB (jy
ji

N

X
01

States with E; ~ E; , (j,|o7|j;) # 0 give finite
contribution to edge magnetization at large times.
When E; # E; one gets a sum of incoherent oscillations.
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Strong zero mode?

We will consider the edge magnetization at 7' > O:

1 1 .
A(t, T) — Z e_ejl/(kT)Ajl(f) _ Z e—ejl/(kT)ez(ejl—ejz)tl <]2 ]1> |2

/ ~ / -
J1 J1>J2

X
01

At infinite temperature, all states are weighted equally,
so if there is a strong zero mode, one will have long
coherence times!

We use exact diagonalization, to obtain all the
eigenstates, for L up to 16.



Edge magnetization

Compare different temperatures (1=0.001, 1, 1000) for
h=0.1,U=-0.1

Edge magnetization, L=12, U=-0.1 h=0.1
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Compare different temperatures (1=0.001, 1, 1000) for
h=0.1,U=-0.1

Edge magnetization, L=14, U=-0.1 h=0.1
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Edge magnetization

Compare different temperatures (1=0.001, 1, 1000) for
h=0.1,U=-0.1

L=16



Edge magnetization

Compare different system sizes for h=0.1, U = 0.1,

Edge magnetization, U=0.1 h=0.1 T=1000.

() ® e L=8
L=10
() L=12
° e L=14
o ® e L=16

o
o o o o0 a
... o® e 0 ® Ce ® AA. a ..mva‘ @ ¢ |
I = S 0 ) ! 0 Lo Q.”-:m
105 107 10°

Correlation time increases exponentially with system
size, consistent with a strong zero mode, but unclear if
this persists to larger sizes.



Edge magnetization

For U = 0.1, h=0.7, edge magentization at T=1000,
shows little dependance on system size

Edge magnetization, L=10, U=0.1 h=0.7
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Edge magnetization

For U = 0.1, h=0.7, edge magentization at T=1000,
shows little dependance on system size

Edge magnetization, L=12, U=0.1 h=0.7
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Edge magnetization

For U = 0.1, h=0.7, edge magentization at T=1000,
shows little dependance on system size

°
o ¢
10* 10°

L=14

For U = 0.1, h=0.7, there Is no strong zero mode
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Frustration free line

Emery-Peschel constructed a ‘frustration free’ line in
the topological phase;:

H= ) hF, U(l) = (cosh(l) — 1)/2  h(l) = sinh(})
J

h(l)
e () =—o'cl, + — (0] + 05, ) + UDojof,, + (UD + 1)

Model has two exactly degenerate ground states (E=0):
Dy = (1 1) +exl LN JupD)) = (1 1) —e7| | )&

Parity eigenstates are not product states:

1

E=0;%) = #,(D(p (D) £ lypD))  Hul) = [20 + e 201 —el|



Frustration free line

One can construct edge-localized Majorana operators
that permutes the parity eigenstates

1 Lo 1 = |
Y gy, Y ¢y, g=—tanh(/2)

I— ; T— ;
\/2j=0 g7 =1 \/2j=0 g7 j=1

=15 vey= ]

k<j k<j
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Generalization to paratermions

The frustration free line can be generalized to
parafermions (as in Joffe’s talk): X and Z satisty

X’=7=1 X=X 72 — 71 X7 = wZX D = e27ti/3

On g-trits, one has (n is taken mod 3)
Z|n)=w"|n) X|n)y=|n-1)

L-1

Frustration free model can be constructed: H = Z hﬁ?ﬂ(r)

j=1

s, () = [=XI X0y = fOZ+ Zi1y) = 81(NZZ541 = $(NZZ] +hc] +e()

f(r)y =1+ 2 = r)/(9r? g(r)=-2(1 - 21 + r + r?)/(9r?)
g = - (1 = 2r = 2r?)/(9r%) e(r) = 2(1 + r + r*)?/(9r%)
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Parafermion frustration free line

B4\ = [=XIX = fOG+ Zy) = 8122, — (VZZ), | +hc] + e(r)

The E=0 ground states are product states:

1Go(M) = (10y+r| 1y +7|2))%" G = (10) +ro[1) +r@|2))® |Gy = (10) +rd | 1) + rw|2))®"

Use them to construct symmetry eigenstates

| —

1E=0;1) = #,(|Gy(M) + | G,(1)) + | Go())) My =30+ 28+ 6(1 — )
|E=0;0)=/,Gy1) + | Gi(r)) + @|Gy(7))) __%
[E=0;0) = H5(IGM) + 0] G0y + @1 Gyr)) Mg = [30+2r5 =301 =)

Untortunately, constructing an edge-localized
parafermion operator that permutes the states is hard!



Parafermion frustration free line

The most general 2-site operator Is:

2r + (cd + rz)cos(gl)]) + (—d + crz)Sin(éb])

ap =

2cd
2r3 + (—cd + r¥)cos(¢p;) — (d + cr?)sin(¢h,)
1= 2cd
r(1 — 13 cos(¢p;) + dr sin(¢h,))
4317 cd
217 + (cd + r*)cos(¢hy) + (d — cr?)sin(eh,)
B 2cd
_ 2r7 4 (=cd + r*)cos(¢) — (d + cr?)sin(ghy)
2 2cd
r(r® — cos(¢h,) + c sin(¢h,))
b3;1 - cd
r2(1 4+ (1 + r¥)cos(g,))
11 = 2
r}(—1 + cos(¢h;) + d sin(¢h;))
€1 = — d2
r(r* — r* cos(¢h;) + d sin(¢h3))
C3;1 = d2

c=V1+2r* d=\2r’+r* ¢+, +¢;=0

2r3 + (—cd + r¥)cos(¢py) + (d + cr?)sin(¢h,)

0 bp3 O bz 0 0 0 0 b3y
0 0 c1;2 0 €32 0 €22 0 0
a3;1 0 0 0 0 02;1 0 al;l 0
0 0 (71;1 0 63;1 0 (,‘2;1 0 0
a3z 0 0 0 0 ap3 O a3 0
0 bpp O byp O 0 0 0 b3y
03;2 0 0 0 0 a2;2 0 [t];z 0
0 byy O by O 0O 0 0 by
0 0 €13 0 ¢33 O €3 0 0

o(r)=

a1 =

2cd
213 + (cd + r*)cos(¢;) + (d — cr?)sin(¢h,)
927 2¢d
r(—1+ 73 cos(¢y) + dr sin(¢h,))
“2= 7 cd
2 + (—cd + r*)cos(y) + (d + cr?)sin(hy)
bz 2cd
27 4 (cd + r*)cos(¢hy) + (—d + cr?)sin(ghy)
22 2cd
r(—r3 + cos(¢h,) + ¢ sin(¢h,))
bia = = cd
r2(1 — cos(¢h;) + d sin(¢h,))
Clp = 2
r2(1 4+ (1 + r¥)cos(g;))
G = 2
r(r* — r* cos(¢h;) — d sin(¢h3))
C3;2 = d2

r(—r + cos(¢) + ¢ sin(¢h,))

ay3 =

cd
r(r® — cos(¢hy) + c sin(¢h,))
“23 = cd
r}(1 4 2r cos(¢)))
33 = cd
r(—1+ 13 cos(¢h,) + dr sin(¢h,))
b1 == cd
r(1 — 3 cos(¢h,) + dr sin(¢h,))
ba3 = cd
r2(1 + 2r cos(¢h,))
= cd
r(rr — r? cos(¢hz) — d sin(¢hy))
€13 = 72
r(r* — r* cos(¢h;) + d sin(¢h3))
02;3 = d2
r2(r? + 2 cos(¢h3))
(33 = 72

Not easy to find localized operator for arbitrary system size



summary

Topological phase survives Hubbard interactions
nteresting regime in phase diagram for repulsive
Interaction

Can exclude strong zero mode for large part of
the topological phase

~inite temperature behaviour of edge
magnetization not fully understood
Generalization to paratermion case, phase
diagram not studied in detall

Frustration free line, but no localized operators

(yet?)




