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 is a free-fermion model, solvable by a canonical 
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mode: , or better .

|h | < |J |
ϵ1 ≈ 0 ϵ1 = e−L/ξ

Thus, the ground-state is two-fold degenerate. The 
associated Majorana bound states live at the edges.

In fact, the full many-body spectrum is two-fold 
degenerate. Energy levels are given by

E = ± ϵ1 ± ϵ2 ± ϵ3⋯ ± ϵL

Operator connecting the pairs: σx
1
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Zero-modes
Generically, zero modes come in two types: 
• Strong: the full spectrum is degenerate 
• Weak: only the ground state is degenerate

Zero mode of free-fermion models is strong.
More non-trivial example: XYZ chain (Fendley) 
Question: is the strong zero mode due to integrability or 
can non-integrable models have a strong zero mode?

Conditions for  to be a strong zero mode:Ψ
[H, Ψ] = ℰ |ℰ | < e−L/ξ ([H, Ψ] ≈ 0)
[H, P] = 0
[Ψ, P] ≠ 0

Eigenstates of H pair up: |λ−⟩ ≈ Ψ |λ+⟩ Eλ+
≈ Eλ−
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A natural interaction term for the Kitaev chain is of 
Hubbard type

Kitaev - Hubbard chain

HKH = −J
L−1

∑
j=1

(c†
j c†

j+1 + c†
j cj+1 + h . c.) − h

L

∑
j=1

(1 − 2c†
j cj)

+U
L−1

∑
j=1

(1 − 2c†
j cj)(1 − 2c†

j+1cj+1)

In terms of Pauli matrices (after Jordan-Wigner):

HKH = − J∑L−1
j=1 σx

j σx
j+1 − h∑L

j=1 σz
j + U∑L−1

j=1 σz
j σz

j+1

Parity is a good quantum number:

P = ∏L
j=1 σz

j = ∏L
j=1 (1 − 2c†

j cj) = ± 1



Phase diagram,  (DMRG)U < 0
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For attractive interaction, there is no frustration. Deep in 
the trivial phase, the ground state has all sites empty.

There is a direct transition to the topological phase, 
described by Ising CFT ( )h > 0

J = 1



Phase diagram,  (DMRG)U > 0
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Topological & CDW phases separated by a gapless 
incommensurate phase and a ‘exited state CDW’ 
phase (ground state resembles an exited state of the 
CDW phase) 



J = 1, h = 0.7

Phase diagram,  (DMRG)U > 0
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h = 0.7
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Phase diagram,  (DMRG)U > 0
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(L=240) clearly show the four phases.

h = 0.7

Other observables used: entanglement entropy, site 
occupation, scaling of the gap.
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Ground state in the trivial phase is non-degenerate, so we 
can exclude a strong zero mode above the dashed line.
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Strong zero mode?
In the remainder, we study the strong zero mode via 
the edge-magnetization (Fendley et al.)

Spin-auto correlation function is defined as 
Aj(t) = ⟨j |σx

1(t)σx
1(0) | j⟩

Pairing due to a strong zero mode gives 
 for arbitrary state :lim

t→∞
lim

L→∞
Aj(t) ≠ 0 j

Aj(t) = ∑
j1

ei(Ej1
−Ej)t |⟨j1 σx

1 j⟩ |2

States with  give finite 
contribution to edge magnetization at large times. 
When  one gets a sum of incoherent oscillations. 

Ej1 ≈ Ej2 , ⟨j2 |σx
1 | j1⟩ ≠ 0

Ej1 ≠ Ej2



Strong zero mode?
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Strong zero mode?
We will consider the edge magnetization at :T > 0

A(t, T ) =
1
Z ∑

j1

e−ϵj1
/(kT)Aj1(t) =

1
Z ∑

j1,j2

e−ϵj1
/(kT)ei(ϵj1

−ϵj2
)t |⟨j2 σx

1 j1⟩ |2

We use exact diagonalization, to obtain all the 
eigenstates, for L up to 16.

At infinite temperature, all states are weighted equally, 
so if there is a strong zero mode, one will have long 
coherence times!
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Edge magnetization
Compare different system sizes for h=0.1, U = 0.1, 
and T=1000
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Edge magnetization, U=0.1 h=0.1 T=1000.

L=8
L=10
L=12
L=14
L=16

Correlation time increases exponentially with system 
size, consistent with a strong zero mode, but unclear if 
this persists to larger sizes. 



Edge magnetization
For U = 0.1, h=0.7, edge magentization at T=1000, 
shows little dependance on system size 

0.01 1 100 104 106
0.0

0.2

0.4

0.6

0.8

1.0
Edge magnetization, L=10, U=0.1 h=0.7

L=10



Edge magnetization
For U = 0.1, h=0.7, edge magentization at T=1000, 
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Edge magnetization
For U = 0.1, h=0.7, edge magentization at T=1000, 
shows little dependance on system size 
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Edge magnetization, L=14, U=0.1 h=0.7

For U = 0.1, h=0.7, there is no strong zero mode

L=14
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Frustration free line
Emery-Peschel constructed a ‘frustration free’ line in 
the topological phase:

H = ∑
j

hPE
j,j+1

hPE
j,j+1(l) = − σx

j σx
j+1 +

h(l)
2

(σz
j + σz

j+1) + U(l)σz
j σz

j+1 + (U(l) + 1)

U(l) = (cosh(l) − 1)/2 h(l) = sinh(l)

Model has two exactly degenerate ground states (E=0):
|ψ1(l)⟩ = ( | ↑ ⟩ + e

l
2 | ↓ ⟩)⊗L |ψ2(l)⟩ = ( | ↑ ⟩ − e

l
2 | ↓ ⟩)⊗L

Parity eigenstates are not product states:
|E = 0; ± ⟩ = 𝒩±(l)( |ψ1(l)⟩ ± |ψ2(l)⟩) 𝒩±(l) = [2(1 + el)L ± 2(1 − el)L]

− 1
2



Frustration free line
One can construct edge-localized Majorana operators 
that permutes the parity eigenstates

ΓL =
1

∑L−1
j=0 q2j

L

∑
j=1

q( j−1)γA, j ΓR =
1

∑L−1
j=0 q2j

L

∑
j=1

q(L−j)γB, j q = − tanh(l/2)

γA, j = (∏
k<j

σz
k)σx

j γB, j = (∏
k<j

σz
k)σy

j



Generalization to parafermions
The frustration free line can be generalized to 
parafermions (as in Joffe’s talk): X and Z satisfy
X3 = Z3 = 1 X2 = X† Z2 = Z† XZ = ωZX ω = e2πi/3
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On q-trits, one has (n is taken mod 3) 
Z |n⟩ = ωn |n⟩ X |n⟩ = |n − 1⟩



Generalization to parafermions
The frustration free line can be generalized to 
parafermions (as in Joffe’s talk): X and Z satisfy
X3 = Z3 = 1 X2 = X† Z2 = Z† XZ = ωZX ω = e2πi/3

On q-trits, one has (n is taken mod 3) 
Z |n⟩ = ωn |n⟩ X |n⟩ = |n − 1⟩

Frustration free model can be constructed:

hZ3
j, j+1(r) = [−X†

j Xj+1 − f(r)(Zj + Zj+1) − g1(r)ZjZj+1 − g2(r)ZjZ†
j+1 + h . c] + ϵ(r)

H =
L−1

∑
j=1

hZ3
j,j+1(r)

f(r) = (1 + 2r)(1 − r3)/(9r2) g1(r) = − 2(1 − r)2(1 + r + r2)/(9r2)
g2(r) = (1 − r)2(1 − 2r − 2r2)/(9r2) ϵ(r) = 2(1 + r + r2)2/(9r2)



Parafermion frustration free line
hZ3

j, j+1(r) = [−X†
j Xj+1 − f(r)(Zj + Zj+1) − g1(r)ZjZj+1 − g2(r)ZjZ†

j+1 + h . c] + ϵ(r)



Parafermion frustration free line
hZ3

j, j+1(r) = [−X†
j Xj+1 − f(r)(Zj + Zj+1) − g1(r)ZjZj+1 − g2(r)ZjZ†

j+1 + h . c] + ϵ(r)

The E=0 ground states are product states:
|G0(r)⟩ = ( |0⟩ + r |1⟩ + r |2⟩)⊗L |G1(r)⟩ = ( |0⟩ + rω |1⟩ + rω̄ |2⟩)⊗L |G2(r)⟩ = ( |0⟩ + rω̄ |1⟩ + rω |2⟩)⊗L



Parafermion frustration free line
hZ3

j, j+1(r) = [−X†
j Xj+1 − f(r)(Zj + Zj+1) − g1(r)ZjZj+1 − g2(r)ZjZ†

j+1 + h . c] + ϵ(r)

The E=0 ground states are product states:
|G0(r)⟩ = ( |0⟩ + r |1⟩ + r |2⟩)⊗L |G1(r)⟩ = ( |0⟩ + rω |1⟩ + rω̄ |2⟩)⊗L |G2(r)⟩ = ( |0⟩ + rω̄ |1⟩ + rω |2⟩)⊗L

Use them to construct symmetry eigenstates

|E = 0; 1⟩ = 𝒩1( |G0(r)⟩ + |G1(r)⟩ + |G2(r)⟩)
|E = 0; ω⟩ = 𝒩ω( |G0(r)⟩ + ω̄ |G1(r)⟩ + ω |G2(r)⟩)
|E = 0; ω̄⟩ = 𝒩ω̄( |G0(r)⟩ + ω |G1(r)⟩ + ω̄ |G2(r)⟩)

𝒩1 = [3(1 + 2r2)L + 6(1 − r2)L]
− 1

2

𝒩ω,ω̄ = [3(1 + 2r2)L − 3(1 − r2)L]
− 1

2



Parafermion frustration free line
hZ3

j, j+1(r) = [−X†
j Xj+1 − f(r)(Zj + Zj+1) − g1(r)ZjZj+1 − g2(r)ZjZ†

j+1 + h . c] + ϵ(r)

The E=0 ground states are product states:
|G0(r)⟩ = ( |0⟩ + r |1⟩ + r |2⟩)⊗L |G1(r)⟩ = ( |0⟩ + rω |1⟩ + rω̄ |2⟩)⊗L |G2(r)⟩ = ( |0⟩ + rω̄ |1⟩ + rω |2⟩)⊗L

Use them to construct symmetry eigenstates

|E = 0; 1⟩ = 𝒩1( |G0(r)⟩ + |G1(r)⟩ + |G2(r)⟩)
|E = 0; ω⟩ = 𝒩ω( |G0(r)⟩ + ω̄ |G1(r)⟩ + ω |G2(r)⟩)
|E = 0; ω̄⟩ = 𝒩ω̄( |G0(r)⟩ + ω |G1(r)⟩ + ω̄ |G2(r)⟩)

𝒩1 = [3(1 + 2r2)L + 6(1 − r2)L]
− 1

2

𝒩ω,ω̄ = [3(1 + 2r2)L − 3(1 − r2)L]
− 1

2

Unfortunately, constructing an edge-localized 
parafermion operator that permutes the states is hard!



Parafermion frustration free line
The most general 2-site operator is: O (r ) =

0 b2;3 0 b1;3 0 0 0 0 b3;3
0 0 c1;2 0 c3;2 0 c2;2 0 0

a3;1 0 0 0 0 a2;1 0 a1;1 0
0 0 c1;1 0 c3;1 0 c2;1 0 0

a3;3 0 0 0 0 a2;3 0 a1;3 0
0 b2;2 0 b1;2 0 0 0 0 b3;2

a3;2 0 0 0 0 a2;2 0 a1;2 0
0 b2;1 0 b1;1 0 0 0 0 b3;1
0 0 c1;3 0 c3;3 0 c2;3 0 0

a1;1 =
2r3 + (cd + r2)cos(ϕ1) + (−d + cr2)sin(ϕ1)

2cd
a1;2 =

2r3 + (−cd + r2)cos(ϕ1) + (d + cr2)sin(ϕ1)
2cd

a1;3 = −
r(−r3 + cos(ϕ1) + c sin(ϕ1))

cd

a2;1 =
2r3 + (−cd + r2)cos(ϕ1) − (d + cr2)sin(ϕ1)

2cd
a2;2 =

2r3 + (cd + r2)cos(ϕ1) + (d − cr2)sin(ϕ1)
2cd

a2;3 =
r(r3 − cos(ϕ1) + c sin(ϕ1))

cd

a3;1 =
r(1 − r3 cos(ϕ1) + dr sin(ϕ1))

cd
a3;2 = −

r(−1 + r3 cos(ϕ1) + dr sin(ϕ1))
cd

a3;3 =
r2(1 + 2r cos(ϕ1))

cd

b1;1 =
2r3 + (cd + r2)cos(ϕ2) + (d − cr2)sin(ϕ2)

2cd
b1;2 =

2r3 + (−cd + r2)cos(ϕ2) + (d + cr2)sin(ϕ2)
2cd

b1;3 = −
r(−1 + r3 cos(ϕ2) + dr sin(ϕ2))

cd

b2;1 =
2r3 + (−cd + r2)cos(ϕ2) − (d + cr2)sin(ϕ2)

2cd
b2;2 =

2r3 + (cd + r2)cos(ϕ2) + (−d + cr2)sin(ϕ2)
2cd

b2;3 =
r(1 − r3 cos(ϕ2) + dr sin(ϕ2))

cd

b3;1 =
r(r3 − cos(ϕ2) + c sin(ϕ2))

cd
b3;2 = −

r(−r3 + cos(ϕ2) + c sin(ϕ2))
cd

b3;3 =
r2(1 + 2r cos(ϕ2))

cd

c1;1 =
r2(1 + (1 + r2)cos(ϕ3))

d2
c1;2 =

r2(1 − cos(ϕ3) + d sin(ϕ3))
d2

c1;3 =
r(r2 − r2 cos(ϕ3) − d sin(ϕ3))

d2

c2;1 = −
r2(−1 + cos(ϕ3) + d sin(ϕ3))

d2
c2;2 =

r2(1 + (1 + r2)cos(ϕ3))
d2

c2;3 =
r(r2 − r2 cos(ϕ3) + d sin(ϕ3))

d2

c3;1 =
r(r2 − r2 cos(ϕ3) + d sin(ϕ3))

d2
c3;2 =

r(r2 − r2 cos(ϕ3) − d sin(ϕ3))
d2

c3;3 =
r2(r2 + 2 cos(ϕ3))

d2

Not easy to find localized operator for arbitrary system size

c = 1 + 2r4 d = 2r2 + r4 ϕ1 + ϕ2 + ϕ3 = 0



Summary
• Topological phase survives Hubbard interactions  
• Interesting regime in phase diagram for repulsive 

interaction 
• Can exclude strong zero mode for large part of 

the topological phase 
• Finite temperature behaviour of edge 

magnetization not fully understood 
• Generalization to parafermion case, phase 

diagram not studied in detail 
• Frustration free line, but no localized operators 

(yet?)


