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Abstract
We study the non-hermitian Kitaev chain model, for arbitrary complex para-
meters. In particular, we give a concise characterization of the curves of eigen-
values in the complex plane in the infinite size limit, using a novel method
which can be applied to other non-hermitian systems. Using this solution, we
characterize under which conditions the skin effect is absent, and for which
eigenstates this is the case. We also fully determine the region in parameter
space for which the model has a zero mode.
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1. Introduction

The study of non-hermitian systems, in various contexts, has been extremely intense during the
last years. These studies cover the properties of non-hermitian systems in general (focussing
on the differences and similarities with hermitian systems), studies of particular non-hermitian
models, as well as utilizing non-hermitian systems for actual applications, using various differ-
ent types of physical systems [1–52]. One aspect that is of particular relevance for the current
paper is the presence of the skin-effect, which is closely related to the breakdown of the famed
bulk boundary correspondence of hermitian topological systems [53–65].

In this paper, we focus solely on Kitaev chain [66] famous for its Majorana zero modes in
its topological phase (see [67] for a review). We consider the non-hermitian version of this
model, which has, in various incarnations, been studied before [68–86]. A main result is that
we concisely characterize the location of the eigenvalues in the complex plane in the limit for
an open chain in the infinite system size. Using our novel method, we can explain why the
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curves the eigenvalues lie on exhibit branch points. Using our solution, we can address several
other interesting questions.

It is clearly natural to ask for which general choice of parameters does the non-hermitian
Kitaev chain have a zero-mode. Interestingly, the full answer to this question is arguably a bit
more complicated than one might expect.

The eigenvalues of generic non-hermitian systems are known to be very sensitive to the
boundary conditions [14, 16]. This is due to the skin effect. Eigenstates exhibiting the skin
effect are localized at the boundary of the system, with an amplitude that decays exponentially
in the bulk of the system. Because of this exponential localization of the eigenstates near the
boundary, it is clear that the system will be sensitive to small changes in the boundary condi-
tions. In addition, the usual algorithms to obtain the eigenvalues numerically becomes unstable
for large system sizes. For one-dimensional systems, one can use knowledge of the periodic
system in order to predict whether or not the open system exhibit skin-effect or not. In particu-
lar, one considers the eigenvalues of the periodic system, and determines if this winds around
an arbitrary point [11, 13, 34]. If such a winding exists, the system exhibits a skin effect. It
is, however, not a priori clear for which choices of parameters in the model this occurs, and
if it occurs, to which eigenvalues it pertains. Because of this, it is interesting to find an exact
solution of the non-hermitian model one studies. By this we mean a concise characterization
of the eigenvalues, that can be easily solved numerically, without stability issues.

In the current paper, we use our novel method to obtain the eigenvalues in the thermo-
dynamic limit in order to provide explicit answers to the questions we posed above for the
non-hermitian Kitaev chain. We introduce the non-hermitian Kitaev chain, in order to set the
notation, and start with the general analysis to solve the model in section 2. We continue in
section 3 by providing the solution of the non-hermitian Kitaev chain, for chains of finite
length, under the restriction that the left and right hopping parameters t1 and t2 are equal. In
section 4 we give a complete characterization of the parameters, for which the (non-hermitian)
model has a zero-mode. Here, we directly work in the infinite system size limit. In section 5,
we provide a concise characterization of the eigenvalues of the model, again for fully generic
parameters, in the infinite system size limit. Using this characterization, one can easily obtain
the curves in the complex plain corresponding to the eigenvalues of the model. In section 6,
we analyze the solution to determine under which conditions the model exhibits skin effect,
and if this is the case, to which eigenvalues this pertains. In section 7 we summarize our results
by means of an example, followed by a short discussion in section 8.

2. The non-hermitian Kitaev chain

In this section we state the model we are interested in, namely the Kitaev chain [66] with
nearest neighbor hopping and pairing, for arbitrary, complex parameters and start with the
analysis to find the eigenvalues. We are mainly interested in open chains, with ‘free’ boundary
conditions. In this paper, we do not study the transition from the open to the periodic system.
In terms of fermion creation and annihilation operators, c†j , cj, the model for L sites reads

H=
L∑

j=1

m
2

(
c†j cj− cjc

†
j

)
+

L−1∑

j=1

(
t1c

†
j cj+1 + t2c

†
j+1cj+ d1c

†
j c

†
j+1 + d2cj+1cj

)
. (1)

If the model were hermitian, m would take the role of the chemical potential, t1 and t2 would
be the hopping parameters, while d1 and d2 would correspond to the superconducting order
parameter.
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To analyze the model, we write the hamiltonian in Bogoliubov-de Gennes form, that is, we
write

H=
1
2
Ψ† ·HBdG ·Ψ , (2)

where Ψ† = (c†1,c1,c
†
2,c2, . . .). For the model equation (1), we find that HBdG is the following

2L× 2L matrix

HBdG =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m 0 t1 d1 0 0 · · · · · · 0 0
0 −m −d2 −t2 0 0 · · · · · · 0 0

t2 −d1 m 0 t1 d1
...

...

d2 −t1 0 −m −d2 −t2
...

...

0 0 t2 −d1 m 0
. . . 0 0

0 0 d2 −t1 0 −m
. . . 0 0

...
...

. . .
. . . t1 d1

...
...

. . .
. . . −d2 −t2

0 0 · · · · · · 0 0 t2 −d1 m 0
0 0 · · · · · · 0 0 d2 −t1 0 −m

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3)

We thus need to find the eigenvalues λ of this matrix with arbitrary parameters m, t1, t2,d1,d2.
To this end, we write HBdGψ = λψ and we denote the components of ψ by ψn. The eigen-

value equations give rise to 2L− 4 bulk equations (with n= 3, . . .2L− 2),
{
t2ψn−2 − d1ψn−1 +(m−λ)ψn+ t1ψn+2 + d1ψn+3 = 0 for n odd
d2ψn−3 − t1ψn−2 +(−m−λ)ψn− d2ψn+1 − t2ψn+2 = 0 for n even .

(4)

In addition, there are four boundary equationswhich read, after using the bulk equations (which
we will always solve for arbitrary integer n)

−t2ψ−1 + d1ψ0 = 0 −t1ψ2L+1 − d1ψ2L+2 = 0

−d2ψ−1 + t1ψ0 = 0 +d2ψ2L+1 + t2ψ2L+2 = 0 . (5)

To obtain the eigenvalues λ, we use the following concrete ansats for the components of
the (right) eigenvectors,

ψT = φT (x,a) =
(
x,ax,x2,ax2, . . . ,xL,axL

)
. (6)

This ansatz is inspired by the ansatz used in the hermitian case, where a in general is a phase
(due to the superconducting nature of the model). Because we deal with the non-hermitian
case, a will have arbitrary modulus. The structure of the powers of x is the standard ansatz
used in solving the type of recurrence relations for the bulk of systems with periodicity. In the
physics literature, this dates back at least to the seminal paper of Lieb et al [87]. Using this
ansatz, the ‘bulk’ equations take the following form,

t2 − ad1 +(m−λ)x+(t1 + ad1)x2 = 0 d2 − at1 +(−m−λ)ax+(−d2 − at2)x2 = 0 .
(7)
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By eliminating a from these equations, one obtains a fourth order algebraic equation in x,

(d1d2 − t1t2)x4 − (λ(t1 − t2)+m(t1 + t2))x3 +
(
λ2 −m2 − 2d1d2 − t21 − t22

)
x2

+(λ(t1 − t2)−m(t1 + t2))x+(d1d2 − t1t2) = 0 . (8)

Thus (because the value for a is uniquely determined by a given solution for x), we obtain four
solutions of the bulk equations, denoted by (xi,ai). The general form of the eigenvector then is
ψ =

∑4
i=1 ciφ(xi,ai). The coefficients ci can be obtained from the boundary equations, which

now take the form

(−t2 + a1d1)c1 +(−t2 + a2d1)c2 +(−t2 + a3d1)c3 +(−t2 + a4d1)c4 = 0

(−d2 + a1t1)c1 +(−d2 + a2t1)c2 +(−d2 + a3t1)c3 +(−d2 + a4t1)c4 = 0

−(t1 + a1d1)xL+1
1 c1 − (t1 + a2d1)xL+1

2 c2 − (t1 + a3d1)xL+1
3 c3 − (t1 + a4d1)xL+1

4 c4 = 0

(d2 + a1t2)xL+1
1 c1 +(d2 + a2t2)xL+1

2 c2 +(d2 + a3t2)xL+1
3 c3 +(d2 + a4t2)xL+1

4 c4 = 0 .
(9)

In practise, one typically does not obtain the explicit values of the ci, but instead uses these
equations to determine the eigenvalues. The pairs (xi,ai) implicitly depend on λ and the para-
meters in the model. The condition that the boundary equations have a non-trivial solution for
the ci then turns into an equation for the possible eigenvalues λ. In particular, we write the
equations as Mc= 0, where cT = (c1,c2,c3,c4) and

M=

⎛

⎜⎜⎝

−t2 + a1d1 −t2 + a2d1 −t2 + a3d1 −t2 + a4d1
−d2 + a1t1 −d2 + a2t1 −d2 + a3t1 −d2 + a4t1

−(t1 + a1d1)x
L+1
1 −(t1 + a2d1)x

L+1
2 −(t1 + a3d1)x

L+1
3 −(t1 + a4d1)x

L+1
4

(d2 + a1t2)x
L+1
1 (d2 + a2t2)x

L+1
2 (d2 + a3t2)x

L+1
3 (d2 + a4t2)x

L+1
4

⎞

⎟⎟⎠ .

(10)

The condition to have a non-trivial solution for the ci is det(M) = 0, which determines λ via
the parameters (xi,ai). In the sections below, we perform the analysis to characterize λ for
various different cases.

Before doing so, we mention, for later use, that the eigenvalues λ of the periodic version of
the model take a simple form in terms of the momentum k, namely

λ± (k) = i (t1 − t2)sin(k)±
√

4d1d2 sin(k)
2 +(m+(t1 + t2)cos(k))

2 . (11)

These eigenvalues corresponding to the model with periodic boundary conditions are obtained
by first performing a (discrete) Fourier transform. This results in the following 2× 2 matrix

(
m+ t1eik+ t2e−ik d1

(
eik+ e−ik

)

−d2
(
eik+ e−ik

)
−m− t1e−ik− t2eik

)
. (12)

The eigenvalues of this matrix are indeed given by equation (11).
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3. Solution for finite L, with t2 = t1 or d1d2 = 0

In this section, we start by presenting the full solution of the model, for an open chain of size
L, but with the restriction that t2 = t1. In this section, we use the notation t= t1 = t2, to remind
the reader of this restriction. We use the method of Lieb et al [87], which was used to study
the hermitian Kitaev chain with longer range hopping in [88]. We use the approach taken in
the latter paper, or rather, repeat the calculation. We only need to note that the restriction used
in that paper, namely that the chemical potential and the hopping parameter are real, can in
fact be dropped, without invalidating the solution. Thus, we allow complex parameters m, t=
t1 = t2,d1,d2. We note these parameters do not include all the hermitian cases, the hermitian
case with complex hopping parameters is excluded. However, the solution does include non-
hermitian cases.

Thus, the goal of this section is to describe the eigenvalues of the matrix HBdG of
equation (3), with (possibly complex) parametersm, t= t1 = t2,d1,d2. Here, we are very brief,
and refer to [88] for the details.

We write the ansatz for the eigenvalues as λα =±
√

4d1d2 sin2(α)+ (m+ 2tcos(α))2,
inspired by the solution for the periodic case with t= t1 = t2, equation (11). To find the values
of α, we have to solve the ‘bulk’ equation equation (8), for the wave functions. The ‘boundary’
equations then give two equations that determine α. The bulk equation actually has four solu-
tions, eiα, e−iα, eiβ , e−iβ , where the values of α and β are related by the following equation

2cos(α)+ 2cos(β) =
2mt

d1d2 − t2
. (13)

Often, we introduce the notation x= eiα and y= eiβ , because in this way, the equations for x
and y are polynomial equations, while those for α and β are trigonometric.

The boundary equations lead to a determinant that should be zero, det(M) = 0 withM given
by equation (10), giving the second equation that we need to determine α and β (or x and y).
To describe this equation, we introduce the following sine ratios

sr(L,α) =
sin(Lα)
sin(α)

= x−L+1 + x−L+3 + · · ·+ xL−3 + xL−1 , (14)

and similar for β and y. Using these functions, the determinant equation takes the following
form

(
d1d2 − t2

)
sr(L+ 1,α)sr(L+ 1,β)+ 4d1d2

L∑

j=1

(L+ 1− j)sr( j,α)sr( j,β) = 0 . (15)

We note that the equivalent equation in [88] takes a different (and more complicated) form,
because here, we simplified the boundary equations before forming the determinant equation
that finally gives the solutions.

To determine the eigenvalues λα, we need to solve equations (13) and (15) simultaneously.
These equations are (separately) invariant under x↔ y, x↔ 1/x and y↔ 1/y. So, the 8L solu-
tions of these equations correspond to L plus/minus eigenvalue pairs, so 2L eigenvalues as
needed.

We note that the functions sr(L,α) are, by definition, closely related to the Chebyshev poly-
nomials of the second kind Un, namely sr(L,α) = UL(cosα) [89]. Also, the sum over j in
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equation (15) ‘can be done’, leading to the following result

(
d1d2 − t2

)
sr(L+ 1,α)sr(L+ 1,β)+

d1d2
(cosα− cosβ)2

(2− 2sr(L+ 1,α)sr(L+ 1,β)

+sr(L+ 2,α)sr(L,β)+ sr(L,α)sr(L+ 2,β)) = 0 . (16)

Before continuing the analysis of themodel for infinite system size, we briefly consider the case
with either d1 = 0 or d2 = 0, but not necessarily both, and otherwise arbitrary parameters (so
we allow t1 ̸= t2 here). In this case, the model is closely related to the Hatano-Nelson model
[90–92], for which an exact solution that interpolates between open and periodic boundary
conditions was presented in [65]. Using the techniques of that paper, we find that for d2 = 0,
the eigenvalues do not depend on d1 (and the other way around), but a subset of the eigenvectors
does depend on d1. The eigenvalues are given by

λ±,j =±m+ 2
√
t1
√
t2 cos

(
jπ
L+ 1

)
, (17)

for j = 1,2, . . . ,L. We already note that for d1 = 0 or d2 = 0, the system does not have an
isolated zero mode, and the eigenvectors show skin-effect when |t1| ̸= |t2|. Finally, we note
that in the case d1d2 = 0, we can easily take the limit L→∞. That is, the eigenvalues in the
infinite size limit form two line segments in the complex plane.

4. Condition for the presence of zero modes

In this section, we determine under which conditions the model has a zero mode. Just as in
the hermitian Kitaev chain [66], the zero modes exhibit an exponential decay away from the
boundaries, and correspond to topological edge states.

We consider arbitrary complex parameters, and work directly in the L→∞ limit. In finite
systems, the energy of a zero mode decays exponentially with system size, but because we
work in the limit L→∞, we put λ= 0 identically. For λ= 0, it turns out that one can obtain
the solutions of the bulk equations, equation (7), explicitly

x−,− =
−m−

√
4d1d2 +m2 − 4t1t2

(t1 + t2)−
√

4d1d2 +(t1 − t2)
2

a− =
−(t1 − t2)−

√
4d1d2 +(t1 − t2)

2

2d1
(18)

x+,− =
−m+

√
4d1d2 +m2 − 4t1t2

(t1 + t2)−
√

4d1d2 +(t1 − t2)
2

a− =
−(t1 − t2)−

√
4d1d2 +(t1 − t2)

2

2d1
(19)

x−,+ =
−m−

√
4d1d2 +m2 − 4t1t2

(t1 + t2)+
√

4d1d2 +(t1 − t2)
2

a+ =
−(t1 − t2)+

√
4d1d2 +(t1 − t2)

2

2d1
(20)

x+,+ =
−m+

√
4d1d2 +m2 − 4t1t2

(t1 + t2)+
√

4d1d2 +(t1 − t2)
2

a+ =
−(t1 − t2)+

√
4d1d2 +(t1 − t2)

2

2d1
, (21)

where x+,+ = 1/x−,− and x−,+ = 1/x+,−.
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We can now take linear combinations of these solutions, to satisfy the boundary equations.
We solve the left boundary equations exactly, and demand that |x|< 1, so that the right bound-
ary equations are satisfied in the thermodynamic limit.

We find the following two solutions

ΨT
− = φT (x−,−,a−)−φT (x+,−,a−) (22)

ΨT
+ = φT (x−,+,a+)−φT (x+,+,a+) . (23)

In order to satisfy the boundary equations on the right hand side, we need that either
|x−,−|< 1 and |x+,−|< 1 such that ΨT

− is a zero mode or that |x−,+|< 1 and |x+,+|< 1
such that ΨT

+ is a zero mode. This leads to constraints on the parameters in the model.

4.1. The hermitian case

To analyze under which conditions there is a zero mode, we first consider the hermitian case,
which is simpler. That is, we assume that m ∈ R. We also write t1 = teiφt , t2 = te−iφt , d1 =
deiφd and d2 = de−iφd , with t! 0,d! 0,0" φt < 2π,0" φd < 2π all real. We then have

x−,− =
−m/2−

√
d2 +(m/2)2 − t2

tcosφt−
√
d2 − t2 sin2φt

x+,− =
−m/2+

√
d2 +(m/2)2 − t2

tcosφt−
√
d2 − t2 sin2φt

(24)

x−,+ =
−m/2−

√
d2 +(m/2)2 − t2

tcosφt+
√
d2 − t2 sin2φt

x+,+ =
−m/2+

√
d2 +(m/2)2 − t2

tcosφt+
√
d2 − t2 sin2φt

. (25)

Analyzing the conditions that imply the existence of a zero mode (that is, either |x−,−|< 1 and
|x+,−|< 1, or |x−,+|< 1 and |x+,+|< 1), we consider four different cases, determined by the
expressions under the square roots being positive or negative. We find that it is necessary to
have d2 > t2 sin2φt, while d2 +(m/2)2 − t2 can have either sign. In addition, it is necessary that
m2 < 4t2 cos2φt. Under these conditions, we have that |x−,+|< 1 and |x+,+|< 1 if cosφt > 0.
If on the other hand cosφt < 0, we have that |x−,−|< 1 and |x+,−|< 1 instead. From this, we
also find that it is necessary to have cosφt ̸= 0. This condition is, however, already implied by
m2 < 4t2 cos2φt. Summarizing, we find the following conditions in order that the system has
a zero mode in the hermitian case

m2 < 4t2 cos2φt d2 > t2 sin2φt . (26)

In the case of real hopping parameters, φt = 0,π, this reduces to the well known conditions
|m|< 2|t| and |d|> 0 [66].

4.2. The general case

In the general case we have x±,± =
−m±

√
4d1d2+m2−4t1t2

(t1+t2)±
√

4d1d2+(t1−t2)2
. To simplify the expressions (here

and below), we introduce D2 = (d1d2 − t1t2), and put a factor 1/
√
−4D2 (which is in general

complex) under the square roots. This of course might introduce an additional sign for the
square root terms, but because we need simultaneous conditions for the different signs, this
does influence the range of parameters for which there is a zero mode (however, the values of

7
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the various x±,± might be swapped). With these caveats, we write

x±,± =
y1 ±

√
y21 − 1

y2 ±
√
y22 − 1

y1 =− m√
−4D2

y2 =
t1 + t2√
−4D2

. (27)

We focus on the expression y±
√
y2 − 1. Modulo the values at the branch cuts, we can

write

y±
√
y2 − 1=

{
e±i arccos(y) Re(y) Im(y)> 0
e∓i arccos(y) Re(y) Im(y)< 0 .

(28)

Because we are interested in the absolute values of x±,±, we have to investigate Im(arccos(y1))
and Im(arccos(y2)). We demand that either |x−,−|< 1∧ |x+,−|< 1 or |x−,+|< 1∧ |x+,+|<
1. Analyzing these conditions, one finds that there is a zero mode when | Im(arccos(y1))|<
| Im(arccos(y2))|, or in terms of the parameters of the model,

∣∣∣∣∣Im
(
arccos

(
− m

2
√
t1t2 − d1d2

))∣∣∣∣∣<

∣∣∣∣∣Im
(
arccos

(
t1 + t2

2
√
t1t2 − d1d2

))∣∣∣∣∣ . (29)

We close this section by commenting on the case d1d2 = 0. The criterion equation (29) is not
in any way singular when d1d2 = 0. However, we know that in this case, the model is closely
related to the Hatano-Nelsonmodel [90–92], see section 3. In particular, the eigenvalues for the
finite size system are given by equation (17), showing that for generic parameters, the model
does not have a zero mode for chains of finite size. However, equation (29) can certainly be
satisfied when d1d2 = 0. This means that the zero mode only occurs in the limit L→∞. We
verified this behavior in the following way.

We first picked parameters, with d1 ̸= 0 and d2 = 0, such that equation (29) is satisfied
(i.e. there is a zero mode when L→∞). For a large, but finite system, the eigenvalues are given
by equation (17), and generically, there are no eigenvalues that tend to zero when increasing
the system size (which would be the case for a zero mode that is present already for finite
system size). However, upon changing d2 to a value such that |d2| is much smaller than the
absolute values of all the other parameters in the system, the spectrum reorganizes itself in
such a way that there is a zero mode that is present at finite system size. That is, there is a pair
of eigenvalues that tends to zero upon increasing the system size.

In contrast to this, if we pick parameters with d1 ̸= 0 and d2 = 0, such that equation (29)
is not satisfied (i.e. there is no zero mode when L→∞), the spectrum only changes slightly,
when slightly changing d2 away from zero. In particular, no eigenvalues appear that tend to
zero upon increasing the system size, in agreement with the absence of a zero mode.

5. Solution in the L→ ∞ limit

In section 3, we obtained a compact characterization of the eigenvalues for chains of arbit-
rary finite length, under the restriction that t1 = t2, but otherwise arbitrary complex paramet-
ers. Because obtaining the eigenvalues for large non-hermitian systems is often numerically
unstable, we focus in this section on obtaining a compact characterization for the eigenvalues
in the L→∞ limit. We do this for arbitrary complex parameters, so in this section we relax
the constraint t1 = t2 that we imposed above. The result of this section is a complete char-
acterization of the eigenvalues in terms of three polynomial equations, which can be solved
numerically straightforwardly, without stability issues.

8
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The starting point is the condition det(M) = 0, where M is given by equation (10).
Evaluating the determinant gives (after dropping a factor (d1d2 − t1t2)2)

(a1 − a2)(a3 − a4)
(
xL+1
1 xL+1

2 + xL+1
3 xL+1

4

)

−(a1 − a3)(a2 − a4)
(
xL+1
1 xL+1

3 + xL+1
2 xL+1

4

)

+(a1 − a4)(a2 − a3)
(
xL+1
1 xL+1

4 + xL+1
2 xL+1

3

)
= 0 . (30)

We recall that the (xi,ai) are determined by the bulk equations (7). To analyze this condi-
tion, we order the xi according to their absolute values, |x1|! |x2|! |x3|! |x4|. From the bulk
equation (8), it follows that x1x2x3x4 = 1.

Generically, the condition equation (30) is dominated by xL+1
1 xL+1

2 . This means that we
obtain the condition (a1 − a2)(a3 − a4) = 0. We find that, for generic parameters in the model,
the only way in which one can have a double root for a is when λ= 0, i.e. in the case of a zero
mode.

To show this, we need to analyze under which conditions there is a solution for which two
values of a are identical, and check that they correspond to the solutions for xwhich are largest
in absolute value. One can eliminate x from the bulk equations equations (7), giving rise to a
fourth order polynomial in a, which we denote as p4(a). To find a double zero, one needs that
p4(a) and dp4(a)

da have a common zero. This in turn occurs when the resultant of p4(a) and
dp4(a)

da is zero, Res(p4(a),
dp4(a)

da ) = 0.
One can write Res(p4(a),

dp4(a)
da ) = 16d41d

2
2λ

4(t1 + t2)4(λ+m− t1 − t2)(λ+m+ t1 +
t2)f8(λ), where f8(λ) is an eighth order polynomial in λ, which also depends on all the
parameters in the model (the precise form of this polynomial is complicated, and not inter-
esting for our purposes). We find that two values of a coincide for d1 d2 = 0, for λ= 0, for
t2 =−t1 as well as for ten special values of λ that depend on the parameters of the model.
These ten special values include λ=−m± (t1 + t2). We do not consider these ten special
values, because we are interested the generic eigenvalues of the model.

The case d1 d2 = 0 was treated in section 3. The case λ= 0, i.e. the zero modes, was ana-
lyzed in detail in section 4 above. In particular, we obtained a condition for the parameters in
themodel, such that there is an actual zeromode. This condition corresponded to the conditions
|x1|> 1 and |x2|> 1. When there is no zero mode, we find the double solution for a actually
corresponds to a3 = a1 or a4 = a1, so that equation (30) is not satisfied in the thermodynamic
limit, despite the fact that there is a double solution for a.

When analyzing the case t2 =−t1, we come to the same conclusion, equation (30) is not
satisfied in the thermodynamic limit, despite the fact that there is a double solution for a.

One is left towonder how one can satisfy equation (30)whenλ ̸= 0 for arbitrary parameters?
The answer is that we made an implicit assumption, namely we assumed that |x2|> |x3|, from
which it followed that xL+1

1 xL+1
2 dominates the expression. Under the condition that |x2|= |x3|,

the condition equation (30) is dominated by more terms, such that solutions can be found for
which (a1 − a2)(a3 − a4) ̸= 0.

This observation allows us to obtain a rather compact representation of the eigenvalues λ
in the limit of large system size, L→∞. Namely, we demand that two of the roots xi of the
bulk equation equation (8) have the same absolute value.

That is, we write

x1 =
s
κ

x2 = κeiα x3 = κe−iα x4 =
1
sκ

, (31)

9
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where κ and s are in general complex, while 0" α< 2π is real. Clearly x1x2x3x4 = 1, as
required by the bulk equation (8).

The condition x1x2x3x4 = 1 is one of the Vieta equations, relating the roots of a polynomial
to its coefficients [93]. Before continuing our analysis, we quickly explain the Vieta equations.
For ease of presentation, we do this for a fourth order polynomial, as the generalization to the
arbitrary case is clear. We write the polynomial in terms of its coefficients ai and its roots rj as
follows

P(x) = a4x4 + a3x3 + a2x2 + a1x+ a0 = a4
4∏

j=1

(x− rj) . (32)

Expanding the right hand side, and comparing with the coefficients leads to the following
equations

r1 + r2 + r3 + r4 =−a3/a4 (33)

r1r2 + r1r3 + r1r4 + r2r3 + r2r4 + r3r4 = a2/a4 (34)

r1r2r3 + r1r2r4 + r1r3r4 + r2r3r4 =−a1/a4 (35)

r1r2r3r4 = a0/a4 . (36)

These are the Vieta equations, which relate the coefficients of a polynomial to its roots. We
note that the left hand sides correspond to the elementary symmetric polynomials evaluated at
the roots of the original polynomial P(x).

In the case at hand we have a0 = a4, leading to the fourth Vieta equation x1x2x3x4 = 1 as
stated above. The remaning three Vieta equations for the roots can then be written (after taking
a linear combination) as

(
κ+

1
κ

)[(
s+

1
s

)
+ 2cosα

]
=

2m(t1 + t2)
d1d2 − t1t2(

κ− 1
κ

)[(
s+

1
s

)
− 2cosα

]
=

2λ(t1 − t2)
d1d2 − t1t2

(
κ+

1
κ

)2

+ 2cosα
(
s+

1
s

)
=
λ2 −m2 − (t1 + t2)

2

d1d2 − t1t2
. (37)

The curve(s) in the complex plane determined by the eigenvalues λ in the limit L→∞ are
obtained by varying 0" α< 2π (we note that α plays the role of the momentum k in the
periodic case). In principle, one can eliminate κ and s from the Vieta equations, to obtain an
equation for λ in terms of α and the parameters of the model. This results in a forth order
equation in λ2, which is not insightful. In practise, if one wants to obtain the actual curve, one
can simply solve the equations (37) numerically. It should be noted that not all solutions for
λ correspond to actual eigenvalues. This is because it needs to be checked that the roots are
ordered as |x1|! |x2|= |x3|! |x4|. There are two branches for which |x2|= |x3|! |x1|, |x4| or
|x1|, |x4|! |x2|= |x3|, which do not lead to actual eigenvalues. Thus, we need the solutions of
the Vieta equations (37) such that 1/|s|" |κ|2 " |s|. Equivalently, one can instead require that
|s|" |κ|2 " 1/|s|. Despite the fact that there are two non-physical branches, that do not lead to
actual eigenvalues of the model, these non-physical branches play an important role in explain-
ing the geometry of the actual curves the eigenvalues lie on. Without the additional constraint
that the roots need to satisfy |x1|! |x2|= |x3|! |x4|, one would obtain smooth curves for the
eigenvalues in the complex plane. With the additional necessary constraint however, one finds

10
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Figure 1. Plot for the non-hermitian Kitaev Chain with parameters m= 3/2, t1 = i,
t2 = 2, d1 = d2 = 3. The black lines correspond to the eigenvalues of the infinite sys-
tem. The blue and yellow lines correspond to solutions for λ of the Vieta equations, that
do not correspond to actual eigenvalues of the model (as explained in the main text).
The green dots correspond to eigenvalues of the finite system with L= 100.

that the actual curves on which the eigenvalues lie exhibit branching points. This is because
these actual curves ‘jump from one branch to another’.

To illustrate this, we plot the solutions for λ of the Vieta equations (37) for the parameters
m= 3/2, t1 = i, t2 = 2 and d1 = d2 = 3 in figure 1. To generate the plot, we vary α over 0"
α< 2π in steps of 2π/1000. Using the solutions for κ and s, we determine in which way
the absolute values of xi are ordered. The black lines correspond to the ordering |x1|! |x2|=
|x3|! |x4|, that is, to actual eigenvalues of the model. The blue and yellow lines correspond
to the other two orderings, that do not lead to eigenvalues of the model. Finally, the green
dots correspond to the eigenvalues of the finite chain with L= 100. Figure 1 clearly shows
that the green dots closely follow the black lines, with only small deviations, caused by finite
size effects. In addition, it is clear that the blue and yellow lines do not correspond to actual
eigenvalues of the model. We also note the presence of the zero mode in the spectrum of the
finite model. Zero modes do not correspond to solutions of the Vieta equations, as explained
above.

The fact that the solutions for x come in three different ‘branches’, with only one corres-
ponding to actual eigenvalues of the model, nicely explains the presence of the ‘branching
points’ that are present in the spectra of the non-hermitian Kitaev chain. We show a more
intricate example of this in section 7 below. There, we also discuss the known stability prob-
lems of finding the eigenvalues of a large finite (non-hermitian) system.

We close this section by noting that if we know the spectrum for a given set of parameters,
we in fact know the spectrum for a one-parameter set of parameters. In particular, the right
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hand sides of the Vieta equations (37) are invariant under

m→ meiφ ts → tseiφ td → tdeiφ d1d2 → d1d2e2iφ λ→ λeiφ , (38)

meaning that if one changes phases of the parameters in the way indicated, the whole spectrum
is rigidly phase rotated.We note that this basically corresponds tomultiplying the wholematrix
equation (3) by a constant phase, which leaves the eigenvectors invariant (one can of course
also rescale the spectrum in the same way).

6. Presence of the skin effect

Because we have a rather compact characterization of the eigenvalues of the model in the
thermodynamic limit we can, in principle, analyze in detail for which parameters the model has
a skin effect. Eigenvectors that exhibit skin effect are exponentially localized to the boundary
of the systems. We determine the parameters for which the system exhibits a skin effect, and if
so, to which eigenvectors this pertains (there can be cases where only a subset of eigenvectors
exhibit skin effect).

In solving the model in the infinite size limit, we obtained that two roots of the bulk
equation are equal in absolute value, see equation (31). Because the roots x2 and x3 with
|x2|= |x3| determine the corresponding eigenvector, we find that there is no skin effect when
|x2|= |x3|= 1. The eigenvalues of the eigenstates that do not show a skin effect, lie on the
curves of the eigenvalues in the periodic case λ±(k), as given by equation (11). We are inter-
ested in determining the parameters of the model, for which there are eigenstates that do not
show the skin effect for extended ranges of k. We will not in general try to locate isolated
points.

There is a long history of determining the location of the roots of polynomials in the com-
plex plane. One of the main reasons for this, is that it is used extensively in system analysis, in
particular for systems that are linear and time invariant. Such a system is stable, if the output
is bounded, even in the limit when the evolved time goes to infinity. This is the case when all
the roots of the characteristic polynomial corresponding to the system have negative real parts.
Several algorithms exist to determine, howmany roots have a negative real part,without having
to determine the actual roots. Routh and Hurwitz independently developed such algorithms,
leading to the Routh–Hurwitz stability criterion [94, 95], which determines if all the roots
of a polynomial have negative real parts. One way to derive the criterion is to construct the
sequence of Sturm polynomials associated with the polynomial under investigation [96].

The algorithm we focus on is tailored to determine the number of roots within, on and
outside of the unit circle. This is achieved by using a conformal map, that maps the imaginary
axis to the unit circle. In particular, the algorithm we use is due to Bistritz [97], but also in the
case of finding the number of roots inside the unit circle, the topic has a long history, dating
back a century at least [98].

For a polynomial with explicit coefficients, the algorithm fully determines the number of
roots of each ‘type’. We however, would like to determine the number of roots on the unit
circle as a function of the parameters in the model. This is a harder problem, and although we
believe we determined all cases for which there are at least two roots on the unit circle, we do
not have a proof for this in the general case with complex parameters.

We do not repeat the full Bistritz algorithm here (which can be found in [97]), because it
is a bit lengthy, and we do not need most of the details for our purposes. Therefor, we focus
instead on the parts of the algorithm that are relevant for our analysis.
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The starting point of the algorithm is a polynomial of degree n, Pn(x), and we assume that
Pn(1) = 1. As long as Pn(1) ̸= 0, we can always rescale Pn(x) as necessary. If Pn(1) = 0, we
can factorize out the root x= 1. From the polynomial Pn(x), a set of polynomials Ti (x), of
degree i with i = n,n− 1, . . . ,0 is constructed. In this paper, we do not describe the actual
algorithm to determine the polynomials Ti (x), but simply state the results and refer to [97] for
the details.

In general, the algorithm to determine the polynomials Ti(x) can be ‘regular’ or ‘singular’.
For now, we assume that the algorithm is ‘regular’ and discuss the singular case below. We
assume that we obtained the polynomials Ti(x) explicitly.

From the polynomials Ti (x) one forms the sequence

A= {Tn (1) ,Tn−1 (1) , . . .T1 (1) ,T0 (1)} . (39)

The algorithm to define the Ti (x) guarantees that Ti(1) is real for all i. Therefore, we can define
νn as the number of sign changes in the sequence A. The number of zeroes of P(x) inside the
unit circle is then given by αn = n− νn, while the number of zeroes of P(x) outside the unit
circle is given by γn = νn.

If the polynomial Pn(x) has one or more roots on the unit circle, the algorithm is ‘singular’.
In particular, the algorithm is singular at level s if Ts(0) ̸= 0 and Ts−1(x)≡ 0. In this case,
the algorithm proceeds in a slightly different manner, and one obtains different polynomials
T ′
s−1(x),T

′
s−2(x), . . .T

′
1(x),T

′
0(x) (which also have the property that T ′

i (1) is real for all i). In
this case, one defines

A=
{
Tn (1) ,Tn−1 (1) , . . . ,Ts (1) ,T ′

s−1 (1) ,T
′
s−2 (1) . . .T

′
1 (1) ,T

′
0 (1)

}
(40)

B=
{
Ts (1) ,T ′

s−1 (1) ,T
′
s−2 (1) . . .T

′
1 (1) ,T

′
0 (1)

}
. (41)

Again, νn is the number of sign changes in A, but we now also define νs as the number of
sign changes in B. In this case, the number of zeroes inside the unit circle is αn = n− νn, the
number of zeroes on the unit circle is βn = 2νs− s, while the number of zeroes outside of the
unit circle is γn = n−αn−βn.

For our problem, we analyze the bulk equation, which we write as follows

P(x) =
1
N2

(
D2
(
1+ x4

)
+ x3 (−λtd−mts)+ x(λtd−mts)+ x2 (N2 + 2mts− 2D2)

)
, (42)

with

N2 = λ2 − (m+ ts)
2 D2 = d1d2 − t1t2 ts = t1 + t2 td = t1 − t2 . (43)

The polynomial P(x) is scaled such that P(1) = 1.
To proceed, we note that when the system does not exhibit skin effect, the eigenvalues λ of

the open chain that we study lie on the curve given by the eigenvalues of the periodic chain.
We use this information when analyzing the sequences A and B defined above. The eigenvalues
for the periodic chain are given by equation (11) with 0" k< 2π.

Because the solution in the periodic case satisfies the same bulk equation, we find that
x= eik is a root of P(x) provided that we set λ= λ+(k). Similarly, x= e−ik is a root of P(x)
for λ= λ−(k). In both cases, at least one of the roots lies on the unit circle, implying that the
Bistritz algorithm is singular at some level (when λ is set to λ±(k)). For this reason, we should
analyze at which level the algorithm is singular, depending on the parameters of the model.
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If we find that the algorithm is singular at level s, with s even, we know that the number of
zeroes on the unit circle, given by βn = 2νs− s is also even. This implies that there are at least
two zeroes on the unit circle, because we know that there is at least one such zero. This in turn
implies the absence of the skin effect. Because the product of the roots x1x2x3x4 = 1, we also
know that is it not possible to have precisely three roots on the unit circle.

6.1. Skin effect for the model with real parameters

In the case of polynomials with complex parameters, the Bistritz algorithm becomes cum-
bersome, because constructing the polynomials Ti (x) involves taking the complex conjugate.
Therefore, we initially focus on the case with real parameters m, t1, t2,d1,d2, but of course
allow λ, and hence N2, to be complex. In this case, we obtain the following results for the
polynomials Ti (x). For T4(x), we have

T4 (x) = 2
(
D2 Re(N2)

(
1− 2x2 + x4

)
−mtsRe(N2)

(
x− 2x2 + x3

)

+i td Im(λN∗
2)
(
x− x3

))
/(N2N∗

2)+ 2x2

T4 (1) = 2

T4 (0) = 2D2 Re(N2)/(N2N∗
2) . (44)

For T3(x), we have

T3 (x) = 2
(
iD2 Im(N2)

(
1+ x− x2 − x3

)
− imts Im(N2)

(
x− x2

)

−tdRe(λN∗
2)
(
x+ x2

))
/(N2N∗

2)

T3 (1) =−4Re(λN∗
2)/(N2N∗

2)

T3 (0) = 2iD2 Im(N2)/(N2N∗
2) . (45)

For T2(x), we have

T2 (x) =−2tdRe(λ)
(
1− x2

)
/(i Im(N2))− 2x (46)

T2 (1) =−2

T2 (0) =−2tdRe(λ)/(i Im(N2)) .

Finally, for T1(x), we have

N2N∗
2 T1 (x) = 2

(
−D2 Im(N2)

2 /(tdRe(λ))+ tdRe(λN∗
2)
)
(1+ x)+ 2imts Im(N2)(1− x)

N2N∗
2 T1 (1) =−4D2 Im(N2)

2 /(tdRe(λ))+ 4tdRe(λN∗
2)

N2N∗
2 T1 (0) =−2D2 Im(N2)

2 /(tdRe(λ))+ 2tdRe(λN∗
2)+ 2imts Im(N2) . (47)

We do not explicitly state the constant T0, because it is a long expression and we do not need
it for our purposes.

We start by analyzing under which conditions T3(x)≡ 0. This requires N2 = N∗
2 and (λ+

λ∗)td = 0. The first condition N2 = N∗
2 is equivalent to Re(λ) = 0 or Im(λ) = 0. The second

condition (λ+λ∗)td = 0 is equivalent to Re(λ) = 0 or td = 0. Combined, we find that T3(x)≡
0 requires that either Re(λ) = 0 or that Im(λ) = td = 0.

We remark that Re(λ) = 0 implies that 4d1d2 sin(k)2 +(m+(t1 + t2)cos(k))2 " 0, which
can only occur if d1 and d2 have opposite signs (or when d1d2 = 0). On the other hand, if
Im(λ) = 0 and td = 0 we need 4d1d2 sin(k)2 +(m+(t1 + t2)cos(k))2 ! 0.
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Table 1. Absence of the skin effect, in the case of real parameters.

condition on parameters condition on k

m= 0 ∀k
t1 = t2 ∀k
t2 =−t2 ∀k
d1d2 < 0 4d1d2 sin(k)2 +(m+(t1 + t2)cos(k))2 < 0

Finally, we note that the explicit form of λ±(k) implies that for td = 0, we have that either
Re(λ) = 0 or Im(λ) = 0. Hence, for td = 0 the algorithm is singular at level s= 4 (we recall
that we assumed that all the parameters of the model are real). This finishes the analysis of the
conditions T3(x)≡ 0.

The other way in which we can have two roots on the unit circle is when the algorithm is
singular at level 2, that is when T1(x)≡ 0 (and T2(0) ̸= 0). By analyzing the form of T1(x),
making use of the explicit form of the eigenvalues in the periodic case λ±(k), one finds that
T1(x)∝ mtstd. Because T2(0) ̸= 0 for m= 0 or ts = 0, we obtain that the algoritm is also sin-
gular when either m= 0 or ts = 0.

We summarize the result in table 1. For the model with real parameters, there is no
skin effect when either m= 0, or when t1 =±t2. In addition, there is no skin effect when
Re(λ) = 0, which occurs (over an extended range for k) when 4d1d2 sin(k)2 +(m+(t1 +
t2)cos(k))2 < 0, requiring d1d2 < 0 (we note that |d1d2| should be sufficiently large in order
to have 4d1d2 sin(k)2 +(m+(t1 + t2)cos(k))2 < 0). We note that the eigenvalues being real
(Im(λ) = 0) alone does not imply that the skin effect is absent. Real eigenvalues can have skin
effect when t1 ̸= t2.

To illustrate these results, we plot the (complex) spectrum of the model for several para-
meters. In all the plots, we use the following color conventions. The gray curves represent
the eigenvalues of the model with periodic boundary conditions. The green dots represent
the eigenvalues of the open chain of finite length with L= 100 sites. The blue lines represent
eigenvalues of the infinite open chain, corresponding to eigenstates that do have skin effect.
Finally, the red lines represent eigenvalues of the infinite open chain, corresponding to eigen-
states that do not have skin effect. The latter eigenvalues also correspond to eigenvalues of the
periodic chain.

In figure 2, we plot the eigenvalues of the system with parameters m= 2/5, t1 = 2, t2 = 1,
d1 =−d2 =

√
3. The figure clearly shows that for these parameters (which do no fall in one of

the classes m= 0 or t1 =±t2), some of the eigenstates of the infinite open chain do show skin
effect, while others do not. The eigenvalues that are purely imaginary do not show skin effect,
while those that lie in the region bounded by the two ovals (corresponding to eigenvalues of
the periodic case) do show skin effect. Interestingly, there are real (non-zero) eigenvalues that
correspond to states that do exhibit skin effect. In the hermitian case, non-zero (and necessar-
ily real) eigenvalues do not exhibit skin effect. In figure 3, we plot the absolute value of the
eigenstate coefficients as a function of position for two eigenvalues of the finite chain namely
λ≈ 3.0182 in the left panel (a) (real eigenvalue with skin effect, using a logarithmic scale) and
λ≈ 4.3949i in the right panel (b) (purely imaginary eigenvalue without skin effect). In partic-
ular, in the left panel of figure 3, we find that the structure of the eigenvector is an exponentially
damped oscillation. The exponential decay signifies the presence of the skin effect. In terms
of the non-Bloch band theory of non-hermitian systems introduced in [60], the eigenvectors
that do not exhibit skin effect have a β parameter such that |β|= 1 (or a real momentum),
while the eigenvectors that do exhibit skin effect have a β parameter such that |β| ̸= 1 (i.e. its
‘momentum’ is complex).
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Figure 2. The eigenvalues of the model with parameters m= 2/5, t1 = 2, t2 = 1, d1 =
−d2 =

√
3. The gray lines correspond to the periodic case; the green dots correspond

to the open finite chain with L= 100; the blue (red) lines correspond eigenvalues of the
open infinite chain whose eigenstates do (do not) exhibit the skin effect. The eigenvalues
along the imaginary axis extent to λ≈±4.4495i.

Figure 3. The amplitude of eigenstate coefficients |ψi |2 as a function of the site index
i for two states of the finite L= 100 model with parameters m= 2/5, t1 = 2, t2 = 1,
d1 =−d2 =

√
3. The blue squares (orange dots) correspond to the first (second) com-

ponent of the eigenvector of a given site i. The left panel (a) corresponds to a real eigen-
value (λ≈ 3.0182) showing skin effect (note the logarithmic scale), the right panel (b)
corresponds to a purely imaginary eigenvalue (λ≈ 4.3949i) without skin effect.

Depending on the parameters, it can also happen that either all the eigenstates of the model
have skin effect (this is the generic case), or none of the eigenstates have skin effect. In figure 4,
we show an example of either case.
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Figure 4. The eigenvalues for two sets of parameters. The color coding is the same as in
figure 2. The parameters for the left panel (a) are m= 0, t1 = 2, t2 = 1, d1 =−d2 =

√
3;

in this case, none of the eigenstates exhibit skin effect, thus the red and gray curves
coincide. The purely imaginary eigenvalues extend to ±(1+ 2

√
3)i ≈±4.4641i. We

cut off the figure for clarity. The parameters for the right panel (b) are m= 1/2, t1 = 2,
t2 = 1, d1 = d2 =

√
3; in this case, all the eigenstate exhibit skin effect. We note that in

this case, there is zero-mode.

6.2. Skin effect for the model with complex parameters

In this section, we consider the model with complex parameters, generalizing the results of the
previous section. As in the case of real parameters, we do not try to find all isolated points for
which the eigenstates do not show a skin effect (this could occur when the curves describing
the eigenvalues in the periodic case, i.e. λ±(k), self intersect).

In the previous section, we obtained that m= 0, t1 = t2 and t1 =−t2 are three different
sufficient conditions implying that there is no skin effect for all the eigenstates in the case
of real parameters. We now argue that these three conditions remain sufficient in the case of
complex parameters.

To show this, we consider the Vieta equations (37), and solve them for κ, s and λ under
the conditions m= 0, t1 =−t2 or t1 = t2. When either m= 0 or t1 =−t2, we find that there
are solutions with κ=±i. When t1 = t2, there are solutions with κ=±1. Because in all these
cases, |κ|= 1 we find that the ordering of the roots satisfies |x1|! |x2|= |x3|! |x4|, which
shows that the obtained solutions correspond to actual eigenvalues of the model. Because |κ|=
1, the eigenstates do not exhibit a skin effect. Indeed, in these cases the form of λ as obtained
from the Vieta equations corresponds to the eigenvalues of the periodic case, λ±(k), which
has to be true in the absence of the skin effect.

We continue by generalizing the results for real parameters, that originated from the condi-
tion T3(x)≡ 0. In order to do this, we need the form of the Bistritz polynomials for complex
parameters. Because these are quite involved, we state them in the appendix. In particular, we
need T3(x) as given in equation (A2).

We find that the condition T3(x)≡ 0 is equivalent to the following conditions on the para-
meters in the model

Im(D2N∗
2) = 0 Im(mtsN∗

2) = 0 Re(λtdN∗
2) = 0 . (48)

Let us denote the argument of m, ts, etc by φm, φts , etc then the conditions above reduce to

φD2 = φN2 mod π φm+φts = φN2 mod π φλ +φtd = φN2 +π/2 mod π . (49)
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Table 2. Sufficient conditions for absence of the skin effect (due to T3(x)≡ 0).

ts td m d1d2 λ absence skin effect

|ts|eiφts ±i |td|eiφts ±|m|eiφts +|d1d2|e2iφts ±|λ|eiφts ∀k
|ts|eiφts ±i |td|eiφts ±|m|eiφts −|d1d2|e2iφts ±|λ|eiφts −4|d1d2|sin(k)2 +(±|m|+ |ts|cos(k))2 > 0
|ts|eiφts ±|td|eiφts ±|m|eiφts −|d1d2|e2iφts ±i |λ|eiφts −4|d1d2|sin(k)2 +(±|m|+ |ts|cos(k))2 < 0

We note that N2 is not independent of the parameters. Making use of the explicit form of λ in
the periodic case, we obtain

N2 = λ2 − (m+ ts)
2 = 2mts (cos(k)− 1)+ 4D2 sin(k)

2 + 2iλtd sin(k) , (50)

which implies that the relations equation (49) are satisfied, provided that φD2 = φm+φts =
φλ +φtd +π/2 mod π. To continue, we assume that φm = φD2 −φts mod π and φλ = φD2 −
φtd −π/2 mod π. Then, the condition T3(x)≡ 0 reduces to

|λ|2 sin(φD2 − 2φtd)+
(
|m|2 − |ts|2

)
sin(φD2 − 2φts) = 0 . (51)

Because we are interested in extended regions in k for which there is no skin effect, we obtain
that φtd = φts mod π/2, and φD2 = 2φts = 2φtd mod π. Because of the relation D2 = d1d2 −
t1t2, we can replace the relation φD2 = 2φts mod π by φd1d2 = 2φts mod π, where φd1d2 is the
phase of d1d2.

Combined, we find the following conditions, which are necessary in order that the Bistritz
algorithm is singular at level 4

φm = φts mod π φλ = φtd +π/2 mod π φd1d2 = 2φts mod π φtd = φts mod π/2 . (52)

We still need to checkwhen these conditions are compatible with the explicit form of the eigen-
values in the periodic case, λ±(k) as given in equation (11). By analyzing the form of λ±(k),
taking the phase relations into account, one finds that the form of d1d2 is crucial. Generically,
we write d1d2 = |d1d2|eiφd1d2 . In table 2, we state the conditions such that the eigenstates do
not show a skin effect (due to T3(x)≡ 0), resulting from this analysis. We note that the third
line also follows from the analysis of the case with real parameters in the previous subsection
and the result that phase-rotating the parameters of the model according to equation (38) leads
to a rigid phase rotation of the spectrum.

An obvious check on these results is to consider the hermitian case, with N2,λ,m,D2, ts all
real, and td purely imaginary. In this case, one finds that indeed T3(x)≡ 0 implying that the
Bistritz algorithm is singular at level 4. This in turn implies that the eigenstates do not have a
skin effect, as expected.

The other way in which the skin effect is absent, is when T1(x)≡ 0. The coefficients of the
polynomial T1(x) are much more involved, see equation (A4). We therefore do not attempt to
fully characterize for which (complex) parameters of the model one has T1(x)≡ 0. However,
above we argued based on the Vieta equations that for eitherm= 0, ts = 0, or td = 0, the eigen-
states do not show a skin effect. This means that under these conditions T1(x)≡ 0 even when
the other parameters are complex.We are interested in generic results, that is, extended regions
of the curves of eigenvalues, for which the skin effect is absent. We believe that the conditions
provided, exhaust all these cases. The argument in favor of this statement is that we need that
T1(x)≡ 0 with λ= λ±(k), for an extended range of k. Due to the form of λ±(k), this only

18



J. Phys. A: Math. Theor. 58 (2025) 205302 E Ardonne and V Kurasov

Figure 5. The eigenvalues for a set including complex parameters, namely m= 2i/5,
t1 = 2+ i, t2 = 1, d1 =−d2 =

√
3. The color coding is the same as in figure 2.

seems possible when the various terms of λ±(k) have the same argument, or when one or
more of the parameters is zero.

We conclude this section with a characteristic example of the eigenvalues for a case with
complex parameters, namelym= 2i/5, t1 = 2+ i, t2 = 1, d1 =−d2 =

√
3 as shown in figure 5.

In this generic case, all the generic eigenstates exhibit the skin effect. As expected, the spectrum
is significantly more complex compared to the cases we showed with real parameters. We note
that the gray curves of the eigenvalues λ±(k) in the periodic case intersect themselves. The
eigenvalues of the open chain in the large system size limit (given by the blue curves) cross
these intersection points. This means that the eigenstates corresponding to these (six) special
eigenvalues do not have a skin effect. We checked this behavior explicitly, by solving the bulk
equation (8), confirming that two solutions for x indeed have modulus one. In addition, we
checked that the Bistritz polynomial T1(x)≡ 0 for the given parameters and the eigenvalue λ.

7. Analysis of an example

We studied the non-hermitian Kitaev chain for general complex parameters, pushing analytical
methods as far as possible. We now summarize our results, by means of an example. We use
the chain with parameters m= 2/5, t1 = 2+ i, t2 = 1, d1 =−d2 =

√
3 for this purpose. One

of the main results we obtained in this paper, is the characterization of the eigenvalues of the
infinite size system, in terms of three Vieta equations (37), for λ which we repeat here for
convenience,
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Figure 6. Solutions for λ of the Vieta equations, for m= 2/5, t1 = 2+ i, t2 = 1, d1 =
−d2 =

√
3. Only the black lines correspond to actual eigenvalues. For the blue and dark-

yellow lines, the solutions xi of the bulk equation correspond to one of the branches that
do not correspond to actual eigenvalues.

(
κ+

1
κ

)[(
s+

1
s

)
+ 2cosα

]
=

2m(t1 + t2)
d1d2 − t1t2(

κ− 1
κ

)[(
s+

1
s

)
− 2cosα

]
=

2λ(t1 − t2)
d1d2 − t1t2

(
κ+

1
κ

)2

+ 2cosα
(
s+

1
s

)
=
λ2 −m2 − (t1 + t2)

2

d1d2 − t1t2
. (53)

where κ and s are in general complex. The eigenvalue curves λ are obtained by varying 0"
α< 2π, and obtaining the solution of the three Vieta equations (37). A priori, the solutions of
these equations are continuous and smooth as a function of the parameter α. Importantly, only
those λ that correspond to solutions that satisfy 1/|s|" |κ|2 " |s| are actual eigenvalues of the
model as explained in section 5. This explains the observed branched structure of the actual
eigenvalues.

In figure 6, we show the eigenvalues of the model with parameters m= 2/5, t1 = 2+ i,
t2 = 1, d1 =−d2 =

√
3 as an illustration. The actual eigenvalues (the black lines) form a rather

intricate pattern, which can be explained in terms of the three different branches of solutions
of the Vieta equations. Figure 6 also shows the other two branches (the blue and yellow lines),
that do not correspond to eigenvalues of the model. It is interesting to note the regions where
the black lines ‘intersect’. Here, the eigenvalues do not cross, nor do they repel, but form a
rhombic structure.

We saw that having a concise characterization of the eigenvalues of the infinite system size
explains the structure of the curves the eigenvalues lie on. There is another reason why hav-
ing a concise characterization for the infinite system size model is useful, apart from that its
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Figure 7. Finite size eigenvalues λ for the model with parameters m= 2/5, t1 = 2+ i,
t2 = 1, d1 =−d2 =

√
3. The black lines correspond to actual eigenvalues in the limit

L→∞. The different panels show the numerically obtained eigenvalues (usingmachine
precision) for the sizes L= 100, L= 200, L= 400 and L= 800, showing the instability
of the algorithm (green dots).

interesting in its own right. Namely, as is well known, obtaining the eigenvalues for large, non-
hermitian systems showing skin-effect is often numerically unstable. We illustrate this using
the same example, by plotting the eigenvalues, as obtained using machine precision denation-
alization for system sizes L= 100, L= 200, L= 400 and L= 800. The results are shown in
figure 7 as the green dots, together with the infinite system size results.

We clearly see that for sizes L= 100 and L= 200, the eigenvalues closely follow the black
lines corresponding to the infinite size model, with only minor difference due to the finite
size effects. However, already for L= 400, there is a region where the finite size eigenvalues
deviate substantially from curves for infinite size. Moreover, the ‘eigenvalues’ in this region
do not satisfy particle-hole symmetry (dictating that if λ is an eigenvalue, so is −λ), which
clearly indicates that these values obtained by the denationalization algorithm are incorrect. For
L= 800, the situation gets worse. In principle, one can obtain the correct eigenvalues even for
these larger system sizes, if one uses a denationalization algorithm employing higher precision
arithmetic, but in practise, this will be much slower that obtaining the infinite system size
results.

By making use of the exact solution, we studied the presence of the skin effect. There exist
methods to determine if a model exhibits skin effect for a given set of parameters. Here, we
also characterize which eigenvalues have eigenstates showing the skin effect, or rather, which
ones do not show skin effect. We formulated this condition in terms of the solutions for x of
the bulk equation (7), namely if at least two (out of the four) solutions lie on the unit circle,
the corresponding eigenstate does not have a skin effect. We used the Bistritz algorithm to
determine under which conditions there are states without skin effect, and to which eigenvalues
these correspond. We provided a full characterization for the non-hermitian model with real
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parameters. For the general model with complex parameters we provide sufficient conditions
for the absence of the skin effect, which we believe are also necessary.

Finally, we studied under which conditions, the non-hermitian Kitaev chain has a zeromode
(for the hermitian Kitaev chain, this corresponds to the region where the model is in the topo-
logical phase). It turns out that this region has perhaps a more complicated structure than one
would expect. Namely, the model has a zero mode when the following condition is satisfied,

∣∣∣∣∣Im
(
arccos

(
− m

2
√
t1t2 − d1d2

))∣∣∣∣∣<

∣∣∣∣∣Im
(
arccos

(
t1 + t2

2
√
t1t2 − d1d2

))∣∣∣∣∣ . (54)

At the boundary of this region, the model is gapless, but even outside of this region, the model
can be gapless. In the hermitian version of the model, this would correspond to a metallic,
gapless system.

8. Discussion

We studied the non-hermitian Kitaev model for arbitrary, complex parameters. By using a
novel method, we obtained a concise characterization of the eigenvalues in the thermody-
namic limit for arbitrary complex parameters. Using this method, we explained the branched
structure of the eigenvalues in the complex plane. In addition, we used the solution to obtain
for which parameters, the model exhibit a skin effect, and if so, to which eigenvalues this per-
tains. For real parameters, we obtained this in full, while for arbitrary complex parameters,
we obtained sufficient conditions, which we believe are also necessary. We fully characterized
the parameters for which the model exhibits a zero mode. Finally, we discussed the stability
issues that arise when one tries to numerically obtain the eigenvalues for large systems.

Despite the fact that non-hermitian one-dimensional models have been studied in great
detail, it would be interesting to apply our method to characterize the eigenvalues in the ther-
modynamic limit to other, more complicated systems. One direct extension of the model we
consider here, is to add terms that interpolate between open and periodic boundary conditions.
Considering different models, one can think of systens with larger unit cells and/or longer
range interactions. Obviously, this will lead to higher order equations and more complicated
expressions.

Data availability statement

No new data were created or analysed in this study.

Appendix. Bistritz polynomials for complex parameters

In this appendix, we give the Bistritz polynomials Ti (x) (with 4! i ! 1) in the general case,
that is for complex parameters. These results generalise the Bistritz polynomials given in
section 6 for real parameters (and complex eigenvalues λ). We refer to that section for more
details. More details on the Bistritz algorithm can be found in [97].
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For arbitrary complex parameters and eigenvalue λ, the polynomial T4(x) reads

T4 (x) = 2
(
Re(D2N∗

2)
(
1− 2x2 + x4

)
+ i Im(λtdN∗

2)
(
x− x3

)

−Re(mtsN∗
2)
(
x− 2x2 + x3

))
/(N2N∗

2)+ 2x2

T4 (1) = 2

T4 (0) = 2Re(D2N∗
2)/(N2N∗

2) . (A1)

For T3(x), we obtain the following expression

T3 (x) = 2
(
−i Im(D2N∗

2)
(
1+ x− x2 − x3

)
+ i Im(mtsN∗

2)
(
x− x2

)

−Re(λtdN∗
2)
(
x+ x2

))
/(N2N∗

2)

T3 (1) =−4Re(λtdN∗
2)/(N2N∗

2)

T3 (0) =−2i Im(D2N∗
2)/(N2N∗

2) . (A2)

T2(x) is given by

T2 (x) = 2
(
Re(λtdD∗

2)
(
1− x2

)
− i Im(mtsD∗

2)
(
1− 2x+ x2

))
/(i Im(D2N∗

2))− 2x

T2 (1) =−2

T2 (0) = 2(Re(λtdD∗
2)− i Im(mtsD∗

2))/(i Im(D2N∗
2)) . (A3)

Finally, T1(x) is given by

N2N∗
2T1 (1) = 2(1+ x)

[
Re(λtdN∗

2)−
Im(N2D∗

2)
2 Re(λtdD∗

2)

Re(λtdD∗
2)

2 + Im(mtsD∗
2)

2

]

− 2i (1− x)

[
Im(mtsN∗

2)+ 4Im(N2D∗
2)+

Im(N2D∗
2)

2 Im(mtsD∗
2)

Re(λtdD∗
2)

2 + Im(mtsD∗
2)

2

−4
Im(N2D∗

2)Re(λtdD∗
2)

2

Re(λtdD∗
2)

2 + Im(mtsD∗
2)

2

]
, (A4)

resulting in the following expression for T1(1),

T1 (1) =
4

N2N∗
2

(
Re(λtdN∗

2)−
Im(D∗

2N2)
2 Re(λtdD∗

2)

Re(λtdD∗
2)

2 + Im(mtsD∗
2)

2

)
. (A5)

Though we do not need it, we give an expression for the constant T0, in terms of T2(x) an
T1(x), for completeness

T0 = 2Re(T2 (0)/T1 (0))T1 (1)− T2 (1) . (A6)
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