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Spin fractionalization at the edge of quantum Hall fluids induced by bulk quasiparticles
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We define a measurable spin for the edge of a lowest Landau level and incompressible fractional quantum
Hall state in the presence of an Abelian or non-Abelian bulk quasiparticle. We show that this quantity takes
a fractional value inherited from the fractional spin of the bulk quasiparticle. We present a geometric picture
that does not rely on global symmetries of the wave function, but is able to treat quasiparticles and edges with
different shapes. We study finite-size many-body wave functions on the cylinder with circular quasiparticles and
straight edges. Our results are supported by matrix-product-state calculations for the Laughlin and the k = 3

Read-Rezayi states.
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I. INTRODUCTION

Fractionalization, namely the fact that the emergent quasi-
particles of a many-body setup cannot be interpreted as simple
combinations of its elementary constituents, plays a key
role in topological condensed-matter physics and constitutes
one of its most intriguing phenomenology. Solitons in one-
dimensional polyacetylene molecules [1], spin-1/2 boundary
modes in one-dimensional spin-1 chains [2], and zero-energy
Majorana modes [3], to mention just a few, are all character-
ized by some form of fractionalization.

Another celebrated form of fractionalization is that of the
bulk quasiparticles of the fractional quantum Hall (FQH)
effect [4]: they fractionalize charge [5], statistics [6,7], and
spin [8—13]. Remarkably, the bulk-boundary correspondence
dictates a close relation between the fractional properties of
the quasiparticles and those of the edge modes; in the case
of charge and statistics, the latter have been revealed by cel-
ebrated experiments [14-22]. Whereas other fractionalization
properties have prompted research based on effective bound-
ary field theories [23-25] or entanglement structures [26,27],
a definition of an edge spin based solely on measurable edge
properties of many-body wave functions is lacking.

In this paper, we study the spin fractionalization be-
tween one bulk quasiparticle and the edge. Whereas the
fractionalization of charge between quasiparticles and edge is
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ultimately protected by the fundamental charge-conservation
law and by the fact that the bulk of an incompressible FQH
state enjoys the screening hypothesis, a similarly simple anal-
ysis cannot be performed for spin. In fact, the only definition
of an edge spin prior to this work was given in Ref. [12] for the
nongeneric case of a circularly symmetric edge. Fractionaliza-
tion in the FQH effect is ultimately a topological property and
an example of the celebrated bulk-boundary correspondence;
it should not depend on the fine-tuned geometric details of the
boundary and, in particular, on whether it has a circular shape.

In order to prove the aforementioned spin fractionalization
in a generic setting, we define a measurable edge spin for
incompressible FQH fluids, generalizing that for bulk quasi-
particles [9,11]. We focus on the cylinder geometry, where
the straight edge and the circular quasiparticle do not have
the same shape. This forces us to develop a geometric pic-
ture of the boundary and to highlight the genuine topological
nature of spin fractionalization without relying on global sym-
metries; the resulting notion of spin is disconnected from
the intuitive idea of circular rotation. We present matrix-
product-state (MPS) calculations [28] for the Laughlin [5]
and the Read-Rezayi (RR) k = 3 [29] states that are detailed
in an accompanying paper [30] (see Refs. [31-35] for re-
lated approaches). We consider both Abelian and non-Abelian
quasiholes and characterize their fractional spin as well as that
of the edge; the edge spins satisfy a spin-statistics relation
reminiscent of that of bulk quasiparticles [12,13].

The paper is organized as follows. In Sec. II, we introduce
the definition of the edge spin for a cylinder and test this
definition in the case of a Laughlin state. We introduce a
geometric definition of the spin, both of quasiparticles and of
the edge, in Sec. III. The case of Abelian quasiparticles can be
studied analytically and is discussed in Sec. IV. Section V is
devoted to the study of the edge spin induced by non-Abelian
bulk quasiparticles; we do that by considering the case of
the RR wave function. Finally, our conclusions and a few
perspectives are discussed in Sec. VI. The article is concluded
with two appendices.

Published by the American Physical Society
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Throughout the paper, the plane is pierced by a uniform
and orthogonal magnetic field and the magnetic length is set
to unity, £z = 1. We only consider incompressible FQH states
defined in the lowest Landau level (LLL) and the plane is
parametrized by the complex coordinate z = x + iy. We set
h=1.

II. THE EDGE SPIN FOR THE CYLINDRICAL GEOMETRY

In this section, we introduce the definition of the edge spin
in the specific case of a cylindrical geometry for a generic
incompressible FQH state and employ it to characterize how
the edge of a Laughlin state is modified by the presence of a
bulk quasihole.

We consider an incompressible LLL. FQH state at fill-
ing factor v on a finite cylinder with circumference L, and
described by the many-body wave function Wj; assuming
translational invariance of the confining potential along y, the
density profile py features two straight boundaries. When a
quasiparticle is inserted at , deep in the bulk and far from the
edges, the new quantum state W has a density profile p; that
features two edges that are shifted but still straight, even if the
bulk hosts a circular quasiparticle, since the quasiparticle is a
screened defect. The depletion density profile p = p; — po
can be split into two contributions,

3p = 3pgp.y + 8pe; (D

i.e., one for the quasiparticle and one for the edges.

We can numerically test these statements on the Laughlin
state on the cylinder, which is defined as follows. Since the
Landau-gauge wave functions on the cylinder for the LLL can
be written as ¢, ie™ 12 with z = x + iy, the Laughlin
wave function [5] at filling v can be generalized to the cylinder
geometry as [36]

Wy o [Jus = )" e S5 with p=eh. ()

i<j

By counting the lowest and highest power of ©%, one obtains
that the momentum of the lowest occupied orbital corresponds
to k, = 0, while that of the highest one is k;, = ZL—” %

A possible way of inserting p quasiholes at position 7 is
given by ¥, & l—[i(;ﬁ"’ — 1)? x Wy; close to n, the multi-
plicative factor is, to first order, o [];(z; — n)?, producing a
zero of order p in the wave function. The lowest occupied
orbital coincides again with k;, = 0. On the other hand, the
highest occupied one is now k, = ZL—” (% + p): this choice
corresponds to only shifting the right boundary, leaving the
left one unaltered even if the quasihole has been inserted. In
this paper, we always study the densest states in the presence
of quasiparticles and restrict ourselves to situations where
only the right boundary is modified by the quasiparticle in-
sertion, whereas the left edge is unmodified. This is not the
most general situation, but it is conceptually simple and allows
us to completely nail down the edge-quasiparticle interplay
in the absence of symmetries. This is the choice that is used
throughout the article.

The validity of the splitting in Eq. (1) is numerically
demonstrated in Figs. 1(a)—1(c) for a Laughlin state in the case
of one quasihole [5]. The calculation is performed using an

MPS representation of the wave functions [28,31,37]. Charge
has fractionalized between the boundary and the edge and it
is known, since the original paper by Laughlin [5], that g,, =
[ 8p4p,4d*z takes the value —v in units of the charge of the
elementary constituents of the FQH state. Since [ 8p d 27 =0,
it follows that

qe = / 8ped’z = v. ©)

Thanks to the splitting of §p, a quasiparticle spin

lz—nl?
Jop = f (T —1)8pgpnd*z 4)

can be defined in terms of the gauge-invariant generator of
rotations restricted to the LLL [8—11,13,38—44]. In practice, in
a finite-size numerical simulation, one needs to integrate over
a large region that includes the entire quasiparticle but does
not reach the edge. In Fig. 1(d), we show that for a sufficiently
large integration area, we obtain the correct value [11],

Jop = 3(1 = ). ®)

Apart from its clear intrinsic interest, introducing a quasipar-
ticle spin is useful because it satisfies a spin-statistics relation:
the nonlocal statistics properties of quasiparticles can be ob-
tained via their local spin [12,13].

Since topological phases are characterized by bulk-edge
correspondences, it is natural to investigate whether a suitable
edge observable inherits the fractional value of J,,. On the
cylinder with a straight edge of length L,, we define the
measurable edge spin in terms of § p,,

Ly = 2
Jo=— | (x—X)dp.d"z. (6)
21

The value of x sets a reference point, or “center” of the edge
(we discuss how to fix its location below), paralleling the role
of n in the calculation of the spin of quasiparticles J,,. We
will show that under appropriate conditions, J, takes fractional
values related to those of J,,,, and inherits from it the fact that
it satisfies a spin-statistics relation.

Before presenting the reasoning that leads to the definition
(6), which constitutes the first main result of our work, we
proceed to its numerical evaluation in the case of a quasihole
in the Laughlin state. In Fig. 1(e), we numerically evaluate
(6) by integrating over a large region comprising the entire
right boundary but not including the bulk quasihole; we get
Jo = —1/3, which is exactly the opposite of J,,. In Sec. IV,
we show that this value can be predicted analytically.

III. A GEOMETRIC DEFINITION OF THE SPIN

In this section, we propose a definition of the edge spin in
Eq. (6), from the viewpoint of the occupation numbers of the
orbitals of the LLL. We argue that this definition is amenable
to extensions to arbitrarily deformed boundaries. In order to
understand what we present in this section, it is crucial to keep
in mind that the LLL is a flat band, for which many bases of
orthonormal orbitals are possible; they are equally good for
the featureless bulk, but it is important to choose those that
have the appropriate shape for the quasiparticles or the edge.
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FIG. 1. A Laughlin state at v = 1/3 of N = 200 fermions on a cylinder with circumference L, = 22. Density profiles in units of v/2m:
(a) pp without quasiholes, (b) p; with one quasihole in the bulk, and (¢) §p = p; — po; the x axis is broken (see vertical dashed red lines)
to focus on the central part and on the edges. Spins: (d) The fractional spin of the quasihole is approached in the limit R > 1 of J,,(R) =
flz—n\éR( ‘Z’z"" — 1)8pq,,,,7d2z with n %(% — 1) =~ 85.4. The numerical curve of J,,(R) (solid red line) approaches a plateau that coincides
with the expected value J,, = 1/3 (dashed black line). (e) The fractional spin of the edge J, = —1/3 (dashed black line) is approached by

J(Xo) = 2 [dy ST dx(x — )8p, for X = Z

A. The quasiparticle spin

N~ 1714 for Xp < X

function of the orbital occupation numbers,

Consider a generic incompressible FQH state at filling v. A
In the presence of a circular quasiparticle, for instance, it is Jop = m(nfﬂ,, — n,(]O,)n). 8)
natural to consider circularly symmetric orbitals centered at =0 ' '

the quasiparticle position, 1. They are obtained by shifting
the symmetric-gauge LLL orbitals and take the form ¢, ,, ~

(z — n)y"e~=1/4 with m € N. Their density profile is circu-
lar, with average radius +/2m and center 7. We can associate a
fermionic second-quantized operator a!), to each of them and
define the orbital occupation numbers,

(N

for the states without quasiparticles, ¥, and with 1 quasi-
particle, W;. The operator should be fermionic or bosonic
depending on the statistics of the elementary constituents of
the FQH state; in this paper, we only deal with fermions.

As m is increased, the orbital ¢, ,,(z) explores regions that
are further away from the quasiparticle. For small m and n?/,
(@} g m)w, = 1), 8 this is the benefit of having chosen
circular orbitals that match the shape of the quasihole [45].
The values of nﬁ% and ”5;1;)11 are different due to the absence
or presence of the quasiparticle. For slightly larger values of
m, the orbitals extend in the bulk of the FQH state and the
occupation numbers n) and n), coincide; from general-
principle considerations, moreover, they are both equal to v.
In Appendix A, we show that the spin of the quasiparticle is a

This expression for the quasiparticle spin is inspired by the
dipole moment of the edge as studied in Ref. [46]. The cutoff
A, is introduced to focus only on the quasiparticle and avoid
the edge effects: it should extend up to the intermediate region
where the orbitals explore the bulk of the droplet.

For even larger values of m, the orbitals reach the edges of
the state and, due to the different edge properties of ¥, and
Wy, the occupation numbers will start differing again. How-
ever, differently from what happens close to the quasiparticle,
(aj]’man,m/)\pi # 0 for m # m’: these symmetric-gauge orbitals
are not a convenient choice to define the spin of the edge on
the cylinder.

B. The edge spin

The natural generalization of J,, to the boundary of the
cylinder requires taking the LLL orbitals that mimic the shape
of the boundary: in this case, these are the shifted Landau-
gauge orbitals, ¢5 ,(z) ~ ek e=(C—5=/2 ith g € Z, ky =
2mq/Ly, and x, =k, (because {p =1); X € 2rZ/L, can be
chosen arbitrarily and the orbital is centered around X + x,,.

By introducing the second-quantized operators a)(-:q) asso-
ciated to these orbitals, the correlation matrix close to the

edge is diagonal, (a; 4%%.q' )w; X 8,4 Defining the occupation
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numbers

ngy, = (] axq)v, ©)
and taking X close to the boundary, we propose the following
spin for the edge, which is one of our main results:

oo

Jo= 3 alny —niy). 10)
g=—1N7y4
Close to the edge, n(o) #* il ;, but for large values of |g|, they
both approach the same values (namely, O for g > 1 outside
of the droplet and v for ¢ >~ — A, in the bulk). The cutoff A,
enforces the fact that the orbitals considered in the sum only
explore the edge and the neighboring bulk region, without
extending to that part of the bulk where the quasiparticle is
located.
The formulas for J, in Egs. (6) and (10) coincide whenever
X € 2nZ/Ly; the proof is reported below. Whereas Eq. (10)
is particularly useful in the context of MPS calculations,
Eq. (6) can also be evaluated using Monte Carlo sampling
for simple wave functions and can, in principle, be measured
in experiments accessing the density profile of the edge. By
looking at both expressions, we notice that J, has a nontrivial
dependence on the parameter X. Since the boundary charge
= [ 8p.d*zis equal to Zq,_,\ (n(” S?()]), a result that is
easﬂy proved using the reasoning detalled in Appendix B, it
contributes a term — —qex to the spin J,.
We conclude the section by stressing that on the cylinder,
a bulk quasiparticle and the edge have a different symmetry.
Nevertheless, our approach allows us to define a spin for both,
disconnecting the notion of spin from that of circular rotation.
As we show below, this leads to the fractionalization of the
spin between the quasiparticle and the edge.

C. Proof of the equality of Eqgs. (6) and (10)

We consider a straight boundary parallel to the y direc-
tion and the orthonormal set of straight LLL orbitals, ¢5 , =

L ikgy ,—(x—xg—%)2/2 2
/mel Ve~ with k, = L—’Iq, xg = kg, and g € Z.
Without loss of generality, we consider the arbitrary value of

X to be restricted to the set 27 Z/L,, chosen in a way to be
close to the edge. One can easily show that

L *
ﬁ / b5y X Prgdxdy = q 8,4 (11)

This equality is stating the fact that the wave functions ¢x ,
are known to be eigenfunctions of the generator of magnetic
translations along y, dubbed T;, with eigenvalue el%q: when
projected to the LLL, the multiplicative operator x coincides
with the LLL projection of T;.

Equation (11) implies the following equality for a generic
LLL quantum state W:

Zq al az e = —;T’/xpwdxdy, (12)

where py = Zq 7 o 795, q( 5. Os ) is the system’s density.
The ag ") are the second- -quantization operators related to the

orbitals ¢5 , introduced above. Using Eq. (12), the equality
between the expressions (6) and (10) can be shown.

IV. EDGE SPIN IN THE PRESENCE OF ABELIAN
LAUGHLIN QUASTHOLES

In this section, we show that it is possible to analytically
compute the edge spin induced by the simplest possible bulk
quasiparticles, which are the Abelian Laughlin quasiholes, for
a generic incompressible FQH state.

A. Charge fractionalization induced by the Abelian
Laughlin quasihole

We present the Laughlin quasiholes in the conventional
disk notation, even if our numerical study is performed on the
cylinder; the local quasiparticle properties are the same. They
are obtained by inserting an integer number p of magnetic
fluxes at position n through the ground-state wave function W
of a generic incompressible FQH state at filling v, obtaining

Wy, o [ [ = n)” x . (13)

Their charges are q;‘l’,) = —pv. By charge conservation, we

have that they induce an excess of charge at the edge,
that is,

q" = +pv. (14)

B. Spin of the Abelian Laughlin quasihole for a generic
incompressible state

We now focus on the spin; before focusing on the edge,
we explicitly compute the spin of the Abelian quasihole itself.
The quasiparticle spin can be worked out exploiting circular
symmetry. When W is the Laughlin state, it reads [11,13]

(P — _1g),,2
P = =3wp* = p). (15)
The formula can be generalized to an arbitrary state Wy, giving
1 2 S
(») — P »)
Jop = _Z(qqi) - qu{;’ (16)

where S is the Wen-Zee shift [47]; indeed, for a Laughlin
state, S = % The proof is presented here below; the uninter-
ested reader can skip it.

1. Proof of Eq. (16)

Here we prove Eq. (16) and show the necessity of introduc-
ing the Wen-Zee shift S for a circularly symmetric Laughlin
quasihole by generalizing the analysis carried out in Ref. [11].

The total angular momentum of a circularly symmetric
FQH ground state with N particles can be written as Ly =
%N (N/v — S) [47-49]. As discussed in Appendix A, the an-
gular momentum can also be computed by integrating the
density profile, py(r), multiplied by the multiplicative factor

r2/2 — 1,
r2
Ly = /pN(r)(? - 1>dr. (17)

When a Laughlin quasihole of charge q(p ) = —pv is in-
serted at n = 0, the angular momentum of the state increases
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to Ly = Ly + pN. Crucially, when this quasihole is inserted,
the edge of the system is pushed out rigidly: the density profile
Py (1) of the electron gas with the quasihole can be written
as the sum of (i) the density profile of an unperturbed state
with some extra (fractional) charge N + vp and (ii) the density
profile of the quasihole. That is, oy (r) = Pn4vp(r) + pgp(T).
Analogously to the previous case, we can then compute the
angular momentum of the state with the quasihole by comput-
ing the integral of pj, (r) once multiplied by (r*/2 = 1), and
match it with the independently known value L} ; we obtain
Ly = Lyt + J3). Solving for J3 gives exactly Eq. (16).

C. The edge spin

The associated edge spin JP can also be worked out, as
we now discuss.
Proposition 1. For an Abelian Laughlin quasihole in the

Laughlin state of charge qff,’,) = —vp, the edge spin reads

2
vpo vp Ly

JP) = _ — — ,

e I I T

and when the Abelian Laughlin quasihole is placed in a

generic incompressible FQH state, it reads

(18a)

1 2 q([’) L
JP) = —(gmy 2 g — 28 18b

= -(0) - 5 o (o) (18b)
In both expressions, X is the reference coordinate, or “center”
of the edge, that appears in Eq. (6). On the other hand, Xy €
27w Z /L, is the only coordinate value that satisfies the equation

oo

Z (”)(’cg)q

q=*Aq

V8,-0) =0, (18¢)

with 8,0 = 1 for ¢ < 0, and 0 otherwise. The coefficients
vd,<0, originally introduced in Ref. [46], define a box back-
ground that needs to be correctly aligned with the occupation
numbers nf?g?q via a proper choice of Xy so that the edge is
chargeless with respect to this background [50]. The proof
of this proposition and the associated subtleties are discussed
below in Sec. IV D that concludes the section. That section can
be skipped by the uninterested reader; here we rather focus on
the physical content of the proposition.

First of all, there is a unique value X = Xy that only depends

on edge properties such that JP) takes the fractional value
JP = svpp— 1) (192)

when W, is a Laughlin state, whereas in the most generic
situation of an incompressible FQH state, the value reads

1 1
(n) — (p)
1 =5 ) - 2

Even if these fractions differ from that of the bulk Abelian
quasihole, given in Eqgs. (15) and (16), the part proportional to
p? is exactly opposite and it is the relevant one for the statistics
fractionalization of the quasiparticles [12,51,52]. This moti-
vates us to speak of a phenomenon of spin fractionalization
between the quasiparticle and the edge, and constitutes the
second main result of this paper.

—q. (19b)

In the plots presented in Fig. 1 for the Laughlin state, we make

the choice
b (x — Xo) ! 1 ! (20)
——— X —X)=={1—-,
2 0 2 v

which is particularly interesting because it yields the value
(P _— P)
S ==J 21

and makes the bulk-edge spin fractionalization phenomenon
particularly visible.

As a second remark, we observe that analogously to the
quasiparticle spins, these edge spins satisfy a spin-statistics
relation [12], regardless of the choice of X. One can single out
the spin part proportional to p? by considering the difference
JEP — 27 in a way that is reminiscent of the spin-statistics
relation proposed for bulk quasiholes [11,12]. It is important
to stress that J” does not depend on whether the quasihole in
the bulk has broken up into p smaller quasiholes of charge —v
or on their circular symmetry: as long as the quasiholes remain
far from the edge, the FQH screening protects the value of
J&, showing how the spin value is robustly encoded into the
boundary.

D. Proof of the proposition in Eq. (18)

We follow Park and Haldane [46] and introduce a set of
occupation numbers, 70 = V8,0, which take the values v for
g < 0 and O for g > 0. For the state with a Laughlin Abelian
quasihole of charge q(” ) in the bulk, we consider instead the
rigidly shifted orbital occupation numbers n(p ) = V4« p. They
do not represent a physical state, but are a useful computa-
tional tool.

First of all, we can write

o0

I =3 g —n®) =

q==N7,

J(p) + A(.D) (22)

with the definitions
C vp(p— 1)
JE(P) — Z C](flép) _ ﬁéO)) — > , (23)
q:_Aq

which was easily evaluated, and

o0 [ee]

AP = " gnd) —aP) = > q(nl) —aL). (24
q=—N7, g=—N7q

For the evaluation of AY), we observe that ﬁf]p ) — ﬁ{(lo_)p.
Furthermore, a similar relation also holds for the physical
occupation numbers, n(” ; = nfzo,;_ - Indeed, the insertion of an
Abelian quasihole rlgldly shifts the boundary towards larger
values of g by exactly p orbitals. This fact has been ex-
tensively discussed in rotationally symmetric configurations,
but also holds true in other geometries, as can be verified
numerically [11]. With this, we obtain

o0

A(P) =p Z (0) —(0) (25)

qg=—1N4
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The value of AY /p depends on X, but not on p. We have
already shown in Sec. III B that the dependence of J on
X should be —%qu )%. Since, from Eq. (23), 7P does not
depend on X, these considerations pin down the dependence
of AY on x.

We choose the orbitals such that 2317 A, n;?; = v/Z. This
is always possible by shifting the FQH density by the neces-
sary (continuous) amount. Moreover, since the bulk orbitals
have occupation v, this condition does not depend on A,
but only on the edge. With this choice, we can show that
there is a unique and p-independent value of X, which we call
%y € 277Z/L,, such that AY = 0.

To prove’ this statement, we notice that we can rewrite
AP /p= Z;iqu niO; — vZ. If we consider a variation of
X, ¥ > X+ Ax with AX = 2x7'/L,, the ground-state occu-
0) (0)

pation numbers are shifted to ng g — 15 o\ a5y oq) due to
. . . 50 0)
the structure of the orbitals ¢s 4. This gives 3 .~ n;, —

00 0) _ oo (0)
ZquAﬁAchv/(Zn) Ngg = ZquAq Ngqg —

pation numbers deep in the bulk are constant and equal to v.
Thus, it is possible to choose a new X = 27 Z/L, which makes

vZ' since the occu-

AP = 0; this value is unique because AY is a linear function
of ¥. As AP /p does not depend on p, Xy does not depend
on p.

Taken together, these observations allow us to conclude
that we can always write

L
AP = —ﬁ(x — Xo)vp, (26)

which proves the thesis in Eq. (18).

V. EDGE SPINS FOR THE RR STATE WITH ABELIAN
AND NON-ABELIAN QUASTIHOLES

In this final section, we numerically investigate the RR
k = 3 state with an Abelian or a non-Abelian quasihole in-
serted deep in the bulk and discuss the quasiparticle and edge
spins. We start by presenting the RR wave function [29] in
the conventional disk notation, even if our numerical study is
performed on the cylinder. We use the formulation put forward
in Ref. [53],

k
Wrr ~ Sl X ¥, o = l_[ l—[ (2, —ij)z, (27)

s=1 ig<js

where Yy = [ ;(z — 2™ x e”Z:/5"/4 is the Laughlin
wave function at filling factor v = % The N particles are
partitioned into k groups of N/k elements, and the term
[1i- i (Zi, —z;,)* describes the correlations within the sth
cluster [53]. The symbol S denotes the operator symmetrizing
over all possible partitions. The RR state has filling fraction
v = k/(kM + 2), but in this paper we focus exclusively on the
case (k, M) = (3, 1), which is a non-Abelian fermionic state
at filling fraction v = 3/5.

A. Review of results on the quasiholes of the RR state

Let us briefly review some standard results on the wave
functions of the quasiholes of the RR state [29,54]. The

smallest possible quasihole, here denoted o7, is obtained by
inserting a zero at position 1 for one of the k groups of
constituent particles, and then symmetrizing as

‘l—’g, ~ 8 H(zi,

i

X Ypg. (28a)

—ﬁ)Xfpk

Its charge is q;([’;) = —1/5. A different kind of quasihole can
be constructed by inserting an additional zero in a different
group, leading to

v, ~ S l_[ (Zil - 77) l_[ (Ziz

i i>

—n) X @ | X Yu. (28b)

This gives rise to the o, quasihole, which has double the
charge of the 0. In a similar way, one can add an additional
zero and retrieve the previously introduced Abelian Laughlin
quasiholes 1,

Wy =Wy ey ~ [ ]G =) x Wge, (28¢)
which carries charge qg},) = —3/5; this latter value coincides

with —v anticipated before. Other quasiparticles that we will
consider are (see, also, Ref. [30]) as follows: (i) the | quasi-
hole, whose wave function reads

Wy, ~ S| [T —n)" x o | x v, 28

i

and whose charge is g\’ = —2/5; (ii) the ¥ quasihole,
whose wave function reads

Wy, ~ S| [T =) [T (=) x o | x s, (280)

i i

and whose charge is q%” = —4/5; and, finally, (iii) the &
quasihole, whose wave function reads

W~ S| [T — )]G —n) x| xvu. 28D

i i>

and whose charge is ¢\°) = —3/5.

B. Numerical simulations

To calculate the properties of the quasiholes of the RR
states, we use MPS, an approach that is based on the con-
formal field theory (CFT) formulation of the state itself. The
canonical method is in terms of a chiral boson and of the Z;
parafermion theory. Here we instead use three chiral bosons
to describe the k = 3 RR states. There are two reasons for
doing so. First, the chiral boson CFT is easier to deal with
when deriving the MPS description. Second, we show that
one can use MPS to obtain interesting properties of states that
can be described in terms of three chiral boson CFTs, paving
the way for other quantum Hall states of interest that are hard
to analyze. We note that two-component chiral boson MPS
studies have been performed [55,56] for the Halperin [6,57]
and Haldane-Rezayi [58] states.
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TABLE I. List of the possible elementary quasiholes in the RR
k = 3 state, together with their edge charges ¢{*) = —¢'%), scaling di-
mensions h;‘z), and the theoretical values for the spins fractionalized
at the quasiparticle J{% in Eq. (29) and edge J* in Eq. (31).

Quasihole type o o) o0} Y 1 € 12
qfl‘l’,) -1/5 -=2/5 -=-2/5 -=3/5 -=-3/5 -—-4/5
qg"‘) 1/5 2/5 2/5 3/5 3/5 4/5
hfﬁ) /15 1/15 2/3 0 2/5 2/3
];Z) 1/5 2/5 -—1/5 3/5 1/5 0

J@ —-1/5 -2/5 15 -=3/5 —1/5 0

In this paper, we do not provide details of the actual MPS
description, which can be found in the accompanying paper
authored by two of us [30].

In the numerical calculations, we always place the quasi-
hole in the center of the system, which itself resides on the
cylinder. We denote the circumference of the cylinder by L.
Depending on the quasihole that is considered, the number of
electrons is N, = 298 (for the ¥,), N, = 299 (for the v; and
€), and N, = 300 (for the oy, 07, and 1). Finally, to obtain
a finite auxiliary Hilbert space, the highest maximal angular
momentum (that is, the cutoff) of the CFT that we use is
Pnax = 12. When inserting a quasihole in the bulk, we again
do this in such a way that this only modifies the right edge,
while the left edge is unchanged. This is the same choice as
we made above when discussing the Laughlin state.

C. Charge and spin fractionalization for the Abelian
and non-Abelian quasiholes of the RR state

Charge conservation allows one to promptly deduce the
charge that fractionalizes at the edge when the quasiparticles
are inserted in the bulk: they are simply the opposite, i.e.,
q\® = —q'%). These theoretical values have been verified nu-
merically [30]. A summary of these properties is reported in
Table I.

For a general quasiparticle of type o, we propose an expres-
sion for its bulk spin Jq(z) which depends on two ground-state
properties (the filling factor v and the shift ) and on two

quasiparticle properties (the charge q((,‘;) and the coefficients
hg‘}? reported in Table 1),

. 1 N\ 2 . S (.
(aj) () (aj) (aj)
Jop' = _[Z@W ) + hyp ] - E‘qu . (29)

This form of J;’,X/) is the natural generalization of the one for
Abelian Laughlin quasiholes discussed in Eq. (16). The only
difference lies in the first term, which equals minus the scaling
dimension of the quasihole, which has an additional contri-
bution —hg}’,j ). This contribution is due to the non-Abelian
nature of the quasihole and vanishes for Abelian quasiholes.
Equation (29) is numerically verified in Figs. 2(a) and 2(b),
where the numerical evaluation of J;;’;) is compared with the
predicted values, which are listed for convenience in Table 1.

Bulk - Jgp Edge - J.
d(a) — 01 (c) - 0.0
1.2 o ~y
0.9 1 — 1 A -—0.5
-—1.0
r—1.5
(d) -—1.0
’\I"
v -—3.0
-—5.0
154 r—7.0
0 15 30 120 130 140

R Xo

FIG. 2. (a),(b) Bulk and (c),(d) edge spins for the v = 3/5 RR
state with one quasiparticle in the bulk, on a cylinder with L, = 22.
Calculations are performed in the same way as in Figs. 1(d) and
1(e). The different colors label different quasiparticle in the bulk:
in the top panels (a),(c), the o (blue), o, (red), and 1 (black) quasi-
holes; in the bottom panels (b),(d), the ¥, (green), v, (orange), and
€ (purple) quasiholes. We used the value X = ZL—’)’% ~ 142.8, with
N = 300. Dashed lines are the extrapolated values for J(g) and J*,
corresponding to the values in Table I, mod 1.

We finally move on to the spin of the edge. Maintaining the
previous convention,

L, 1
——@F—x)==-(1-39), 30
T (X —Xo) 2( ) (30)
with § = M + 2 the shift for the Read-Rezayi series [29], we
expect to also obtain in this case the desired fractionalization
result,

T = I €20)

Since Ref. [12] proved a spin-statistics relation for the J,
Eq. (31) states that the edge spins also satisfy an analogous
one. The theoretical values for Je("‘) obtained via Eq. (31) are
reported in Table I.

Equation (31) is numerically verified in Fig. 2, by com-
paring the results in Figs. 2(a) and 2(b) for the quasiparticles
with those in Figs. 2(c) and 2(d) for the edges. Notice that
in the case of the quasiholes v/, ¥, and ¢, the equality is
satisfied only modulo 1. We trace this fact back to the tech-
nical subtleties associated with the insertion of the ¥, v,
and € quasiholes, which require us to compute their density
profiles for different particle numbers [30]; note, however,
that the same value of X is employed in the calculations of all
the J. Because, in the spin-statistics-relation setting, spins
are typically exponentiated as ¢>™* [52], this mismatch is not
physically relevant. The analytical and numerical study of
the Abelian and non-Abelian quasiholes of the RR state (in
particular, the associated bulk and edge spin) constitute the
third key result of this paper.
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VI. CONCLUSIONS

It is often said that the quasiparticles and the edge of an in-
compressible FQH state fractionalize charge; in this paper, we
have presented significant analytical and numerical evidence
that they also fractionalize spin. The latter fractionalization
is less simple than that of charge, ultimately protected by
the fundamental charge-conservation law and the screening
property of the bulk of an incompressible FQH state. Without
relying on conservation laws that could be inherited from ac-
cidental global symmetries, such as rotational invariance, we
have proven the spin fractionalization with general arguments
and numerical as well as analytical calculations.

In particular, we have presented a definition of the edge
spin for an incompressible FQH state that is uniquely given in
terms of boundary properties, without any explicit reference
to the bulk. By focusing on the straight edge of a cylinder, we
have shown that the edge spin does not necessarily need to be
defined in terms of circular rotations, and that a definition can
be given both in terms of a density integral, given by Eq. (6),
or in terms of orbital occupation numbers (10). We have
shown analytically and numerically that the spin fractionalizes
between bulk quasiparticles and edge, even when the latter
has a shape that is not circular, as summarized by Egs. (21)
and (31). We have presented numerical MPS simulations for
the cases of the Laughlin and Read-Rezayi states; in the latter
case, the quasiparticle and edge spins of the most relevant
Abelian and non-Abelian quasiholes have been discussed.

This work contributes to the exciting project of developing
a theory of the FQH effect that is intrinsically geometric and
does not rely on global symmetries that hide the genuine
topological nature of the system [46,48,59—61]; it is natural
to generalize these notions to the deformed planar droplets
presented in Ref. [62]. In particular, it is an intriguing perspec-
tive to generalize formulas (6) and (10) to those geometries.
Moreover, the definition for the quasiparticle spin in terms
of orbital occupation numbers given by Eq. (8) suggests a
possible generalization to situations where the quasiparticle
is deformed and is not circularly symmetric.

Another intriguing perspective of this study is to under-
stand the experimental consequences of the fractional edge
spin and how it could be revealed by measurements in state-
of-the-art devices. The expression for the edge spin in Eq. (10)
suggests a possible connection with energy-transport mea-
surements that deserves a deeper analysis.
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APPENDIX A: QUASIPARTICLE SPIN

We consider a quasiparticle of circular shape centered at n
and the orthonormal set of concentric circular LLL orbitals,
1

Gpm = m(%)"’e’|z’”‘z/4, m € N. One easily shows that

i b ‘3_2”'2 — 1)¢y md*z = m 8, . This equality states the
following fact. The wave functions ¢, ,, are known to be
eigenfunctions of the generator of planar rotations around 7,
dubbed L,, with eigenvalue m. When projected to the LLL,
the multiplicative operator |z — 5|>/2 — 1 coincides with the
LLL projection of L, [11].

This implies the following equality for a generic LLL
quantum state W:

> mia} a0 = =l Al
n.m%ym!¥ — 2 pva-z, ( )

where py =3, . &7 dymla} ,a, ) is the system’s den-
sity. The a{f), are the second-quantization operators related to
the orbitals ¢, ,, discussed in the main text.

Using Eq. (A1), the equality between the two expressions
for J,, given in the main text can be shown.

APPENDIX B: ORBITAL EXPRESSION OF THE CHARGE

We now rewrite the boundary charge g, = [ 8p.d*z in
terms of occupation numbers. The integral can be extended
over the whole space since §p, is exponentially localized at
the boundary. As a consequence, using the formulas quoted
in the previous paragraph and the orthonormality relation
[ b q,¢;,qd2z = 844> We can rewrite the boundary charge

as g, = Zq(ng; - nf??;). The summation should be under-

stood as being restricted over those orbitals that contribute
(1) 0)

to 8., i.e., those for which Ngg—Nig is nonzero; namely,
q. = Z;i_ A, (ng; — ng,);) for some appropriately chosen cut-

off A,. Notice that the results do not depend on the choice of

the cutoff since dee? in the bulk the occupation numbers are

identical, n)((l; = nfcoq =.
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