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Bosonic matrix product state description of Read-Rezayi states
and its application to quasihole spins
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We study the k = 3 Read-Rezayi quantum Hall state by means of a purely bosonic matrix product state
formulation, as described in detail. We calculate the density profiles in the presence of bulk quasiholes of six
different types: one for each Z3 parafermion sector. From the density profiles, we calculate the (local) spins
of these quasiholes. By employing a spin-statistics relation, we obtain the exchange statistics parameters. Our
results, which are entirely based on local properties of the quasiholes, corroborate previous results obtained
by explicitly braiding quasiholes, showing that the exchange statistics can be read off from the monodromy
properties of the wave functions, i.e., the associated Berry phase vanishes. We also discuss the entanglement
spectrum, to show that our bosonic matrix product state formulation correctly captures the Z3 parafermionic
structure of the k = 3 Read-Rezayi states.
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I. INTRODUCTION

The fractional quantum Hall (FQH) effect is of great phys-
ical interest: since its discovery [1], it has provided many
important examples of topologically ordered states [2], as well
as being the only setting where anyons have been experimen-
tally observed so far [3]. An important class of FQH states is
the Read-Rezayi states [4]. These states are constructed by
subdividing the particles into k subsets, symmetrizing over
all possible ways to divide the particles into such subsets and
multiplying by an overall Jastrow factor. This gives the state

ψ ({z}) = S
[

k∏
l=1

∏
i< j

(
z(l )

i − z(l )
j

)2]∏
r<s

(zr − zs)M, (1)

where the filling fraction is given by ν = k/(kM + 2). For k =
1, one obtains the famous Laughlin state [5], while the case
k = 2 corresponds to the Moore-Read state [6], which is a
candidate for the ν = 5

2 quantum Hall state [7,8].
In this paper, we are solely concerned with the k = 3

Read-Rezayi states. The (particle-hole conjugate of the) k = 3
Read-Rezayi state with M = 1 is a candidate for describing
the ν = 12

5 quantum Hall state, which was observed exper-
imentally [9]. In the present paper, we perform numerical
calculations for the wave function (1) in the presence of quasi-
hole excitations.

To perform numerics for quantum Hall states, a useful
method is matrix product states (MPS) [10,11], which was
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first used to study quantum Hall systems in [12]. The advan-
tage of MPS-based approaches for the Read-Rezayi states is
best seen when comparing to the calculation of k = 3 Read-
Rezayi observables using Monte Carlo methods. Finding the
density of the quantum Hall fluid with (say) the Metropolis
algorithm [13] would involve the repeated evaluation of |ψ |2,
and hence of the wave function, to estimate the contributions
to the density ρ = ∫ |ψ (r)|2d2(N−1)r. Since the k = 3 Read-
Rezayi wave function (1) involves an explicit symmetrization
over all ways of grouping the electron coordinates z1, . . . , zN

into three sets, it quickly becomes demanding to evaluate as
the number of electrons N increases. Having to evaluate it
frequently for many electrons makes the Monte Carlo ap-
proach impractical. We remark that for the Laughlin (k = 1)
and Moore-Read (k = 2) cases, where the latter can be written
in terms of a Pfaffian,

ψ ({z}) = Pf

(
1

zi − z j

)∏
k<l

(zk − zl )
M+1, (2)

it is perfectly possible to use a Monte Carlo scheme because
the Pfaffian obeys Pf(A)2 = det(A), and techniques exist for
rapidly evaluating determinants. For the k = 3 state, how-
ever, another approach is needed. The technique we use is
based on MPS states, but deviates from the MPS approach
of [14–17] (see also [18]) by exclusively using free boson
fields instead of also including a Z3 parafermion theory [19].
Hence, our method works as an alternative MPS setup for
the k = 3 Read-Rezayi state and can be fruitfully compared
to the Z3 approach. It is based on the way to write the
Read-Rezayi states introduced in [20], and uses three free
chiral boson fields. MPS studies of the Halperin [21,22] and
Haldane-Rezayi [23] states, using two chiral boson fields,
were performed in [24,25]. For other studies of states involv-
ing multipartite structures, performed using other methods
than MPS, see also [26,27].
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One can also write explicit wave functions for the Read-
Rezayi states in the presence of quasiholes; we refer to Sec. II
for explicit examples. The resulting wave functions are ob-
tained by evaluating expectation values of vertex operators in
a conformal field theory (CFT) (see Sec. III), where the vertex
operators correspond to both electron operators and operators
describing the quasihole(s). By considering the operator prod-
uct expansion (OPE) of the quasihole operators in a certain
“minimal” description,1 the braiding phase in a given fusion
channel can simply be read off: if the quasihole operators are
at positions w1 and w2, their OPE in a given fusion channel is
proportional to (w1 − w2)γ , for some number γ . Details are
provided in Sec. X. Under the highly nontrivial assumption
that the Berry phase [28] associated with moving quasiholes
around in the k = 3 Read-Rezayi state vanishes, the num-
ber γ then describes the mutual statistics of the quasiholes.
This assumption holds for the Laughlin and Moore-Read
states [5,29–31], and has been numerically demonstrated to
hold also for the k = 3 Read-Rezayi state by performing ex-
plicit braiding of quasiholes [15]. However, one can obtain
the mutual statistics of the quasiholes based on purely local
quantities. In particular, we will see that a recently derived
spin-statistics theorem for quasiholes in quantum Hall sys-
tems [32] can be used to calculate the mutual statistics from
the local spins of the quasiholes. These results agree with the
results obtained by calculating the monodromy properties of
the quasiholes from the minimal CFT description. This shows
that the Berry phases of the states derived from the minimal
CFT description indeed vanish. We arrive at this conclusion
by considering purely local quantities: the quasihole spins.

The remainder of the paper is structured as follows. In
Sec. II, we describe how to obtain the k = 3 Read-Rezayi
wave functions when there is a quasihole in the system. This
is done for the σ1, σ2, 1, ε, ψ1 and ψ2 quasiholes, where the
labels are those of the Z3 CFT description. Some generalities
about how to express wave functions as CFT correlation func-
tions are given in Sec. III, before showing in Sec. IV which
operators we use to represent electrons and quasiholes. The
link to the Z3 description is made explicit in Sec. V. After
that, we focus on the MPS description. We describe the finite
cylinder geometry of the MPS implementation and introduce
the various quantum numbers of our auxiliary Hilbert spaces
(Sec. VI), and give the matrix elements for unoccupied or-
bitals, for orbitals occupied by electrons, and for the quasihole
operators (Sec. VII). In the latter section, we also discuss the
imaginary time evolution used to put operators in the right
positions along the cylinder, and give an expression for a
factor resulting from this time evolution. This factor makes
terms decay exponentially in the quantum numbers of the
auxiliary spaces. Hence, there is a natural cutoff for system
configurations that lead to extreme values of the quantum
numbers. This cutoff is described further in Sec. VIII, to-
gether with other implementation details, which are relevant
for, e.g., Sec. IX, where we describe how the MPS technique
was utilized to compute the quasihole density profiles. The

1In the case of the Read-Rezayi states, the minimal description is
in terms of the Zk parafermion CFT, not the free boson approach we
take.

density profiles are shown in Sec. IX A, and the density in-
formation is used to compute the charges of the quasiholes
in Sec. IX B. After explaining in Sec. X how—under the
nontrivial assumption that the Berry phase vanishes—one can
predict the spins of the different quasiholes, we also use the
MPS-based density profiles to compute the quasihole spins
in Sec. XI. This direct computation requires no assumption
about the value of the Berry phase. The numerical results are
found to agree well with the predictions, and converge to the
predicted values as the dimension of the auxiliary space in the
MPS computation increases. The final results shown are about
the entanglement spectrum and the topological entanglement
entropy; see Secs. XII and XIII, respectively. These are fol-
lowed by a discussion about how our results depend on the
cylinder circumference, the cutoff parameter, and the integra-
tion scheme used when computing observables in Sec. XIV.
Our conclusions can be found in Sec. XV. Finally, we give a
more detailed derivation of the factor from the imaginary time
evolution of Sec. VII in the Appendix.

Although the reader is welcome to read all of the sec-
tions outlined above, parts may be omitted based on interest
and prior knowledge. In particular, readers familiar with the
Read-Rezayi states and their quasiholes may skip Sec. II,
whereas those with a working knowledge of the free boson
CFT need not read Sec. III. Those who mainly want the results
about the quasihole profiles, charges and spins will find them
in Secs. IX A, IX B, and XI, together with a discussion of how
the spin relates to the braiding phase in Sec. X. Readers more
interested in the particularities of our MPS setup are instead
invited to read Secs. IV, VI, VII, VIII, and XIV, as well as the
identification in Sec. V between our MPS operators and those
from earlier work based on the Z3 parafermion theory. Those
interested specifically in the entanglement spectrum and topo-
logical entanglement entropy may wish to read Secs. XII
and XIII. Finally, for readers more interested in results than in
methodological details, we also refer to the related paper [33].
This paper defines an edge spin for quantum Hall droplets
with bulk quasiholes, and demonstrates how this edge spin
takes fractional values as a result of the fractional spin of the
quasihole in the bulk.

II. QUASIHOLE WAVE FUNCTIONS

From now on, we only consider the k = 3 Read-Rezayi
states, at filling ν = 3/(3M + 2). We often state results for
arbitrary M, but for the numerical calculations below, we only
consider the fermionic state with M = 1.

To describe the form of the quasihole wave functions that
we analyze using the MPS formulation, we start with the
ground state in the presence of three σ1 quasiholes, at the
locations w1,w2,w3, with the number of electrons being a
multiple of three. For details, we refer to [4,34]. We label
the quasiholes using their Zk parafermion field and their
charge. In this notation, the minimal quasihole is denoted as
(σ1,

1
3M+2 ).

Generically, we divide the electrons into three groups
S1, S2, S3, whose sizes can vary, depending on the different
quasiholes, and sum over the different ways of dividing the
electrons over the groups. We associate a Laughlin factor with
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each group as follows:

�2
Sa

({z}) =
∏
i< j

i, j∈Sa

(zi − z j )
2. (3)

The k = 3 Read-Rezayi ground-state wave function can then
be written as

�k=3
RR ({z}) = �M

L

∑
S1,S2,S3

�2
S1

�2
S2

�2
S3

, (4)

where the sum is over all ways to divide the particles into three
groups of equal size, and where �M

L =∏i< j (zi − z j )M , with
the product being over all particle coordinates. We note that
in this section, we drop the (geometry dependent) gaussian
factors. This particular form of the Read-Rezayi wave func-
tion was first considered in [20], which differs from the one
used in the original paper [4]. The wave function with three
(σ1,

1
3M+2 ) quasiholes is given by

�k=3
RR,3σ1

({z}) = �M
L

∑
S1,S2,S3

[
�2

S1
�2

S2
�2

S3

∏
i1∈S1

(zi1 − w1)

×
∏
i2∈S2

(zi2 − w2)
∏
i3∈S3

(
zi3 − w3

)]
. (5)

From this wave function, one obtains the form for a single
(σ1,

1
3M+2 ) quasihole by sending the other two quasiholes to

the edge of the system. This means that we only consider the
part of the wave function that is proportional to w

Ne/3
2 w

Ne/3
3 ,

with Ne the number of electrons, and we use the coordinate
w = w1. Explicitly, one finds, for the (σ1,

1
3M+2 ) quasihole

�k=3
RR,σ1

({z},w) = �M
L

∑
S1,S2,S3

[
�2

S1
�2

S2
�2

S3

∏
i1∈S1

(zi1 − w)

]
.

(6)

Similarly, the (σ2,
2

3M+2 ) quasihole is obtained by setting
w1,w2 → w and taking the part of the wave function that is
proportional to w

Ne/3
3 . Explicitly, one finds

�k=3
RR,σ2

({z},w) = �M
L

∑
S1,S2,S3

[
�2

S1
�2

S2
�2

S3

∏
i1∈S1

(
zi1 − w

)

×
∏
i2∈S2

(
zi2 − w

)]
. (7)

The Laughlin quasihole, (1, 3
3M+2 ), is obtained by setting

w1,w2,w3 → w, giving

�k=3
RR,1({z},w) = �M

L

∏
i

(zi − w)
∑

S1,S2,S3

[
�2

S1
�2

S2
�2

S3

]
. (8)

We also consider the quasiholes (ψ1,
2

3M+2 ), (ε, 3
3M+2 ),

and (ψ2,
4

3M+2 ). To obtain the wave function for a state with
a (ψ1,

2
3M+2 ) quasihole, we consider the ground-state wave

function with Ne a multiple of three, but consider one of the
electron coordinates as a quasihole coordinate, by changing
the chiral vertex operator part of the electron operator and
denoting the coordinate by w instead of z. Thus, we take

Ne = 3p + 2, with p a non-negative integer and we assume
that S1 and S2 have p + 1 elements, while S3 has p elements.
This results in

�k=3
RR,ψ1

({z},w) = �M
L

∑
S1,S2,S3

[
�2

S1
�2

S2
�2

S3

∏
i3∈S3

(
zi3 − w

)2]
.

(9)

To obtain the (ψ2,
4

3M+2 ) quasihole, we also consider the
ground-state wave function with Ne a multiple of three, but
fuse two of the electron coordinates, to obtain a ψ2 and change
the associated chiral vertex operator, to get the correct charge
for the quasihole (we also denote the coordinate by w). Thus,
we take Ne = 3p + 1, with p a non-negative integer and we
assume that S1 has p + 1 elements, while S2 and S3 have p
elements. This results in

�k=3
RR,ψ2

({z},w) = �M
L

∑
S1,S2,S3

[
�2

S1
�2

S2
�2

S3

∏
i2∈S2

(
zi2 − w

)2

×
∏
i3∈S3

(
zi3 − w

)2]
. (10)

Finally, to obtain the (ε, 3
3M+2 ) quasihole, we consider the

wave function of the state with the number of electrons a
multiple of three, and three σ1 quasiholes. We fuse one elec-
tron with one of the σ1 quasiholes (say at w1), to obtain an ε

excitation, and modify the chiral vertex operator, to ensure the
correct charge. The remaining two quasiholes are sent to the
same edge of the system in the same way as was done above.2

Thus, we take the number of electrons to be Ne = 3p + 2; S1

and S2 have p + 1 elements, while S3 has p elements. The
resulting wave function reads

�k=3
RR,ε ({z},w) = �M

L

∑
S1,S2,S3

[
�2

S1
�2

S2
�2

S3

∏
i2∈S2

(
zi2 − w

)

×
∏
i3∈S3

(
zi3 − w

)2]
. (11)

The wave functions Eqs. (4), (6)–(11) can be expressed in
terms of a CFT of free bosons. A short summary of this
technique is given in Sec. III. Readers familiar with the free
boson CFT may wish to skip ahead to Sec. IV, where the
specific operators for our scheme are introduced.

III. THE CHIRAL BOSON CFT

The aim is to express the RR wave functions with quasi-
holes in Eqs. (6)–(11) as expectation values in a CFT, which in
turn can be expressed as tensor contractions and treated with
MPS methods. Generalizing [12] (but following the conven-
tions of [35]), we take three free boson fields φ, χ1, and χ2,

2If we tried to obtain the more symmetric version, by sending one
quasihole to either end of the cylinder, we would have to symmetrize
over these quasihole locations before sending them to the different
boundaries. It is hard to implement this in the MPS formulation.
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each compactified on an appropriate radius. The correspond-
ing actions and OPEs are

S = 1

8π

∫
d2x(∂μφ)(∂μφ)

〈φ(z1)φ(z2)〉 ∼ − ln(z1 − z2) (12)

and a mode expansion can be performed according to

φ(z) = φ0 − iπ0 ln(z) +
∑
n �=0

an

n
z−n (13)

with corresponding expressions for the χ1 and χ2 fields. Be-
low, we focus on the φ boson field, with the understanding that
the other fields can be treated analogously. When significant
differences arise, these will be pointed out.

In light of the mode expansion (13) for the boson field in
terms of harmonic oscillator operators, the vertex operators of
free boson fields obey the standard identity [36]

〈: eA1 :: eA2 : · · · : eAN :〉 = exp

(∑
i< j

〈AiAj〉
)

, (14)

where the Ai are some linear combinations of annihilation and
creation operators for harmonic oscillator modes and the “:”
denote normal ordering. From the OPE for the boson fields, it
follows that

〈: eiα1φ(z1 ) :: eiα2φ(z2 ) : · · · : eiαN φ(zN ) :〉 =
∏
i< j

(zi − z j )
αiα j ,

(15)

which can be used to represent Jastrow factors and other poly-
nomials relevant for the quantum Hall states as expectation
values in a bosonic CFT. To render the expectation value
invariant under constant translations of the fields φ → φ + c,
this presupposes the charge neutrality condition

∑
i αi = 0.

From the properties outlined above, it is clear that the
wave function without quasiholes (4) may be represented as
a symmetrized linear combination of expectation values all
on the schematic form

〈V (z1)V (z2) · · ·V (zN )〉, (16)

where {V (zi )} represent individual electrons. By similar
methods, the polynomial factors involving the quasiholes in
Eqs. (6)–(11) can be reproduced, by inserting appropriate
quasihole operators. The exact forms of the electron and
quasihole operators are stated and motivated in Sec. IV.

IV. THE ELECTRON AND QUASIHOLE OPERATORS

In this section, we obtain electron operators such that an
expectation value analogous to Eq. (16) can be used to re-
produce the k = 3 Read-Rezayi wave function, including the
way electrons are grouped into three subsets. We continue by
describing the quasihole operators whose OPEs with the elec-
tron operators give a factor (z − w)1 or (z − w)0 depending
on whether or not the electron and quasihole operators belong
to the same group.

We first point out that a generic electron operator in the
Read-Rezayi states should obey

Ve ∝ : ei
√

kM+2
k φ : . (17)

Here and below, we set k = 3 but keep M general, although
the state we will eventually show numerical results for is the
M = 1 state. The electron operator (17) then obeys

Ve ∝ : ei
√

3M+2
3 φ : . (18)

We introduce extra fields χ1, χ2, giving

Vj =: ei
√

3M+2
3 φ :: eiβ jχ1 :: eiγ jχ2 : (19)

where j ∈ {a, b, c} denotes which electron “type” is meant: as
we shall see, the way the electrons are grouped together in the
Read-Rezayi wave function (4) is conveniently represented
by introducing a different kind of electron operator for each
electron group. Since the free boson OPE (12) gives

: eiαφ(zr ) :: eiβφ(zs ) :∼ (zr − zs)αβ, (20)

and as the wave function contains factors (zr − zs)2+M if zr, zs

are in the same subset, matching powers with the OPE of
Vi(zr )Vi(zs) gives

3M + 2

3
+ β2

i + γ 2
i = 2 + M ⇒ β2

i + γ 2
i = 4

3
. (21)

Meanwhile, if zr, zs are in different groups, we should have a
factor (zr − zs)M . To obtain the same factor from the OPE of
Vi(zr )Vj (zs), i �= j, we require

3M + 2

3
+ βiβ j + γiγ j = M ⇒ βiβ j + γiγ j = −2

3
, i �= j.

(22)

The last two equations can be solved by setting the vectors
(β j, γ j ) to be at angles 2π/3 relative to each other, with norm√

4
3 . We use, for simplicity,

(βa, γa) =
√

4

3
(1, 0),

(βb, γb) =
√

4

3
(−1/2,

√
3/2),

(βc, γc) =
√

4

3
(−1/2,−

√
3/2). (23)

Our electron vertex operators are thus

Va =: e
i 3M+2√

q0
φ :: e

i 4√
q1

χ1 :,

Vb =: e
i 3M+2√

q0
φ :: e

−i 2√
q1

χ1 :: e
i 2√

q2
χ2 :,

Vc =: e
i 3M+2√

q0
φ :: e

−i 2√
q1

χ1 :: e
−i 2√

q2
χ2 :, (24)

where q0 = 3(3M + 2) = 15 for M = 1, q1 = 12, and the χ2

exponents have been rewritten to make the compactification
radius

√
q2 = √

4. As we shall see, this is useful to allow for
the smallest possible quasiholes to be described in a unified
way. We emphasize that the physical electron charge is related
to q0.
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In the Read-Rezayi state, only one subset of electrons
should have zeros (zi − w j )1 with the smallest possible quasi-
hole, for which there are three different representations. Thus,
the quasihole operators for the smallest quasihole must obey

Vj (z)Hl (w) ∼ (z − w)δ j,l , (25)

with Hl (where l ∈ {a, b, c}) is a quasihole of type l . One can
use

Ha(w) =: e
i 1√

q0
φ(w) :: e

i 2√
q1

χ1(w) :,

Hb(w) =: e
i 1√

q0
φ(w) :: e

−i 1√
q1

χ1(w) :: e
i 1√

q2
χ2(w) :,

Hc(w) =: e
i 1√

q0
φ(w) :: e

−i 1√
q1

χ1(w) :: e
−i 1√

q2
χ2(w) : . (26)

It is now clear why we rewrote the electron operators such that
q2 = 4. If not, the numerators in the vertex operators would
not have been integers, as they must be.

We remark that the generalization of the charge neutrality
condition

∑
i αi = 0 for the VEV 〈: eiα1φ(z1 ) : · · · : eiαnφ(zn ) :〉

is that the exponents for each of the boson field zero modes
φ0, χ1,0, χ2,0 independently sum to 0. Therefore, the total
charge arising from the electrons in the system—which is
qeNe for Ne electrons of charge qe each—has to be canceled by
an equally large background charge with the opposite sign for
the VEV to produce a nonzero wave function. An additional,
physical justification is that we expect the electron charge to
be balanced by the positive charge of the underlying lattice.
For MPS purposes, it is more convenient to spread out the
background charge between the different orbitals instead of
inserting all the compensating charge at one location. This
procedure allows the matrices for the occupied orbitals to
be orbital-independent. Additionally, it helps to keep the Qi

quantum numbers (defined in Sec. VI) closer to zero and
thus decreases the number of auxiliary states needed in the
auxiliary Hilbert spaces.

We now calculate how much background charge should
reside on each orbital. From the electron operators in Eq. (24),
the charge of an electron in our units is qe = 3M + 2,
since the charges related to the χ1 and χ2 fields are unre-
lated to the physical electric charge. The filling fraction is
ν = 3

3M+2 . Hence, there are 3(3M + 2) charge units across
3M + 2 orbitals. There must therefore be a canceling back-
ground charge of −3(3M + 2) units over 3M + 2 orbitals,
or −3 units per orbital. An appropriate background charge
operator to insert on each orbital is consequently

Obg = e
−i 3√

q0
φ0 . (27)

This gives an operator Obg for an empty orbital and
ObgVa,ObgVb, or ObgVc for an occupied orbital (ignoring
quasiholes).

There is a final complication regarding the charge neutral-
ity condition. Our reasoning above assumes that the number
of orbitals Nφ + 1 is related to the number of electrons Ne as
Nφ + 1 = 1

ν
Ne. However, there is a constant deviation from

this relation (known as the shift [37]), which can be seen
as follows. Via the standard mapping from the plane to the
cylinder,

z j → e−i 2π
L z j , (28)

TABLE I. Identifications between Z3 and 3-boson representa-
tions of the quasiholes. The indices j, k are allowed to take any values
a, b, c as long as the constraints in the table are fulfilled.

Z3 representation Equivalent 3-boson representation

σ1eiφ/
√

q0 Hj

σ2e2iφ/
√

q0 HjHk, j �= k
ψ1e2iφ/

√
q0 H 2

j

1e3iφ/
√

q0 HaHbHc

εe3iφ/
√

q0 HjH 2
k , j �= k

ψ2e4iφ/
√

q0 H 2
j H 2

k , j �= k

the number of orbitals on the cylinder corresponds to the
maximum power of the z j in the Read-Rezayi state (1), which
is Nφ . By examining (say) the term only containing factors
of z1, one sees that the maximum power is Nφ = 2( Ne

k − 1) +
(Ne − 1)M = kM+2

k Ne − (M + 2). Identifying the filling frac-
tion ν = k

kM+2 shows that there are M + 1 fewer orbitals
compared to the value given above. Thus, M + 1 copies of
Obg remain by the out state, giving

〈Q0| = 〈0|e−i 3(M+1)√
q0

φ0 = 〈3(M + 1)|. (29)

The “out” charge Q0 = 3(M + 1) fixes the total number of
electrons. Charge neutrality for Q1 and Q2 then ensures that
the number of electrons in each group is equal, in the absence
of quasiholes.

When the state contains a quasihole, the out state often
needs to be modified. The reason is that the quasihole will
carry Q0 charge, and may carry Q1 and/or Q2 charge as
well. Also, the number of orbitals increases in the presence
of a quasihole. These issues are discussed in more detail in
Sec. VIII.

Finally, we remark that it is possible to identify combi-
nations of the quasihole operators Ha, Hb, Hc above with the
Z3 parafermion description [4], which was used in the MPS
calculations described in [15,16]. These identifications are
given in Table I and motivated in the next section.

V. RELATING THE BOSONIC AND PARAFERMIONIC
DESCRIPTIONS OF THE QUASI HOLES

In this section, we show how various quasiholes allowed by
the Read-Rezayi state can be written in terms of the quasihole
operators Ha, Hb, and Hc, and how the parafermionic “min-
imal description” discussed in [4] and utilized in [15,16] is
related to these operators, as shown in Table I. Schematically,
quasihole operators in the Z3 description are of the form

“Z3 parafermion × e
i

qqh√
q0

φ”, with qqh the quasihole charge in
units for which the absolute value of the electron charge is
3M + 2, as can be seen from the electron operators in Eq. (24).
We focus on the quasiholes for which the parafermion field is
σ1 (qqh = 1), σ2 or ψ1 (qqh = 2 for both), ε or 1 (qqh = 3 for
both, the latter corresponding to a Laughlin quasihole), and
ψ2 (qqh = 4).

Since the smallest-charge quasihole in the Z3 description
is the σ1eiφ/

√
q0 quasihole, the 3-boson equivalent of the σ1
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quasihole must be the one with the same electric charge, i.e.,
Ha, Hb, or Hc, with any choice being equally permissible.

For the qqh = 2 quasiholes, we have that σ1 × σ1 = σ2 +
ψ1. Hence, we expect to be able to combine two Hj operators
( j ∈ {a, b, c}) to obtain either of these possibilities. Since
Ha, Hb, Hc all represent σ1, the only distinction of importance
is whether σ1 × σ1 ↔ HjHk has j = k or j �= k. For reasons
that will become clear shortly, we must have j �= k for σ2 and
j = k for ψ1.

The Laughlin quasihole corresponds to 1e
i 3√

q0
φ(w) in the Z3

theory. From the wave function (8), there is a factor (zi − w)
for each electron coordinate zi, regardless of which particle
group it belongs to. Therefore, the Laughlin quasihole must
have a factor Hj for each group j = a, b, c. Thus, we represent
it as HaHbHc. Indeed, one easily sees that

Ha(w)Hb(w)Hc(w) = e
i 3√

q0
φ(w) = 1e

i 3√
q0

φ(w)
. (30)

In other words, all quasihole operators have to be of differ-
ent types. This is why we represent σ2e2iφ/

√
q0 using HjHk,

j �= k: σ1 × σ2 can yield 1, which in the boson lan-
guage is taken care of by choosing Hj ↔ σ1eiφ/

√
q0 , HkHl ↔

σ2e2iφ/
√

q0 such that j, k, l are all different, giving HaHbHc.
The inability of σ1 × ψ1 to give 1 is enforced by representing
ψ1e2iφ/

√
q0 as H2

j , so that no choice of vertex operator Hk for
σ1eiφ/

√
q0 can make HkH2

j equal HaHbHc.
It should be possible to use the fusion rule σ1 × σ2 = 1 + ε

to obtain the εe3iφ/
√

q0 quasihole. From our previous represen-
tations, it follows that εe3iφ/

√
q0 ↔ HjHkHl , with k �= l from

the expression for the σ2 quasihole operator. Here, j must be
coincident with either k or l not to give j, k, l all different,
which would give HaHbHc, i.e., the Laughlin quasihole. We
therefore demand that the ε quasihole is represented using
HjH2

k with j �= k.
Finally, the ψ2e4iφ/

√
q0 operator can be fused using ψ1 ×

ψ1 = ψ2, σ1 × ε = ψ2 + σ1, or using σ2 × σ2 = ψ2 + σ1.
The first fusion implies that the ψ2 hole must be either H2

j H2
k ,

j �= k, or H4
j . The second fusion gives HjHkH2

l where k �= l
but j is indeterminate, i.e., we either have HjHkH2

l (all indices
different), H2

k H2
l or HkH3

l . The third fusion gives HjHkHlHm

where j �= k and l �= m. Because there are only three quasi-
hole operators, not all indices can be different here, and we
arrive at something of the form HjHkH2

l (all indices different)
or H2

j H2
k ( j �= k). Across our three fusion paths, the only

representation of the ψ2e4iφ/
√

q0 quasihole that allows it to
have the same operator content regardless of the path in which
it is fused is H2

j H2
k , where j �= k, so this representation is the

one we use.
Before closing this section, we remark that the representa-

tions in Table I can be understood also in terms of the wave
functions in Sec. II. For instance, identifying the (σ1,

1
3M+2 )

quasihole with Hj for some j ∈ {a, b, c} corresponds to how
the wave function (6) has zeros with the electrons in one
group, and that group only. From Eq. (25), we see that the
choice of j in the Hj (w) operator selects one group of elec-
trons with which factors (zi − w) appear. The freedom to
select j ∈ {a, b, c} arbitrarily then represents the way in which
the zeros can be with any electron group. Similar arguments
apply to the other quasiholes: For instance, the (ε, 3

3M+2 )

quasihole wave function has one zero with one electron group
and a double zero with another electron group; cf. the wave
function (11) and the restriction j �= k in Table I. The repre-
sentation of the Laughlin quasihole as HaHbHc, meanwhile,
reflects the way in which each electron subset in the wave
function (8) has a zero with the quasihole.

VI. MPS DESCRIPTION: AUXILIARY HILBERT SPACE

In this section, we start our discussion of the MPS de-
scription for FQH states [12,38]. We follow the conventions
of [35]. In particular, we discuss mapping the expectation
value (16) to a finite cylinder geometry, and introduce the
quantum numbers characterizing the auxiliary Hilbert space
used for the MPS.

Even though FQH states live in a disk geometry exper-
imentally, it turns out to be profitable to instead compute
observables in a finite cylinder geometry through the map-
ping (28), which turns the LLL single-particle orbital into

φl (τ, x) = 1√
LlB

√
π

e
− i

l2B
τl x

e
− 1

2l2B
(τ−τl )2

, (31)

with τ the length coordinate and x the angular coordinate

along the cylinder, as well as τl := lδτ = 2π l2
B

L l . One can see
that the orbitals are peaked around τ = τl , with an inter-peak
distance of δτ = 2π l2

B/L.
We denote the orbital occupation numbers for electrons of

type a, b, c by ma,l , mb,l , mc,l , while the number of quasiholes
of type a, b, c inserted between orbitals l and l + 1 are de-
noted by na,l , nb,l , nc,l . We note that we will only consider
situations where we insert a quasihole (which can be com-
posed of several quasiholes of type a, b, c) in one location.
Since the electrons are fermionic (and we are effectively deal-
ing with spin-less electrons), we demand ma, j, mb, j, mc, j ∈
{0, 1} with at most one occupation number being nonzero, i.e.,
ma, j = mb, j = mc, j = 0 for empty orbitals and ma, j + mb, j +
mc, j = 1 for occupied orbitals.

To represent the states using matrix product state tech-
niques, we insert auxiliary Hilbert spaces along the bonds
between the τ = τl orbitals. On the level of the expectation
value, this corresponds to inserting between each pair of ad-
jacent operators in the expectation value a resolution of the
identity as

1 =
∑

{Q,P,μ}

∣∣{Qj, Pj, μ j}2
j=0

〉〈{Qj, Pj, μ j}2
j=0

∣∣, (32)

where the sum is understood as being over all allowed val-
ues of the charge quantum numbers Q0, Q1, Q2, momenta
P0, P1, P2 and partitions μ0, μ1, μ2, all of which will be de-
fined shortly. We define the charge quantum numbers through
(i = 0, 1, 2)

πi,0|Q0, Q1, Q2〉 = Qi√
qi

|Q0, Q1, Q2〉,

ai,n|Q0, Q1, Q2〉 = 0, n > 0 (33)

where the πi,0 operator is the logarithmic mode of either
φ, χ1 or χ2 (for i = 0, 1, and 2, respectively), and the ai,n

are the annihilation operators belonging to the same field [cf.
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Eq. (13)]. We may then add or subtract charge through

e
i α0√

q0
φ0 e

i α1√
q1

χ1,0 e
i α2√

q2
χ2,0 |Q0, Q1, Q2〉

= |Q0 + α0, Q1 + α1, Q2 + α2〉, (34)

where the numbers qi describe the “elementary charge” of the
φ0, χ1, or χ2 field, and are related to the radii Ri of the com-
pactified bosons through Ri = √

qi. Here, φ0, χ1,0, χ2,0 are the
zero modes of the fields φ, χ1 and χ2. We remind the reader
that the Q0 quantum number represents the physical electric
charge, with the electric charge qe = 3M + 2 of the electron
being described by the Q0 charge of the electron operator used
[all of which have the same effect on Q0; cf. Eq. (24)]. The
charges Q1 and Q2 are topological and effectively encode the
Z3 topological sectors. It follows from Eq. (34) that the charge
eigenstates can be made explicit through the relation

|Q0, Q1, Q2〉 = e
i Q0√

q0
φ0 e

i Q1√
q1

χ1,0 e
i Q2√

q2
χ2,0 |0〉. (35)

To define the momenta P0, P1, P2, we must
first define the partitions μ0 = (μ0,1, μ0,2,

. . . , μ0,k ), μ1 = (μ1,1, μ1,2, . . . , μ1,l ) and μ2 =
(μ2,1, μ2,2, . . . , μ2,m), all of which are sets of weakly
decreasing positive integers. Together with the independent
creation operators a0,− j, a1,− j, a2,− j for the fields φ, χ1 and
χ2, and the occupation numbers ri, j for mode number j of
field number i, we may define

|Q0, Q1, Q2, P0, P1, P2, μ0, μ1, μ2〉

= 1√
zμ0 zμ1 zμ2

∞∏
j=1

a
r0, j

0,− ja
r1, j

1,− ja
r2, j

2,− j |Q0, Q1, Q2〉, (36)

where the normalizing factors are zμi =∏∞
j=1 jri, j (ri, j!) for

i = 0, 1, 2. Now, the partitions and momenta can be explained
as follows: the momenta are

Pi =
∑
j>0

jri, j, i = 0, 1, 2. (37)

The partitions μi are partitions of the momenta, i.e., Pi =∑
j μi, j , and the number of parts of μi, which are equal to

a certain j is exactly ri, j . Finally, we note for later use that∑
j>0

(a0,− ja0, j + a1,− ja1, j + a2,− ja2, j )|{Ql , Pl , μl}2
l=0〉

= (P0 + P1 + P2)|{Ql , Pl , μl}2
l=0〉. (38)

In the language of MPS, the occupation numbers
ma, j, mb, j, mc, j (and the corresponding numbers for the quasi-
hole occupations) are the physical, or free, indices. The charge
quantum numbers Qi, momenta Pi and partitions of the mo-
menta μi are contracted over, and so correspond to auxiliary
degrees of freedom connecting the states at different orbitals
along the cylinder. The physical indices are contracted when
calculating actual expectation values.

VII. MPS DESCRIPTION: MATRIX ELEMENTS

The MPS method can be successfully used for quantum
Hall states for two reasons. Firstly, there is no need to re-
peatedly evaluate the wave function, as is necessary in a
Monte Carlo approach. Secondly, the information needed to

describe the entanglement between neighboring orbitals does
not increase as rapidly as one would naïvely expect. Instead, in
gapped phases with a finite correlation length, this information
is bounded from above (see [39] for a review). Consequently,
it suffices to use matrices of moderate, finite dimension.

To construct a FQH state using MPS, we note that the wave
functions can be written schematically as

� =
∑

λ

cλslλ, (39)

where slλ is a Slater determinant corresponding to the set
of occupied single-particle orbitals λ = (lNe, lNe−1, . . . , l1)
with 0 � l1 < l2 < · · · < lNe � Nφ . The coefficients cλ can be
computed (although the MPS method does not rely on doing
so) as

cλ =
(

Ne∏
j=1

∫ L/2

−L/2

dx j

L

)〈
ObgVdNe

(
τlNe

, xNe

) · · ·ObgVd1

(
τl1 , x1

)〉
,

(40)

where d1, . . . , dNe ∈ {a, b, c} represent different choices for
the different electron operators, and where the Obg back-
ground charge operator creates the background charge asso-
ciated with one orbital rather than that of the whole system.
For the state without quasiholes, charge neutrality (and a
nonzero expectation value) requires that the number of a, b
and c electrons are all equal. The expectation value above is
assumed to be τ -ordered, i.e., τlNe

> τlNe−1 > · · · > τl1 . A way
to place operators at the appropriate time coordinates is by
using the following time evolution operator:

U (τ ′ − τ ) = e−(τ ′−τ )H , H = 2π

L
L0, (41)

where L0 = 1
2 (π2

0,0 + π2
1,0 + π2

2,0) +∑ j>0(a0,− ja0, j +
a1,− ja1, j + a2,− ja2, j ). To represent a continuously distributed
background charge between the orbitals at τ and τ ′ = τ + δτ ,
we “spread out” the effect of the charge operator

Obg = e
−i 3√

q0
φ0 over a τ interval of width δτ/N , time evolve

by δτ/N , add an additional small amount of charge, and so on.
The continuous charge distribution is achieved as a limiting
case as N → ∞. In other words, we write (see [35,38] for
more details)

U (τ ′ − τ ) = lim
N→∞

(
e− 2πδτ

NL L0 e
−i 3

N
√

q0
φ0
)N

= e
− 2πδτ

L L0−i 3√
q0

φ0

= e
− 2πδτ

L (L0+ 3
2
√

q0
π0,0+ 3

2q0
)
e
−i 3√

q0
φ0 , (42)

where the last equality follows from the Baker-Campbell-
Hausdorff theorem with [πr,0, φs,0] = −iδrs. Defining

U ′(δτ ) := e
− 2πδτ

L (L0+ 3
2
√

q0
π0,0+ 3

2q0
), we see that the time

evolution and spread-out background charge together make
the expectation value, for some “out-charge” Q0,out,

〈Q0,out|ObgVdNe

(
τlNe

, xNe

) · · ·ObgVd1 (τl1 , x1)|0〉
= 〈Q0,out|U ′(τNφ+1 − τlNe

)
ObgVdNe

(
0, xNe

)
U ′(τlNe

− τlNe−1

)
ObgVdNe−1

(
0, xNe−1

) · · ·
U ′(τl2 − τl1

)
ObgVd1 (0, x1)U ′(τl1 − 0

)|0〉, (43)
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where the rightmost state, or “in state”, is the vacuum. We
point out that there will be factors of U ′(δτ )Obg inserted
above even at the positions where there are no electrons or
quasiholes, i.e., at the empty orbitals. These factors are im-
plicitly understood in Eq. (40) [without the operator U ′(δτ )]
and Eq. (43).

Using the electron and quasihole operators, as well as the
spread-out background charge operator, the resolution of the
identity (32) gives matrix elements for each site. We denote
the matrices as B[i] where the values i = 0, a, b, c signify an
empty orbital (i = 0) or an orbital occupied by an electron
of type a, b, or c. The matrix element for an empty orbital
corresponds to the expectation value

B[0] = 〈{Q′
j, P′

j, μ
′
j}2

j=0

∣∣U ′(δτ )e−i 3√
q0

φ0 |{Qj, Pj, μ j
}2

j=0

〉
= e− 2πδτ

L (
(Q′

0 )2

2q0
+ 3Q′

0
2q0

+ (Q′
1 )2

2q1
+ Q′2

2
2q2

+P′
0+P′

1+P′
2 )

× δQ′
0,Q0−3δQ′

1,Q1δQ′
2,Q2δP′

0,P0δP′
1,P1δP′

2,P2

× δμ′
0,μ0δμ′

1,μ1δμ′
2,μ2 , (44)

where we used the definitions of U ′(δτ ) and L0, as well as
Eqs. (33) and (38). From the form of U ′(δτ ), Eq. (42), it is

clear that there should be a factor e− 2πδτ
L

3
2q0 , which amounts to

an uninteresting overall normalization. We drop this factor in
all matrix elements.

For the matrices corresponding to occupied orbitals,
we wish to trade the z j position dependence for orbital
dependence. To do this, we recall three facts about generic
vertex operators of a free boson field V (z) =: eiβφ(z) :. Firstly,
one can perform the Fourier expansion

V (z) =
∑
l∈Z

zlV−h−l , V−h−l = 1

2π i

∮
dz

z
z−lV (z), (45)

with h the conformal dimension of the mode. Secondly,
we have

〈Q′, P′, μ′|V (z)|Q, P, μ〉 = δQ′,Q+√
qβz

βQ√
q +P′−PAβ

μ′,μ, (46)

where

Aβ

μ′,μ =
∞∏
j=1

s j∑
s=0

r j∑
r=0

δr j−r,s j−s
(−1)r

√
r!s!

(
β√

j

)r+s
√(

s j

s

)(
r j

r

)
.

(47)
Thirdly, from Eqs. (45) and (46) it follows that

〈Q′, P′, μ′|V−h|Q, P, μ〉 = 1

2π i

∮
dz

z
δQ′,Q+√

qβz
βQ√

q +P′−PAβ

μ′,μ

= δQ′,Q+√
qβδP′,P− βQ√

q
Aβ

μ′,μ. (48)

This information can be used to derive the MPS matrices for
the different occupied orbitals. Since the different boson fields
are independent, it follows from the above that

B[a] =
∫ L/2

−L/2

dx

L

〈{Q′
j, P′

j, μ
′
j}2

j=0

∣∣U ′(δτ )e−i 3√
q0

φ0Va

∣∣{Qj, Pj, μ j}2
j=0

〉

= e− 2πδτ
L (

(Q′
0 )2

2q0
+ 3Q′

0
2q0

+ (Q′
1 )2

2q1
+ Q′2

2
2q2

+P′
0+P′

1+P′
2 )
δQ′

0,Q0+3M−1δQ′
1,Q1+4δQ′

2,Q2δ(P0+P1 )′,(P0+P1 )− 3M+2
q0

Q0− 4
q1

Q1
δP′

2,P2 A
3M+2√

q0

μ′
0,μ0

A
4√
q1

μ′
1,μ1

δμ′
2,μ2 , (49)

where P′
2 = P2, μ

′
2 = μ2 are both direct consequences of the fact that Va does not depend on χ2. We remind the reader that the

e
−i 3√

q0
φ0 factor is the Obg background charge operator of Sec. IV, and is needed for charge neutrality. Similarly,

B[b] =
∫ L/2

−L/2

dx

L

〈{Q′
j, P′

j, μ
′
j}2

j=0

∣∣U ′(δτ )e−i 3√
q0

φ0Vb|{Qj, Pj, μ j
}2

j=0

〉

= e− 2πδτ
L (

(Q′
0 )2

2q0
+ 3Q′

0
2q0

+ (Q′
1 )2

2q1
+ Q′2

2
2q2

+P′
0+P′

1+P′
2 )
δQ′

0,Q0+3M−1δQ′
1,Q1−2δQ′

2,Q2+2δ(P0+P1+P2 )′,(P0+P1+P2 )− 3M+2
q0

Q0+ 2
q1

Q1− 2
q2

Q2
A

3M+2√
q0

μ′
0,μ0

A
−2√

q1

μ′
1,μ1

A
2√
q2

μ′
2,μ2

,

(50)

and

B[c] =
∫ L/2

−L/2

dx

L

〈{Q′
j, P′

j, μ
′
j}2

j=0

∣∣U ′(δτ )e−i 3√
q0

φ0Vc

∣∣{Qj, Pj, μ j}2
j=0

〉

= e− 2πδτ
L (

(Q′
0 )2

2q0
+ 3Q′

0
2q0

+ (Q′
1 )2

2q1
+ Q′2

2
2q2

+P′
0+P′

1+P′
2 )
δQ′

0,Q0+3M−1δQ′
1,Q1−2δQ′

2,Q2−2δ(P0+P1+P2 )′,(P0+P1+P2 )− 3M+2
q0

Q0+ 2
q1

Q1+ 2
q2

Q2
A

3M+2√
q0

μ′
0,μ0

A
−2√

q1

μ′
1,μ1

A
−2√

q2

μ′
2,μ2

.

(51)

The matrix describing the occupied orbitals is the sum of these matrices, B[1] = B[a] + B[b] + B[c]. When performing tensor
contractions to calculate observables, this form of B[1] takes care of the sum over all possible subsets S1, S2, S3 of electrons in
the RR wave function (4) [corresponding to the electron operators Eqs. (49)–(51)]. The quantum numbers ensure that the final
answer corresponds to the right number of electrons of each type. Also, the physical index of each orbital is just 0 or 1 (rather
than 0, a, b, or c).

Using similar reasoning, the elements of the quasihole matrices H [a]
l̃

, H [b]
l̃

, H [c]
l̃

owing to a quasihole insertion between orbitals

l̃ − 1 and l̃ can be computed. We first state the matrix elements, and then explain where the different factors come from. If the
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quasihole is inserted at τ = τα , the matrix elements become

H [a]
l̃

= (−1)
Q0+3l̃

3(3M+2) +
Q1
6 e− 2π ixα

L ( Q0+3l̃
q0

+ 2Q1
q1

+(P0+P1 )′−(P0+P1 ))e
2π
L (l̃δτ−τα )(

Q2
0

2q0
+ 3Q0

2q0
+ Q2

1
2q1

+ Q2
2

2q2
+P0+P1+P2 )

× e− 2π
L (l̃δτ−τα )(

(Q′
0 )2

2q0
+ 3Q′

0
2q0

+ (Q′
1 )2

2q1
+ (Q′

2 )2

2q2
+P′

0+P′
1+P′

2 )
δQ′

0,Q0+1δQ′
1,Q1+2δQ′

2,Q2δP′
2,P2 A

1√
q0

μ′
0,μ0

A
2√
q1

μ′
1,μ1

δμ′
2,μ2 , (52)

where P2 trivially remains constant as was the case for B[a]. Here, (τα, xα ) are the coordinates of the quasihole. Furthermore,

H [b]
l̃

= (−1)
Q0+3l̃

3(3M+2) −
Q1
12 + Q2

4 e− 2π ixα
L ( Q0+3l̃

q0
− Q1

q1
+ Q2

q2
+(P0+P1+P2 )′−(P0+P1+P2 ))e

2π
L (l̃δτ−τα )(

Q2
0

2q0
+ 3Q0

2q0
+ Q2

1
2q1

+ Q2
2

2q2
+P0+P1+P2 )

× e− 2π
L (l̃δτ−τα )(

(Q′
0 )2

2q0
+ 3Q′

0
2q0

+ (Q′
1 )2

2q1
+ (Q′

2 )2

2q2
+P′

0+P′
1+P′

2 )
δQ′

0,Q0+1δQ′
1,Q1−1δQ′

2,Q2+1A
1√
q0

μ′
0,μ0

A
− 1√

q1

μ′
1,μ1

A
1√
q2

μ′
2,μ2

, (53)

and

H [c]
l̃

= (−1)
Q0+3l̃

3(3M+2) −
Q1
12 − Q2

4 e− 2π ixα
L ( Q0+3l̃

q0
− Q1

q1
− Q2

q2
+(P0+P1+P2 )′−(P0+P1+P2 ))e

2π
L (l̃δτ−τα )(

Q2
0

2q0
+ 3Q0

2q0
+ Q2

1
2q1

+ Q2
2

2q2
+P0+P1+P2 )

× e
−2π

L (l̃δτ−τα )(
(Q′

0 )2

2q0
+ 3Q′

0
2q0

+ (Q′
1 )2

2q1
+ (Q′

2 )2

2q2
+P′

0+P′
1+P′

2 )
δQ′

0,Q0+1δQ′
1,Q1−1δQ′

2,Q2−1A
1√
q0

μ′
0,μ0

A
− 1√

q1

μ′
1,μ1

A
− 1√

q2

μ′
2,μ2

. (54)

The Kronecker δ’s for the charge quantum numbers and the

factors A
1√
q0

μ′
0,μ0

etc. originate in calculating the matrix elements

using Eq. (46). The exponents of the type e− 2π ixα
L c (where c

depends on the quantum numbers and l̃) is what remains of
the coordinate dependence after setting τα = 0 [recall that the
τ dependence is “taken care of” by the free time evolution;
see Eq. (43)].

To explain the τα dependent exponential factors (see
also [16]), we note that the matrix elements corresponding
to the actual orbitals (either empty, or with an electron of
arbitrary type) incorporate the effect of the free time evolu-
tion from the orbital to the next one. If we insert the matrix
corresponding to the quasihole at position τα in between the
matrices corresponding to the orbitals l̃ − 1 and l̃ [such that
(l̃ − 1)δτ < τα < l̃δτ ], we need to time evolve backwards
from τ = l̃δτ to τ = τα , apply the quasihole operator with its
τ coordinate set to 0, and then time-evolve forward again up to
τ = l̃δτ before applying the next operator. This time evolution
produces the τα dependent exponentials in the matrix elements
Eqs. (52)–(54).

Finally, we need to explain the (charge quantum num-
ber dependent) signs. These signs have their origin in the
factors (z − w) that are present for an electron and a quasi-
hole belonging to the same “particle subset”, i.e., from the
anticommutation between electrons and quasiholes of the
same type. Because of the Kronecker δ’s for the charge
quantum numbers in the matrix elements for the empty
and occupied orbitals, one can at any given orbital de-
duce the number of matrices corresponding to an electron
of a given type that were inserted already. Using this in-
formation gives rise to the signs present in the matrix
elements (52)–(54).

With all the matrix elements that we need for the MPS
calculations in place, we would like to discuss the effect
of the time evolution in more detail. That is, the combined
effect of the exponentials of the form e− 2πδτ

L (·) in the matrix
elements (44) and (49)–(54). We denote this factor (which
via the quantum numbers depends on the orbital occupation
numbers) by U . In the absence of quasiholes, this factor is

given by

U = exp

(
− 2πδτ

L

Nφ+1∑
j=0

[
Q2

0, j

2q0
+ 3Q0, j

2q0
+ Q2

1, j

2q1
+ Q2

2, j

2q2

+ (P0 + P1 + P2) j

])
. (55)

This expression is modified slightly if a quasihole is present
in the system, because the matrix elements in Eqs. (52)–(54)
affect the quantum numbers and contain additional exponen-
tial factors contributing to U . We recall that δτ = 2π l2

B/L and
that we set lB = 1.

The exponential U of Eq. (55) can be seen to decay with
growing charge and momentum quantum numbers, which
leads to a natural truncation of the auxiliary Hilbert space.
The states with high values of the |Q| and P numbers (and
consequently many possible partitions μ of P, which increases
the necessary dimensions of the auxiliary Hilbert spaces) are
also the states where the exponential factor is the closest
to zero. It should be mentioned, however, that the factor
2πδτ

L = ( 2π lB
L )

2
is actually quite small (compared to one) for

the circumferences usually considered, L ∼ 20 − 30lB.
The exponent U in Eq. (55) can be computed by using

the Kronecker δ’s present in the matrix elements to write the
quantum numbers in terms of the occupation numbers ma, j ,
mb, j , and mc, j . We present the details of the calculation in the
Appendix. In order to be able to state the result in the presence
of a quasihole, we need to mention that the wave function in
that case can be written in the form

Ne∑
s=0

wsPs({z j}) (56)

for Ne electrons. The parameter s depends on the orbital occu-
pation numbers. In the Appendix, we show that

s � −
Nφ∑
j=0

j(ma, j + mb, j + mc, j ), (57)

125126-9



ALEXANDER FAGERLUND AND EDDY ARDONNE PHYSICAL REVIEW B 112, 125126 (2025)

where the symbol “�” means equality up to terms that do not
depend on how the particles are distributed along the MPS
cylinder, that is, terms that only depend on Ne and Nφ (which
only influence the overall normalization of the state). Using
this notation, we obtain the result

U � exp

(
2πδτ

L

Nφ∑
j=0

[
j2

2
(ma, j + mb, j + mc, j )

]

+ 2π

L

(
τα − M + 2

2
δτ

)
s

)
. (58)

Several remarks about this factor are in order. The first term
in the exponent precisely corresponds to the factor that is nec-
essary to incorporate the normalization of the single-particle
orbitals on the cylinder, which are given in Eq. (31) (see [35]
for a more detailed discussion). The second term in the ex-
ponential gives the τα dependence. We note that there is a
displacement by −M+2

2 δτ for the location of the quasihole in
Eq. (58). The quantity M+2

2 that appears is exactly the scaling
dimension of the electron operators. This is to be expected,
because the conformal mapping from the plane to the cylin-
der (28) introduces a factor zh

j for the electron coordinates
when calculating the correlation functions (see e.g., [29,36]).
This effectively results in a shift of the FQH droplet along
the τ direction by M+2

2 δτ , in accordance with Eq. (58). When
doing actual MPS calculations, one has to adjust the input
parameter τα for the location of the quasihole accordingly.

VIII. IMPLEMENTATION AND ROUGH BENCHMARK

In this section, we provide some information on the actual
implementation of the MPS formalism that we use to analyze
the k = 3 Read-Rezayi states. We consider large but finite
systems, with up to Ne = 300 electrons. Because we consider
finite systems, we can study edge effects, such as the edge
spin. We report on these results in the paper [33]. We limit
ourselves to situations where we insert a single quasihole at
the center of the droplet. For our purposes, a single quasihole
suffices, and having only a single quasihole allows for an
efficient evaluation of the correlation matrix. This is needed
when calculating the density profile, which we use to obtain
the charge and the spin of the quasihole.

In particular, we insert the matrix corresponding to the
quasihole in the middle of our system. We then bring the
MPS to “left canonical form” from the first orbital up to
the quasihole matrix [11]. In addition, the matrices corre-
sponding to orbitals “after” the quasihole matrix are brought
to “right canonical form”, starting from the largest orbital.
Using this mixed canonical form, one avoids the high memory
cost associated with also bringing all matrices, including the
quasihole matrix, to, say, the “left canonical form”. The reason
for this is that the quasihole matrix is much less sparse than
the electron matrices.

The cutoff on the auxiliary Hilbert space that we use is
directly associated with the angular momentum of the droplet.
The angular momentum of the first j orbitals of the droplet,

Lz( j) =
j−1∑
k=0

k(ma,k + mb,k + mc,k ) ,

TABLE II. Some MPS details for the different quasihole states,
for cutoff Pmax = 12.

Quasihole Ne Max Total

(σ1, 1/5) 300 158734 1007095
(σ2, 2/5) 300 160496 1051656
(ψ1, 2/5) 299 165182 796320
(1, 3/5) 300 160383 688409
(ε, 3/5) 299 159445 951187
(ψ2, 4/5) 298 177800 951154

can be expressed in terms of the quantum numbers at orbital
j, see Eq. (A4). Both the angular momentum and Q0 are good
quantum numbers (though the angular momentum only in the
absence of quasiholes). In other words, the electric charge Q0

is conserved, whereas e.g., the charges Q1 and Q2—which
describe the topological sector of the Z3 theory, and depend
on the electron and quasihole operators used—are not. We
therefore implement a cutoff Pmax as follows:

P0 + P1 + P2 + Q2
1

24
+ Q2

2

8
� Pmax. (59)

We do not implement additional cutoffs on the charge quan-
tum numbers. The maximum cutoff we consider is Pmax = 12.
This already leads to rather large auxiliary dimensions (which
are bond dependent). For each of the quasihole types, we list
the largest bond dimension (which occurs at the insertion of
the quasihole matrix), and the total number of auxiliary states
used (that is, the number of states in the union of all bond
auxiliary spaces) for cutoff 12, as shown in Table II.

For completeness, we give some details concerning the
quantum numbers of the “in” and “out” states of the MPS
description in the presence of quasiholes. The “in” and “out”
momenta are always zero, P1 = P2 = P3 = 0. The same is
true for the “in” charges Q0 = Q1 = Q2 = 0. In the case of
a droplet without quasiholes (and Ne mod 3 = 0), the “out”
charges are given by (Q0, Q1, Q2) = (3(M + 1), 0, 0). In Ta-
ble III, we specify the “out” charges for the six different
types of quasiholes that we consider. The out charge Q1 is not
always zero, because of the way the single-quasiholes states
are defined (i.e., in some cases, we need to send quasiholes
to the far end of the cylinder). In addition, the number of
electrons is not always a multiple of three, as indicated in the
table. This means that the value of �Nφ , for a given quasihole,
as defined by Nφ = (3M + 2)/3Ne − (M + 2) + �Nφ , is not
always an integer (but Nφ is, of course), as indicated in the
table.

TABLE III. Details on the quantum numbers.

Quasihole Ne mod 3 �Nφ Out charges

(σ1, 1/5) 0 1 (3(M + 1) − 2, 2, 0)
(σ2, 2/5) 0 1 (3(M + 1) − 1, −2, 0)
(ψ1, 2/5) 2 2

3 (3(M + 1), 0, 0)
(1, 3/5) 0 1 (3(M + 1), 0, 0)
(ε, 3/5) 2 5

3 (3(M + 1) − 2, 2, 0)
(ψ2, 4/5) 1 4

3 (3(M + 1), 0, 0)
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The numerical calculations were performed on Dell
R6525, AMD EPYC Rome 7H12 and Dell R6525, AMD Epyc
Milan 7763 processors, with 128 cores and 1024 GiB memory.

The code was written in Mathematica and run on version
13.3.1. The code uses compiled functions (with compilation
to C) for generating the sparse matrices. When calculating
the correlation matrices and the entanglement spectra/entropy
(cf. Secs. XII and XIII), Mathematica automatically dis-
tributes the calculation of the singular value decompositions
and tensor contractions over the available cores.

Each run (either calculating the density or entanglement
spectrum) was performed on a single node. For the largest
value Pmax = 12, the program uses well over 512 GiB of
memory. The typical calculation time for this value of Pmax

was on the order of 100 hours.

IX. DENSITY AND QUASI HOLE CHARGES WITH MPS

In order to find out how the quasiholes distort the electron
fluid of the quantum Hall system, we wish to compute the
density

ρ(r) =
∫

d2r2 · · · dr2
Ne

〈ψ |r, r2, . . . , rNe〉〈r, r2, . . . , rNe |ψ〉.
(60)

The density expression in Eq. (60) can be rewritten in a form
more suitable for MPS (see e.g., [35])

ρ(τ, x) =
∑
m,n

[
1

L
√

π lB
〈ψ |c†

mcn|ψ〉eix(m−n) 2π
L

× e
− 1

2l2B
(τ−τm )2

e
− 1

2l2B
(τ−τn )2

]
. (61)

Above, we represent (but do not explicitly compute) the
wave function using the expectation value in Eq. (16), with the
electron and quasihole insertions chosen to reproduce relevant
Read-Rezayi wave functions from Eqs. (4), (6)–(11). We then
use the MPS representation of these wave functions to calcu-
late the correlation matrix elements 〈ψ |c†

mcn|ψ〉, from which
one easily obtains the density ρ(τ, x). We remark that when
calculating the correlation matrix elements, we enforce that
orbital m (n) is empty (occupied). For the occupied orbitals
with index j in between m and n, we insert an additional minus
sign, which is necessary to ensure the fermionic nature of the
state.

From the density ρ(τ, x) for a state with a quasihole, one
calculates the charge and spin of this quasihole. We first dis-
cuss the density profiles and charges of the quasiholes, but
postpone the discussion of the spin to Sec. XI.

A. Density profiles

In Figs. 1 and 2, we plot the (scaled) density profiles
ρ(τ, 0)/ρ0, through the center of the quasiholes, where ρ0 =
ν/(2π ) is the background density of the FQH fluid. The cir-
cumference of the cylinder is L = 20, and the cutoff used is
Pmax = 12.

There are several features worth noticing. First of all, the
quasiholes are quite large. Deviations from the background
density are discernible roughly up to τ = 10, which means
that on cylinders with circumference L � 20, the quasihole

FIG. 1. Scaled density profiles at the quasihole center x = 0 for
the (σ1, 1/5), (1, 3/5) (or Laughlin), and (ψ2, 4/5) quasiholes. The
circumference L = 20, although there is no qualitative difference
from L = 22 or L = 24. The cutoff Pmax = 12. We note the similarity
between our Laughlin quasihole and the Z3 quasihole profile in
Fig. 2a of Ref. [15].

would “touch itself” in the circumference direction x. In
addition, the (radial) sizes of the six different quasiholes
we consider are comparable. The shapes of the (σ1, 1/5),
(σ2, 2/5) and (1, 3/5) quasiholes are similar. The difference
between them lies in the “depth” of the profiles. The same is
true for the (ψ1, 2/5) and (ψ2, 4/5) quasiholes.

Concerning the convergence of the density profiles of the
quasiholes, we note that the profiles for Pmax = 11 and Pmax =
12 are indistinguishable on the scale of the plots in Figs. 1
and 2. The maximum absolute difference in ρ(τ, 0)/ρ0 occurs
for the (ψ2, 4/5) quasihole and is given by 0.0044. The max-
imum relative error in ρ(τ, 0) also occurs for the (ψ2, 4/5)

FIG. 2. Scaled density profiles at the quasihole center x = 0 for
the (σ2, 2/5), (ψ1, 2/5), and (ε, 3/5) quasiholes. The circumference
and cutoff are L = 20, Pmax = 12.
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quasihole and is given by 0.0058. Here, we excluded the
Laughlin quasihole (1, 3/5), for which ρ(0, 0) becomes very
small, namely ρ(0, 0) = 3.8 · 10−5 for Pmax = 12.

We remark that the profiles of the (σ1, 1/5), (σ2, 2/5)
and (1, 3/5) quasiholes are qualitatively similar to that of
the Abelian anyon with charge e/5 in the ν = 12/5 state, as
shown in [40].

B. Quasihole charges

An observable of interest of the quasiholes is their charge.
The purpose of this section is to explain how the charges of the
different quasiholes can be computed from the density profiles
discussed above, and to give the results.

If the density with a quasihole in the system is given by
ρqh(τ, x), the quasihole charge Qqh is given by

Qqh =
∫

d2r(ρqh(τ, x) − ρ0). (62)

Throughout the paper, we assume that the quasihole is placed
at the origin, i.e., at τ = x = 0. While the total quasihole
charge is to be regarded as an input parameter for the MPS
scheme, and can simply be read off from the Q0 quantum
numbers of the quasihole operators chosen, computing the
charge is nonetheless useful as it provides a verification that
the numerical implementation works as intended. It also al-
lows for error assessment of the MPS scheme.

We use two different methods to calculate the quasihole
charge as a function of the distance between the quasihole
center and the outermost parts of the integration region. Be-
cause of the finite circumference of the cylinder, if we express
the integral in Eq. (62) in polar coordinates τ = r cos θ, x =
r sin θ as

Qqh(rmax) =
∫ 2π

0

∫ rmax

0
(ρqh(τ, x) − ρ0)rdrdθ, (63)

we need to restrict rmax � L/2.
To remedy this, we follow two different approaches. The

simplest approach is to assume that the quasihole has ro-
tational symmetry, and integrate along r, setting θ = 0 (or
θ = π ). This simple approach also serves as a check on the
convergence in terms of L. If the cylinder circumference L is
small, there is some self-interference of the quasiholes around
the cylinder in the x direction, leading to quasihole profiles
that are not entirely rotationally symmetric. This in turn can
lead to deviations from the expected charge values in the
large rmax limit. To be explicit, when calculating the quasihole
charge by means of a one-dimensional integral, we calculate3

Q1d
qh (rmax) = 2π

∫ rmax

0
(ρqh(τ, 0) − ρ0)τdτ. (64)

3The MPS formulation is not entirely symmetric, and it can happen
that the dimensions of the matrices are larger “before” or “after”
the matrix corresponding to the quasihole. We perform the one-
dimensional integrals in the direction of the larger matrices. The
density in this direction is expected to be more accurate, since
the larger matrices allow more auxiliary states to be included in the
computation, and should therefore give more accurate charge values.

The expression for ρqh(τ, x) involves a sum over products of
one-particle orbitals, weighted by the numerically obtained
coefficients 〈ψ |c†

mcn|ψ〉; cf. Eq. (61). The τ integral over these
products of one-particle orbitals can be done analytically at
x = 0, resulting in an expression involving exponential func-
tions and error functions.4 We use this analytical expression
when calculating Q1d

qh (rmax). By calculating the charge using
Eq. (64), the integration region is, for τ > L/2, larger than
the actual cylinder. This might seem odd at first, but we are
interested in the charge (and more importantly, the spin in
Sec. XI below), in the limit of large circumferences. Because
in practice the MPS approach only converges for moderate
circumferences, we do our best effort to generate convergent
MPS data for as large a system as possible, and then calculate
the charge and spin in the way one would do this in the large
circumference limit.

The second approach is to perform the two-dimensional
integral, but taking the finite circumference into account. That
is, we integrate over 0 � θ < 2π for 0 � rmax � L/2 and
over the largest possible range of θ for rmax > L/2. How
large this range is does, of course, depend on rmax. In this
case, we are forced to assume that the profile is rotationally
symmetric. We note that in principle, one could perform the
full two-dimensional integral up to rmax = L/2, and continue
with a one-dimensional integral. This approach would lead
to a charge Qqh(rmax) with a discontinuous first derivative at
rmax = L/2, so we do not consider this approach here. The
two-dimensional integral expression for the charge reads

Q2d
qh (rmax) =

∫ rmax

0

∫
Cθ (r)

w(r)(ρqh(τ, x) − ρ0)rdrdθ, (65)

where the range of θ is given by

Cθ (r � L/2) = [0, 2π )

Cθ (r > L/2) =
[
− arcsin

(
L

2r

)
, arcsin

(
L

2r

)]
∪

[
π − arcsin

(
L

2r

)
, π + arcsin

(
L

2r

)]
(66)

and the “weight factor” w(r) is

w(r � L/2) = 1w(r > L/2) = π

2 arcsin
(

L
2r

) . (67)

The range Cθ ensures that the integration region we are inte-
grating over actually exists on the cylinder with a finite size.
Because we want to calculate the charge in the way one would
do in the large circumference limit, we introduce a (radius de-
pendent) weight factor w(r), which “extends” the integration
region to 0 � θ < 2π , assuming rotational symmetry of the
quasihole. This is illustrated in Fig. 3.

To compute the charge, the most accurate method is the
two-dimensional integral in Eq. (65), since the cylinder cir-
cumference is small enough to allow some self-interference of
the quasiholes around the cylinder in the x direction. However,
a method analogous to Eq. (64) turns out to give excellent

4This expression is long and not particularly informative. Conse-
quently, we will not reproduce it here.
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FIG. 3. Illustration of the MPS cylinder cut open and flattened,
with examples of circular shells integrated over in Eq. (65). For
radii r � L/2, all angles can be integrated over (inner shell). This
corresponds to the range Cθ (r � L/2) and the “weight factor” w(r �
L/2). When the radius is too large, some angles are not allowed
since the integration would be outside the cylinder (red regions).
We restrict integration to the range Cθ (r > L/2) (outer blue regions).
To mimic integration over the entire outer shell, we use the “weight
factor” w(r > L/2).

accuracy for the spin computations, which we describe in
Sec. XI. We plot the quasihole charges Q2d

qh (rmax) in Fig. 4.
We note that the values rapidly converge to the values one
would expect from the CFT description, i.e., from the ver-
tex operators used to represent the different quasiholes (the
expected value is reached at rmax ≈ L/2). Although this is
not surprising, it is still valuable information: it serves as a
verification that our MPS technique and its implementation
faithfully reproduce the correct properties of the quasiholes.

X. BRAIDING PHASES AND SPINS

In order to demonstrate that the Berry phase of the RR state
vanishes in the “minimal representation”, we first compute the
values of the quasihole spins given that the Berry phase van-
ishes. This is done in the current section. The spin values thus
obtained will be seen in Sec. XI to match values calculated
using MPS data without imposing any assumptions about the
Berry phase, showing that the Berry phase indeed does vanish.

FIG. 4. Charges Q2d
qh of the different quasiholes for circumfer-

ence L = 20 and cutoff Pmax = 12, computed using the double
integral method in Eq. (65). The dotted lines show the values ex-
pected from the CFT description of each quasihole, i.e., from the
coefficient of φ(w) in the corresponding vertex operator.

The spins of the quasiholes can be computed using the
spin-statistics relation (SSR) derived on general ground for
FQH systems in [32]. This relation gives the braiding param-
eter κc

ab of quasiholes a and b in fusion channel c in terms of
the individual spins Ja, Jb of the a and b quasiholes and the
spin Jc

ab of the fusion product of a and b in fusion channel c
through5

κc
ab = Ja + Jb − Jc

ab mod 1. (68)

Here, the spin is defined as

J =
∫

d2r

(
r2

2l2
B

− 1

)
(ρqh(τ, x) − ρ0), (69)

where ρqh(τ, x) is the probability density of a system with a
quasihole at the origin (using the coordinates τ = r cos θ, x =
r sin θ ) and ρ0 is the background density when the system
contains no quasiholes [32].

To predict the individual spins, one can–analogously to
the calculation for the Moore-Read state in [32]—compute
the braid parameters κc

ab from the CFT description, using the
“minimal” description. We write the operators creating the
quasiholes as Aeiαφ0 , Beiβφ0 and Cei(α+β )φ0 , where A, B, and
C correspond to operators in the Z3 parafermion theory, with
scaling dimensions hA, hB, and hC , respectively. Then we have
the following OPE:

A(w1)eiαφ0(w1 )B(w2)eiβφ0(w2 )

= (w1 − w2)hC−hA−hB+αβcC
A,Bei(α+β )φ0 (w2 )C(w2) + · · · ,

(70)

where cC
A,B is an OPE constant whose value we do not need.

Under the assumption that the braiding phase is contained in
the monodromy, the braiding parameter may simply be read
off as κc

ab = hC − hA − hB + αβ.
To be explicit, the scaling dimensions are given by

h1 = 0 hψ1 = hψ2 = 2/3

hε = 2/5 hσ1 = hσ2 = 1/15 (71)

and the U (1) chiral boson factor is given by e
i

qqh√
q0

φ , where
q0 = 3(3M + 2) and qqh is the quasihole charge in units of
1/(3M + 2).

To calculate the spins of the quasiholes using the SSR, we
also need the spin of the Laughlin quasihole. Generically, the
spin of the Laughlin quasihole is give by JLaughlin = − ν

2 + νS
2 ,

see [41] for details. For the k = 3 Read-Rezayi states we have
ν = 3

3M+2 and S = M + 2, resulting in J(1, 3
3M+2 ) = 3(M+1)

2(3M+2) .
We now have all the information necessary to calculate

the spins for the various quasiholes. The braid parameters
are obtained from the OPEs. Considering different fusions
of quasiholes, where one fusion should lead to the Laughlin
quasihole, we obtain a linear system of equations for the
unknown spins, modulo one.

5We point out that the letters a, b, and c are generic labels, and
have no relation to the indices a, b, and c as used for the electron and
quasihole operators. Which interpretation is intended should be clear
from the context.
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TABLE IV. Spin predictions from minimal representations of the quasiholes. We include both the value for general M and the value for
M = 1, which is the value the numerical calculations have been done for.

Quasihole (σ1, 1/5) (σ2, 2/5) (ψ1, 2/5) (1, 3/5) (ε, 3/5) (ψ2, 4/5)

Spin prediction, general M 3M+7
10(3M+2)

2(2M+3)
5(3M+2) − M

3M+2
3(M+1)
2(3M+2)

3M+7
10(3M+2) 0

Spin prediction, M = 1 1/5 2/5 −1/5 3/5 1/5 0

As a simple example, we consider the fusion of two
(σ1,

1
3M+2 ) quasiholes to a (σ2,

2
3M+2 ) quasihole, and the

fusion of (σ1,
1

3M+2 ) and (σ2,
2

3M+2 ) to the Laughlin quasi-
hole. The braid parameters are given by κσ2

σ1,σ1
= 1−M

5(3M+2) and

κ1
σ1,σ2

= 2(1−M )
5(3M+2) (we drop the charge of the quasiholes in the

labels of the braid parameters, in order to avoid clutter). The
SSR relations then become (modulo 1)

1 − M

5(3M + 2)
= 2J(σ1,

1
3M+2 ) − J(σ2,

2
3M+2 ),

2(1 − M )

5(3M + 2)
= J(σ1,

1
3M+2 ) + J(σ2,

2
3M+2 ) − 3(M + 1)

2(3M + 2)
, (72)

resulting in J(σ1,
1

3M+2 ) = 3M+7
10(3M+2) and J(σ2,

2
3M+2 ) = 2(2M+3)

5(3M+2) .
The method outlined and illustrated above can be carried

out in much the same manner for all the different quasi-
holes, to provide all the spin values of interest. The crucial
assumption in doing so is that all the statistics is contained
in the monodromy. Under this assumption, we obtain the spin
predictions in Table IV. This assumption has been shown to
hold for the Laughlin [42] and Moore-Read [30,31] states
using the plasma analogy. For the k = 3 Read-Rezayi states
this was shown by calculating the braiding phase explicitly
numerically [15].

We will verify the spin values in Table IV numerically by
using the free boson MPS scheme of the current paper. We
present these numerical results in Sec. XI, which in turn builds
on the density profiles of Sec. IX. These numerical values will
be seen to agree well with the predictions in Table IV, thus
supporting the conclusion drawn in [15] that the Berry phase
of the k = 3 Read-Rezayi state vanishes. Unlike the approach
in [15], we draw this conclusion without having to explicitly
braid quasiholes, resulting in a simpler calculation. Instead, all
that is required is the SSR of [32] and some local information
regarding the quasihole spins.

XI. QUASIHOLE SPINS

Analogously to how the charges of the quasiholes are
computed, there are two ways of calculating the quasihole
spins Eq. (69). We first state how we calculate the quasi-
hole spin J (rmax) using a one-dimensional integral, assuming
cylindrical symmetry of the quasiholes. In particular, we may
compute it as

J1d
qh (rmax) = 2π

∫ rmax

0

(
τ 2

2l2
B

− 1

)
(ρqh(τ, 0) − ρ0)τdτ. (73)

We remind the reader that ρqh is the density when a quasihole
is centered at the point τ = x = 0, and that we use the co-
ordinates τ = r cos θ, x = r sin θ . Just as was the case when

calculating the quasihole charge using the one-dimensional
integral, the analogous calculation for the spin can be carried
out to a large extent analytically. Again this involves a cum-
bersome expression which we omit.

The two-dimensional integral expression for the spin that
we use is given by

J2d
qh (rmax)

=
∫ rmax

0

∫
Cθ (r)

w(r)

(
r2

2l2
B

− 1

)
(ρqh(τ, x) − ρ0)rdrdθ,

(74)

where Cθ (r) is given by Eq. (66) and w(r) by Eq. (67).
The range Cθ (r) ensures that the integration region actually
exists on the cylinder with finite circumference L, while w(r)
“extends” the integration region (assuming rotational symme-
try), to 0 � θ < 2π for r > L/2. The reason for calculating
the quasihole spin in this way, is that we are interested in
the value one obtains in the large circumference limit. On a
cylinder with very large circumference, the range of θ would
be 0 � θ < 2π ; we mimic this in Eq. (74) [and of course in
the expression Eq. (73), using a one-dimensional integral].

Unlike the charge computations in Sec. IX B, the line inte-
gral method (73) is more accurate than the double integral (74)
(when comparing to the analytically expected value). We dis-
cuss this behavior below.

We therefore focus here on the results obtained us-
ing the one-dimensional integral (73), which are shown in
Fig. 5 for cylinder circumference L = 20 and MPS cut-
offs Pmax ∈ {10, 11, 12}. We note that the recurring behavior
is the same in all the figures: for small rmax, the integral
oscillates because of large differences between the density
of the quasihole state and the background density with-
out quasiholes. Then, there is a plateau, corresponding to
small values of the integrand in the region where the quasi-
hole barely perturbs the background density. Finally, there
is a new region with oscillations corresponding to edge
effects as the integration reaches the edges of the finite
droplet.

To find a single spin prediction for each circumference
L ∈ {20, 22, 24} and cutoff Pmax ∈ {7, 8, 9, 10, 11, 12}, we
average the spin values obtained above over the plateau for
each L and Pmax. This procedure has three advantages. First of
all, it allows us to eliminate the minor fluctuations that can be
observed across the plateau, and hence minimize the effect
of background effects arising from, e.g., the finite cylinder
size. Secondly, comparing the values thus obtained shows
how the MPS computation converges to a final prediction as
the cutoff Pmax is increased. Thirdly, it allows us to compare
different cylinder circumferences L, to see which cylinder size

125126-14



BOSONIC MATRIX PRODUCT STATE DESCRIPTION OF … PHYSICAL REVIEW B 112, 125126 (2025)

FIG. 5. Spins J as a function of the radius rmax for different values of the cutoff Pmax. All plots have been computed using the one-
dimensional integral (73), and L = 20 throughout. The dotted lines show the theoretically expected values when the Berry phase is 0. For the
(ψ2, 4/5) quasihole, the dotted line coincides with the rmax axis.

is optimal for each type of quasihole. 6 The results are plotted
in Fig. 6.

In Fig. 6, the values shown are obtained by using the
spins J as a function of the integration limit rmax, as seen
in Fig. 5, for different circumferences L = 20, 22, 24 and
cutoffs Pmax = 7, 8, . . . , 12. For each combination of L and
Pmax, we numerically integrate J (rmax) over the intervals
rmax ∈ [30, 40] for L = 20, rmax ∈ [26, 36] for L = 22, and
rmax ∈ [26, 30] for L = 24, and divide the results by the

6From Figs. 1 and 2, it is clear that the different quasiholes have
somewhat different sizes. Hence, one would expect different cylinder
circumferences to be optimal for fitting the entire quasihole on the
cylinder with negligible self-interaction effects around the backside
of the cylinder, while simultaneously having the cylinder be small
enough for fast convergence through the factor in Eq. (55).

appropriate interval widths. These intervals have been cho-
sen since they are intervals where (for a fixed L and cutoffs
Pmax = 10, 11, 12) all quasihole types have a plateau, making
it easier to compare the convergence behaviours for different
quasiholes. We note that in all figures, the values converge
to the values predicted from the spin-statistics relation (68),
although the precise pattern of the convergence (as a function
of L and Pmax) differs between quasihole types.

XII. ENTANGLEMENT SPECTRA

As a verification of our MPS description, we also perform
computations of the topological entanglement entropy, and in
particular, the entanglement spectrum as introduced in [43].
This allows us to verify that our free boson description indeed
captures the Z3 parafermion structure of the states as it should.
The topological entanglement entropy of the k = 3 RR state
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FIG. 6. Plateau-averaged values for the spins of various different quasihole types, against three different cylinder circumferences L. All
calculations have been carried out using the spin expression (73). The dotted lines show the expected values assuming the Berry phase to be 0.
For the (ψ2, 4/5) quasihole, the dotted line coincides with the Pmax axis.

was calculated before in [17]. We therefore concentrate on
the entanglement spectrum first, also because it contains more
information in comparison to the topological entanglement
entropy. We discuss the topological entanglement entropy in
the next section.

To calculate the entanglement spectrum, we equally divide
the system (without bulk quasiholes) in two parts A and B,
and write A (B) in “left (right) canonical form”, using the
conserved quantum numbers. In Fig. 7, we plot the entan-
glement levels e−ξi against the angular momentum Lz for the
parameter choices L = 20, Ne = 120, Pmax = 12. Both A and
B consist of SA = 99 orbitals and the plot is for the case where
both subsystems contain NA = NB = 60 electrons. The “in
charges” (Q0, Q1, Q2) = (0, 0, 0), which means that we do
not have any quasiholes at the edges of the cylinder. Note that
we have shifted Lz such that its lowest value is zero. There are

a few remarks to be made about Fig. 7. We start by discussing
the low-lying entanglement levels.

On average, the lowest level for each angular momentum
Lz increases with increasing Lz, but this increase is slow and
irregularly spaced. Upon increasing Pmax, one obtains a bet-
ter approximation of the state one calculates. However, how
important these extra contributions are varies irregularly with
Pmax. This makes it difficult to predict what cutoff value is
needed for a given accuracy when computing, e.g., the spins
of the quasiholes. The spin of the (σ1, 1/5) quasihole in the
upper left panel of Fig. 6 illustrates this rather clearly for
L = 20. The irregular convergence of the spin to the ana-
lytically expected value is not easy to predict. For instance,
the value moves away from the prediction as Pmax increments
from 8 to 9. Even if one could fit a curve through the points
by, e.g., the least-squares method, the predictive value of such
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FIG. 7. The low-lying part of the entanglement spectrum for a
system with circumference L = 20, Ne = 120 electrons and cutoff
Pmax = 12. Both subsystems have SA = SB = 99 orbitals and contain
NA = NB = 60 electrons. The inset shows the full entanglement spec-
trum with all the levels.

a curve is limited. This is because only few data points are
available and because the behavior is so erratic. Regardless,
we find that the MPS computations converge with increasing
Pmax. However, this requires quite high values of Pmax, even
for the smaller circumferences like L = 20 [we recall that
the MPS description converges faster for smaller values of
L, owing to the exponential factor (58) from the free time
evolution].

We now turn our attention to the highest entanglement
levels for a given Lz. The most important feature to notice
is that the highest level for a given Lz increases rapidly as Lz

grows. From Lz = 4 onwards, the two highest entanglement
levels are close together. This pair is still present for Lz = 8
(see the inset of Fig. 7). Continuing their expected location to
Lz = 9, we find that these levels would have values e−ξ � 70,
roughly corresponding to machine precision. Indeed, these
two expected states at level Lz = 9 are “missing” (cf. the inset
of Fig. 7). This is important when comparing the number of
observed entanglement levels to the expected number, which
we do next.

A way to characterize the structure of the quantum Hall
liquid is to examine the number of states per angular mo-
mentum Lz [43]. The data in Fig. 7 gives the state counting
(1, 1, 3, 6, 12, 21, 39, 64, 108, . . .). This matches the state
counting of the vacuum sector of the Z3 parafermion CFT
times a chiral boson (see for instance [44]) up to angular mo-
mentum Lz = 8. At level Lz = 9, we obtain 171 entanglement
levels, while the expected number is 173. As we explained
above, the “discrepancy” is caused by the small values of the
two highest entanglement levels, implying that they cannot be
resolved using machine precision calculations.

We have also calculated the entanglement spectrum using
the same parameters as above, but with a boundary charge
(Q0, Q1, Q2) = (3, 0, 2), which corresponds to an (ε, 3/5)
quasihole at each edge; the spectrum is given in Fig. 8. We
clearly see that the entanglement spectrum consists of two
branches at low Lz. These two branches correspond to the
two fusion channels of the fusion ε × ε = 1 + ε. Indeed, the

FIG. 8. The low-lying part of the entanglement spectrum for a
system with circumference L = 20, Ne = 120 electrons and cutoff
Pmax = 12, with the boundary charge (3,0,2), corresponding to an
(ε, 3/5) quasihole. Both subsystems have SA = SB = 99 orbitals and
contain NA = NB = 60 electrons.

counting of the lower branch reproduces the state counting of
the ε sector of the Z3 parafermion CFT times a chiral boson,
namely (1, 3, 6, 13, 24, . . .). The branch of higher entangle-
ment levels follows the vacuum sector of the Z3 CFT. The two
branches can be distinguished up to Lz = 4. For higher Lz val-
ues 5 � Lz � 6, the number of entanglement levels matches
the sum of state counting of the ε and vacuum sectors. For
Lz > 6, the number of observed entanglement levels is lower
than the CFT state counting. The discrepancy is again caused
by the small singular values, which cannot be distinguished
from zero at machine precision.

Finally, we mention (without showing the actual plots) that
the entanglement spectra also give the expected state counting
when NA < NB. For instance, in the case NA = 59, NB = 61,
and (Q0, Q1, Q2) = (0, 0, 0), one expects the state counting
of the ψ2 sector of the Z3 CFT (which equals that of the ψ1

sector). In the case of NA = 59, NB = 61, and (Q0, Q1, Q2) =
(3, 0, 2), we expect two branches, matching the σ1 and ψ2

sectors. We indeed obtain entanglement spectra showing this
behavior.

It is not feasible to show convergence data as a function
of Pmax for the full spectra. In the next section, we consider
the entanglement level of the identity sector with Lz = 0 in
detail. In the identity sector (see Fig. 7), the number of levels
obtained is the same for Lz � 8, while for the ε sector (see
Fig. 8), the number of levels is the same for Lz � 7. We restrict
ourselves to entanglement levels with Lz � 7. The maximum
absolute difference between the these levels in the identity
sector is 0.36, while the maximum relative difference is 0.013.
In the ε sector, these numbers are 0.61 and 0.030, respectively.

The analysis of the entanglement spectra clearly demon-
strates that the free boson MPS description captures the
underlying Z3 structure of the k = 3 RR states.

XIII. TOPOLOGICAL ENTANGLEMENT ENTROPY

In this section, we consider the topological entanglement
entropy, for the same parameters as in the previous section.

125126-17



ALEXANDER FAGERLUND AND EDDY ARDONNE PHYSICAL REVIEW B 112, 125126 (2025)

FIG. 9. S and ξ0 as functions of L and Pmax.

Following [45,46], the von Neumann entropy S for the system
with part B traced out takes the following form for topologi-
cally ordered two-dimensional systems:

S = αL − γ + . . . , (75)

where L is the length of the cut between part A and B of the
system, α is a nonuniversal constant, γ is the topological en-
tanglement entropy, and the ellipsis denotes terms that vanish
in the limit L → ∞. The topological entanglement entropy
γ contains information about the system. In the absence of
any quasiparticles, γ is given by γ = lnD, where D is the
total quantum dimension of the system, D = √∑a d2

a , where
the sum is over the particle types, and da is the quantum
dimension of particle type a.

By considering the von Neumann entropy S, we can in
principle determine the topological entanglement entropy γ

by considering cylinders with different circumferences L, and
performing a fit. As was pointed out in [12,47], one can also
use the “lowest lying” level of the entanglement spectrum,
which we denote by ξ0. The scaling of this “entanglement en-
ergy” follows the same law as the scaling of the von Neumann
entropy,

ξ0 = α′L − γ + . . . , (76)

where α′ is a different nonuniversal constant. In determining
ξ0, as a function of L, we fix the number of particles in part
A of the system, and consider the “entanglement level” that
corresponds to the lowest angular momentum. It should be
noted that this is not always the lowest entanglement level.

Following [12], we use both methods to determine γ . We
find that the values of γ obtained using the scaling of the
entanglement energy ξ0 converge faster than those from the
von Neumann entropy, in alignment with the results presented
in [12] for the ν = 1/5 Laughlin state and the ν = 1/2 Moore-
Read state. We already pointed out, however, that in practice
both methods suffer from large finite size effects, limiting the
predictive power, especially for “complicated” states like the
ν = 3/5 Read-Rezayi state. Details on how the actual fit to
the data is performed have a large influence on the value of γ

one obtains. Therefore, the counting of the entanglement lev-
els as reported in the previous subsection is a better method to
obtain information about the topological state one considers.

To start the analysis, we display the von Neumann entropy
S as a function of L and cutoff Pmax = 7, 8, . . . , 12 in the
left panel of Fig. 9. The system size is Ne = 120, NA = 99,
and there are no charges on the boundary. In the right panel
of Fig. 9, we plot the entanglement levels ξ0, for the same
parameters, and with 60 electrons in subsystem A. The fig-
ure shows that for L not too large, the data is converged and
depends linearly on L. It is also clear that for larger values of
L, the data is not yet converged, and higher values of Pmax are
necessary for convergence. Finally, we remark that the data for
ξ0 converges faster than the data for S, for the same value of L.

To obtain an estimate of the topological entanglement
entropy from the data plotted in Fig. 9, we perform linear,
windowed fits to the data, varying the number of points used,
namely 2, 3, 4, and 5 points. In this way, we obtain several
L-dependent estimates of γ , which we display in Fig. 10. We
have connected the plot markers by straight lines as a guide
for the eye.

We observe that the number of points used for the win-
dowed fits does not influence the obtained values for γ

substantially in the relevant range of L we are interested in,
that is, 15 � L � 25. For smaller values of L, we observe
oscillations, which are present as a result of the rather small
circumferences. For L large, the downturns in the estimates of
γ are because of the fact that the data is not yet converged for
these values of L. The horizontal black line is the expected
value for γ , which is given by γ = 1

2 ln(5 + 5φ2) ≈ 1.448,

where φ = 1+√
5

2 is the golden ratio.
The behavior we observe in Fig. 10 is similar to the one

observed in [12], where the Laughlin and Moore-Read states
were considered. The obtained values for γ oscillate around
the expected value for γ . In the case of the k = 3 Read-
Rezayi state we study here, the oscillations have not damped
out before we reach the regime in L where the results start
to substantially deviate from the expected value, for a lack
of convergence in the data. This is to be expected, because
obtaining the topological entanglement entropy is notoriously
difficult, and the k = 3 Read-Rezayi states are substantially
more complicated to simulate than the Laughlin and Moore-
Read states are. Even though it is clear that the data presented
in Fig. 10 could not have been used to predict the value of γ

if we had not known it beforehand, the data is still consistent
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FIG. 10. Estimates of γ , as obtained from windowed fits using 2, 3, 4, and 5 points. The values in the left panel are based on the von
Neumann entropy S, and in the right panel, the “entanglement energy” ξ0 has been used. The black lines at γ ≈ 1.448 show the expected
value.

with the expected value of γ . Finally, we would like to point
out that using the entanglement level ξ0 to obtain γ is less
hampered by convergence issues in comparison to using the
von Neumann entropy. This is also in line with the results
presented in [12].

Finally, we present data for the case where there effectively
resides a non-Abelian quasihole in subsystem A in Figs. 11
and 12.

We use the entanglement level ξ0, for the system with
Ne = 120 electrons and boundary charge (3,0,2) (correspond-
ing to a non-Abelian charge ε). In Fig. 11, we consider the
case with 60 electrons in subsystem A, which means that
there is an overall non-Abelian charge ε in subsystem A. In
Fig. 12, we consider the case with 59 electrons in subsystem
A, which means that there is an overall non-Abelian charge
σ1 in subsystem A instead. In both cases, the expected value
for γ is modified [45], and is given by γ = ln(D/dσ1 ), where
dσ1 = dε = φ is the quantum dimension associated with the
non-Abelian quasihole. Thus the expected value of γ reads
γ = 1

2 ln(5 + 5φ2) − ln(φ) ≈ 0.966.
Concentrating on the case with 59 electrons in subsys-

tem A (corresponding to an ε charge in subsystem A), we

FIG. 11. Estimates of γ , as obtained from windowed fits using 2,
3, 4, and 5 points, for the ε sector. The black line at γ ≈ 0.966 shows
the expected value.

observe that the estimated value of γ behaves somewhat
differently compared to the cases studied above. Again,
there are oscillations at low values of L. However, we
do not observe the characteristic “downturn” which above
was because of the data not being converged. Note that
we do not claim that the data is converged in this case;
most likely the curves change substantially for L � 25 upon
increasing Pmax.

Finally, we consider the case with a σ1 charge in subsystem
A, as plotted in Fig. 12. Here, the behaviour is similar to that
in Fig. 10 for the sector 1, with one important difference.
The data for the σ1 sector seems to suffer much less from
convergence issues for the larger values of L (note that the
scale differs between the plots: the one for the 1 sector is twice
as large). We currently do not know why the σ1 sector gives
better results than the 1 sector.

From the data presented in this subsection, it is clear that
we could not have used the estimates of the topological en-
tropy γ to fix the type of topological order if we had not
known it from the beginning. On the other hand, the data

FIG. 12. Estimates of γ , as obtained from windowed fits using
2, 3, 4, and 5 points, for the σ1 sector. The black line at γ ≈ 0.966
shows the expected value.
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FIG. 13. Comparison between the line integral method (64) and the double integral method (65) for the charge, and between the line
integral (73) and the double integral (74) for the spin. All results have been computed for the (σ1, 1/5) quasihole. The circumference L = 20
throughout. The dotted lines show the expected values.

presented is consistent with the topological order of the k = 3,
M = 1 Read-Rezayi state.

XIV. DEPENDENCE OF OBSERVABLES
ON CIRCUMFERENCE, CUTOFF,

AND INTEGRATION METHOD

As is apparent from the charge computations, the MPS
computation is very accurate for finding density profiles
for quasiholes. The main sources of error have to do with
finite-circumference effects of the MPS cylinder. Firstly, the
circumference L should not be too large, in order to allow
for faster decay of less important terms through the time
evolution factor (58). On the other hand, having too small a
value of L makes the quasihole interfere with itself around the
cylinder. This self-interference causes errors when calculating
the charge and spin of the quasihole, using Eqs. (65) and (64)
and Eqs. (74) and (73).

Thus, there is an optimum value of L, which differs
between different quasiholes simply because some are (some-
what) larger than others: compare, e.g., the (ψ2, 4/5) and
(1, 3/5) profiles in Fig. 1.

Increasing the cutoff Pmax generically leads to an increase
in the numerical accuracy. Although the obtained spin values
for some combinations of quasihole and cylinder circumfer-
ence L [e.g., the (ε, 3

5 ) quasihole for L = 24 in Fig. 6] initially
diverge from the expected spin value upon increasing Pmax,
all quasihole spins eventually converge towards the expected
value for high enough Pmax. The rate of convergence depends

on the circumference, although not in the same manner for
all quasiholes. Typically, convergence is faster for a smaller
circumference: see e.g., Fig. 6 and the data for the (ψ2,

4
5 )

quasihole with L = 20 compared to L = 22, or the same
quasihole with L = 22 compared to L = 24, as expected.

The rate of convergence does not depend linearly on the
circumference L, however. As can be seen clearly in Fig. 6
for the (ψ1,

2
5 ), (ε, 3

5 ), and (ψ2,
4
5 ) quasiholes, it sometimes

occurs that the difference between spin values for L = 20
and L = 22 for high Pmax is much smaller than that between
L = 22 and L = 24, even though this is not the case for
all quasihole types. Although we do not have a complete
explanation for this phenomenon, we think this behavior is
related to the somewhat irregular behavior of the lowest lying
entanglement levels as described in the previous section.

To illustrate the effect of the chosen integration method, we
give an example where the charges and spins are computed us-
ing the two different methods. First, there is the method where
rotational symmetry of the system is assumed for all rmax and
the integration is carried out using a line integral [Eq. (64)
for the charge and Eq. (73) for the spin]. Secondly, there is
the method where the symmetry assumption is only invoked
once the integration region reaches around the cylinder, which
occurs at rmax = L/2 [Eq. (65) for the charge and Eq. (74) for
the spin]. The results for the (σ1, 1/5) quasihole are plotted in
Fig. 13. We see that the line integral scheme works better than
the double integral for the spin, since self-interference around
the finite-circumference cylinder means that the quasihole
is not perfectly rotationally symmetric. By integrating along
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the line r = τ (or r = −τ ), we avoid the distortions in the
x direction, which affect the spin through the r2 weight of
the integrand, unlike if we use the double integral (74). The
charges, meanwhile, involve no such higher moment, and are
therefore more accurately computed using the double integral
in Eq. (65) that takes into consideration the entire integration
region, even the charge on the backside of the cylinder. In this
case, the line integral Eq. (64) gives a lower accuracy since
the charge density is distorted: the (τ, x) = (±r, 0) directions
are not representative for the charge distribution in all direc-
tions around the quasihole. Thus, the double integral method
performs better for the charge, as can be seen in Fig. 13.

XV. DISCUSSION AND CONCLUSIONS

We have presented an MPS-based scheme for computing
observables in the k = 3 Read-Rezayi state. The observables
we have focused on are the quasihole density profiles, charges,
and spins, as well as the entanglement spectrum. The quasi-
hole spins are of particular interest for two reasons. First of
all, they are inherently interesting, and further emphasize the
particle-like properties of Read-Rezayi quasiholes. Secondly,
the results agree well with the predictions from the SSR of
Ref. [32], under the assumption that the wave function has
zero Berry phase and all its statistics information is contained
in the monodromy. Therefore, we conclude that the statement
“holonomy equals monodromy” holds even for the k = 3
Read-Rezayi state, which supports the conclusions drawn
in [15]. Interestingly, our method does not require explicit
numerical braiding of quasiholes to be performed, but relies
solely on the spin-statistics theorem and the computed values
of the spins, and is thus comparatively simple. Since the
spins are local quantities, we may infer the nonlocal braiding
behavior and Berry phase from local information, i.e., from
the quasihole spins. This is not just surprising, but also prac-
tically useful since it makes drawing conclusions about Berry
phases possible with lighter numerics than previously used,
because there is no need to explicitly consider multi-anyon
configurations. Therefore, our technique may render Berry
phase computations for more complicated states, such as the
Read-Rezayi states at larger values of k, more feasible in the
future.

The relevance of the density profiles, charges, and en-
tanglement spectra is also considerable. The density profiles
describe the Read-Rezayi quasiholes in a way that is not
readily apparent from the wave functions alone. The charges
and entanglement spectra further characterize the properties
of the Read-Rezayi state and its quasiholes, and can also be
used to assess the MPS technique introduced in the present
work. Since the charge values can be read off from the CFT
description, the charge computation can be used to evaluate
the self-consistency of the numerics. The excellent accuracy
with which the charges have been computed (see Fig. 4)
is therefore a reassurance that our method is reliable. The
entanglement spectra, in turn, can be used to verify that our
free boson representation indeed captures the Z3 structure of
the k = 3 Read-Rezayi state, just like the more manifestly
Z3-related representation of [15–17].

An advantage of the technique introduced in the present
work is that it relies purely on free boson fields. The sim-

plicity of the free boson CFT means that the analytical input
to the MPS can be computed with relative ease, making it
arguably more “beginner-friendly” and approachable than the
Z3 description that can be found in the literature (again, see
Refs. [15–17]). Moreover, many interesting FQH states can be
written in terms of several free chiral boson fields. Our results
show that FQH states that can be written in terms of three free
chiral bosons can be successfully analysed using MPS.

Although not explicitly shown in this paper, similar tech-
niques have been used by the authors for the Moore-Read
(i.e., k = 2 Read-Rezayi) state, with two instead of three free
boson fields. Even if the k = 3 state is more involved, and
requires an additional field, the two states can be handled
on essentially the same footing, with no major conceptual
differences. In principle, our method should be straightfor-
wardly generalisable to higher Read-Rezayi states (i.e., to
k � 4) by introducing additional boson fields. The main ob-
stacle in actually performing such calculations is that the size
of the auxiliary Hilbert space would become so large that
meaningful calculations for, say, the quasihole spins would
become impossible, without further optimization of the code
employed.
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APPENDIX: THE TIME EVOLUTION FACTOR

In this Appendix, we demonstrate that the exponential
Eq. (55), repeated here for convenience,

U = exp

(
− α

Nφ+1∑
j=0

[
Q2

0, j

2q0
+ 3Q0, j

2q0
+ Q2

1, j

2q1
+ Q2

2, j

2q2

+ (P0 + P1 + P2) j

])
, (A1)

together with the additional contributions arising from the
presence of a quasihole, equals the expression (58). We in-
troduced the parameter α = 2πδτ

L . The quantum numbers are
denoted as Qi, j and Pi, j , where i = 0, 1, 2 indicates the boson
field, while j = 0, 1, . . . , Nφ + 1 denotes the auxiliary Hilbert
space. There are Nφ + 1 orbitals, indexed by 0, 1, . . . , Nφ ,
with orbital occupation numbers ma, j , mb, j , and mc, j taking
values in {0, 1} and which satisfy ma, j + mb, j + mc, j ∈ {0, 1}
and

∑Nφ

j=0 ma, j + mb, j + mc, j = Ne. The jth term in Eq. (A1)
comes from the auxiliary Hilbert space between orbitals j − 1
and j. For convenience, we write U = eA, and focus on A.
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To begin with, we note that the matrix elements Eqs. (49)–
(51) imply that the charge quantum numbers at the auxiliary
Hilbert space with index j can be written as

Q0, j = (3M + 2)
j−1∑
k=0

(ma,k + mb,k + mc,k ) − 3 j,

Q1, j = 2
j−1∑
k=0

(2ma,k − mb,k − mc,k ),

Q2, j = 2
j−1∑
k=0

(mb,k − mc,k ). (A2)

We recall that we have set Qi,0 = 0 for i = 0, 1, 2. As for the
momenta, the matrix elements Eqs. (49)–(51) and the charge
expressions Eq. (A2) lead to

(P0 + P1 + P2) j

= −3M + 2

q0

j−1∑
k=0

(ma,k + mb,k + mc,k )

×
[

(3M + 2)
k−1∑
l=0

(ma,l + mb,l + mc,l ) − 3k

]

− 4

q1

j−1∑
k=0

k−1∑
l=0

(2ma,k − mb,k − mc,k )(2ma,l − mb,l − mc,l )

− 4

q2

j−1∑
k=0

k−1∑
l=0

(mb,k − mc,k )(mb,l − mc,l ). (A3)

This can in turn can be rewritten using the results (A2) for
the Qi, j quantum numbers and that there may at most be one
electron per orbital, i.e., ma, j, mb, j, mc, j ∈ {0, 1} and ma, j +
mb, j + mc, j ∈ {0, 1}, as follows:

(P0 + P1 + P2) j =
j−1∑
k=0

k(ma,k + mb,k + mc,k )

− Q2
0, j

2q0
+ Q0, j

q0

(
3M + 6

2
− 3 j

)

− Q2
1, j

2q1
− Q2

2, j

2q2
− 9 j2

2q0
+ (q0 + 12) j

2q0
.

(A4)

Here, we have used that q0 = 3(3M + 2), q1 = 12, q2 = 4 for
minor simplifications. By inserting Eq. (A4) in Eq. (A1) and
canceling terms, we find that A is given by

A � −α

Nφ+1∑
j=1

j−1∑
k=0

k(ma,k + mb,k + mc,k )

+ α

2q0

Nφ+1∑
j=1

(6 j − 3M − 9)Q0, j, (A5)

where we recall that � means “up to terms that do not depend
on the precise distribution of electrons over the orbitals”. We
may express the above in terms of the occupation numbers

ma, j, mb, j, mc, j by inserting Q0, j from Eq. (A2). By making
use of the relations (where we set n = Nφ + 1)

n∑
j=1

j−1∑
k=0

(ma,k + mb,k + mc,k )

=
Nφ∑
j=0

(n − j)(ma, j + mb, j + mc, j ), (A6)

n∑
j=1

j−1∑
k=0

j(ma,k + mb,k + mc,k )

= 1

2

Nφ∑
j=0

(n(n + 1) − j( j + 1))(ma, j + mb, j + mc, j ),

(A7)
n∑

j=1

j−1∑
k=0

k(ma,k + mb,k + mc,k )

=
Nφ∑
j=0

j(n − j)(ma, j + mb, j + mc, j ), (A8)

the expression (A5) becomes

A � α

Nφ∑
j=0

[
j2

2
(ma, j + mb, j + mc, j )

+ j

(
M + 2

2
− n

)
(ma, j + mb, j + mc, j )

]
. (A9)

We note that in the absence of quasiholes, the expression∑Nφ

j=0 j(ma, j + mb, j + mc, j ) does not depend on how the elec-
trons are distributed over the orbitals. This is not true in
the presence of quasiholes. We therefore need to keep this
term, because it will be modified below when we consider
quasiholes.

With a single quasihole inserted, the exponent A changes.
In the main text, we already stated that in the presence of
a single quasihole, the wave function can be written as in
Eq. (56)

Ne∑
s=0

wsPs({z j}). (A10)

We want to obtain an expression for s in terms of the orbital
occupation numbers. By counting powers of the electron co-
ordinates, one sees that the total degree of the wave functions
Eqs. (6)–(11) in the electron coordinates is MNe(Ne − 1)/2 +
Ne(Ne − 3)/2 + γ Ne/2 + δ where γ is directly proportional
to the quasihole charge and δ also depends on the type of
quasihole, as given in Table V (although the specific values of
γ and δ are not necessary for the current argument). The total
degree also equals

∑Nφ

j=0 j(ma, j + mb, j + mc, j ). Therefore, we
obtain that

s � −
Nφ∑
j=0

j(ma, j + mb, j + mc, j ). (A11)
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TABLE V. The values of the parameters γ and δ for the various
quasiholes.

Quasihole γ δ

(σ1, 1/5) 1 0
(σ2, 2/5) 2 0
(ψ1, 2/5) 2 −2/3
(1, 3/5) 3 0
(ε, 3/5) 3 −1/3
(ψ2, 4/5) 4 −2/3

We now assume that a quasihole is inserted between or-
bitals l̃ − 1 and l̃ . The quasihole may be of either type a, b
or c. For the auxiliary Hilbert spaces before the quasihole,
i.e., the terms with indices j = 1, 2, . . . , l̃ in Eq. (A1), the
contribution to A is just as before

−α

l̃∑
j=0

[
Q2

0, j

2q0
+ 3Q0, j

2q0
+ Q2

1, j

2q1
+ Q2

2, j

2q2
+ (P0 + P1 + P2) j

]
.

(A12)

If the quasihole is of type a, the quasihole operator matrix ele-
ments (52) make the contributions after the quasihole (orbital
index l̃, l̃ + 1, . . . , Nφ and auxiliary space index l̃ + 1, l̃ +
2, . . . , Nφ + 1)

− α

Nφ+1∑
j=l̃+1

[
(Q0, j + 1)2

2q0
+ 3(Q0, j + 1)

2q0
+ (Q1, j + 2)2

2q1
+ Q2

2, j

2q2

+ P0, j + P1, j + P2, j + �(P0, j + P1, j + P2, j )

]
, (A13)

since the charge of the quasihole changes the charges in all
subsequent Hilbert spaces by a constant shift. Above, the
quantum numbers Qi, j, Pi, j are the values without quasiholes,
and the charge deviations are explicitly written out. The
�(P0, j + P1, j + P2, j ) term is a deviation from what P0, j +
P1, j + P2, j would have been without quasiholes. A way to
understand the appearance of the extra charge terms and
the term �(P0, j + P1, j + P2, j ) is as follows: the charges are
shifted because the quasihole carries Q0, Q1 and (in principle,
although not for the quasihole of type a we are considering
here) Q2 charge. The momenta depend on the charges through
Eq. (A4), and shifting the charges therefore also typically
shifts the sum of the momenta.

To actually compute the momentum shift, we note that
a quasihole operator of type a has, owing to Eq. (52), ma-

trix elements proportional to e− 2π ixα
L ( Q0+3l̃

q0
+ 2Q1

q1
+(P0+P1 )′−(P0+P1 )),

where xα is the coordinate of the quasihole along the cylinder
circumference, l̃ is an orbital index, and primed (unprimed)
momenta are the values immediately after (before) the quasi-
hole insertion. However, from Eq. (56), we know that the
quasihole operator should give a factor ws on the plane. The
latter can be mapped to the cylinder using Eq. (28), where
the xα dependence is contained in a factor of e−i 2π

L xαs. Setting
the two exponentials proportional to one another implies that
the sum of the momenta immediately after the a-type quasi-

hole operator, and by the matrix elements (49)–(51) also the
sum of the momenta on all subsequent auxiliary spaces, is
shifted by an amount

�(P0 + P1 + P2) j = − Q0, j

q0
− 2Q1, j

q1
+ s, (A14)

up to an additive constant that does not depend on the
quantum numbers or s. Here, we have used the factor of
δP′

2,P2 in Eq. (52) to conclude that the above holds for the
total shift �(P0 + P1 + P2)l̃ = (P0 + P1 + P2)′

l̃
− (P0 + P1 +

P2)l̃ immediately after the quasihole and not just for (P0 +
P1)′

l̃
− (P0 + P1)l̃ . Inserting Eq. (A14) into Eq. (A13) and

omitting unimportant overall constants then gives the follow-
ing contribution to A:

− α

Nφ+1∑
j=l̃+1

[
Q2

0, j

2q0
+ 3Q0, j

2q0
+ Q2

1, j

2q1
+ Q2

2, j

2q2

+ P0, j + P1, j + P2, j + s

]
. (A15)

If the quasihole is instead of type b, the contribution after the
quasihole is, via Eq. (53),

− α

Nφ+1∑
j=l̃+1

[
(Q0, j + 1)2

2q0
+ 3(Q0, j + 1)

2q0

+ (Q1, j − 1)2

2q1
+ (Q2, j + 1)2

2q2

+ P0, j + P1, j + P2, j + �(P0, j + P1, j + P2, j )

]
, (A16)

but here, the momentum shift instead becomes

�(P0 + P1 + P2) j = − Q0, j

q0
+ Q1, j

q1
− Q2, j

q2
+ s, (A17)

up to unimportant constants. Thus, we again arrive at
Eq. (A15). Finally, for type c we have, from Eq. (54),

− α

Nφ+1∑
j=l̃+1

[
(Q0, j + 1)2

2q0
+ 3(Q0, j + 1)

2q0

+ (Q1, j − 1)2

2q1
+ (Q2, j − 1)2

2q2

+ P0, j + P1, j + P2, j + �(P0, j + P1, j + P2, j )

]
. (A18)

In this final case, the sum of the momenta changes as

�(P0 + P1 + P2) j = − Q0, j

q0
+ Q1, j

q1
+ Q2, j

q2
+ s, (A19)

which again implies Eq. (A15). All in all, we regardless of the
quasihole operator type find that, up to unimportant constants,
the terms in the exponent A from orbitals after the quasihole
are given by Eq. (A15), where the shift parameter s comes
from the exponent of the quasihole coordinate on the plane
and is independent of j; cf. Eq. (57) and the surrounding dis-
cussion. Before moving on to the final parts of our derivation,
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we note that the coefficients in Eqs. (A14), (A17), and (A19)
can be read off from the quasihole operators in Eq. (26) as
long as one remembers to change the signs.

The final contribution to the exponent in Eq. (A1) comes
from the time evolution factors of Eqs. (52)–(54). This part
is the result of the quasihole itself, rather than its influence on
the subsequent auxiliary Hilbert spaces. As before, we assume
that the quasihole operator is inserted between orbitals l̃ − 1
and l̃ , with τ = τα . Then, the quasihole time evolution factors
give an extra contribution [cf. the matrix elements Eqs. (52)–
(54) and surrounding discussion]

− 2π

L
(l̃δτ − τα )

[
(Q′

0)2 − (Q0)2

2q0
+ 3(Q′

0 − Q0)

2q0

+ (Q′
1)2 − (Q1)2

2q1
+ (Q′

2)2 − (Q2)2

2q2

+ P′
0 + P′

1 + P′
2 − (P0 + P1 + P2)

]
, (A20)

where the “primed” values are those immediately after the
quasihole, and the “unprimed” are those immediately be-
fore it. To simplify the above, we note that the parameter
s � −∑Nφ

j=0 j(ma, j + mb, j + mc, j ) is introduced as the power
of the quasihole coordinate w in the wave function; see
Eq. (56). If the quasihole is of type a, the matrix ele-
ment (52) just as before implies that P′

0 + P′
1 + P′

2 − (P0 +
P1 + P2) = �(P0 + P1 + P2) is given by Eq. (A14), up to
unimportant constants. With the charges being affected as

Q′
0 = Q0 + 1, Q′

1 = Q1 + 2, Q′
2 = Q2, Eq. (A20) becomes

− 2π

L
(l̃δτ − τα )

[
(Q0 + 1)2 − (Q0)2

2q0
+ 3(Q0 + 1 − Q0)

2q0

+ (Q1+ 2)2− (Q1)2

2q1
+ (Q2)2− (Q2)2

2q2
+ s− Q0

q0
− 2Q1

q1

]

� −2π

L
(l̃δτ − τα )s, (A21)

where the step leading to the last line involves omitting
unimportant state-independent constants. One can show in a
completely analogous manner that if the quasihole operator is
of type b or c, the result is the same.

Adding up all the contributions from Eqs. (A12), (A15),
and (A21), and using the previous result (A9), that s �
−∑Nφ

j=0 j(ma, j + mb, j + mc, j ) from Eq. (57), and that the pa-
rameter α = 2πδτ/L, we arrive at the following expression
for U :

U � exp

⎧⎨
⎩2πδτ

L

Nφ∑
j=0

[
j2

2
(ma, j + mb, j + mc, j )

]

+ 2π

L

(
τα − M + 2

2
δτ

)
s

⎫⎬
⎭, (A22)

up to unimportant constants. We note that the contributions
proportional to sn cancel each other. The same is true for
the contributions proportional to sl̃ . Thus, we have derived
Eq. (58).
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