Exercises CFT-course fall 2023, set 7.

- 1. Consequences of null-vectors in the minimal models.
- a. Show that a necessary condition for the (chiral) correlator of primaries

$$
\langle \phi_{2,1}(z_1)\phi_{r,s}(z_2)\phi(z_3)\rangle
$$

to be non-zero is that the scaling dimension h of $\phi(z_3)$ is equal to $h = h_{r\pm 1,s}$, by making use of the level 2 null vector condition. Recall:

$$
h_{r,s} = \frac{(rp - sp')^2 - (p - p')^2}{4pp'} ,
$$

where p and p' are relative prime and $0 < r < p'$ and $0 < s < p$.

Note that this condition $h = h_{r+1,s}$ is not sufficient in general, as the three point function might still vanish. The necessary and sufficient condition is expressed in terms of the 'fusion rules', which for $\phi_{r,1}$ read

$$
\phi_{r,1} \times \phi_{r',s} = \sum_{\substack{k=|r-r'|+1\\k+r+r'=1 \text{ mod } 2}}^{k_{\text{max}}} \phi_{k,s}
$$

where $k_{\text{max}} = \min(r + r' - 1, 2p' - r - r' - 1)$. These fusion rules express which three point functions are non-zero.

- b. Ignoring the truncation in the upper limit k_{max} , interpret the fusion rules for $\phi_{r,1}$ in terms of tensor products of $SU(2)$.
- 2. Non-unitarity of Virasoro representations with $0 < c < 1$.

The vanishing curves of the 'Kac determinant' are (for instance) given by

$$
h_{r,s}(c) = \frac{1-c}{96} \left[\left((r+s) \pm (r-s) \sqrt{\frac{25-c}{1-c}} \right)^2 - 4 \right].
$$

Given that the Kac determinant only has positive eigenvalues when $c > 1$ and $h > 0$, argue that unitary representations are excluded in the region $0 < c < 1$ and $h > 0$, except for possibly those points on the vanishing curves (hint: expand around $c = 1$).

3. The hypergeometric differential equation reads

$$
(z(1-z)\partial_z^2 + (c - (a+b+1)z)\partial_z - ab) f(z) = 0
$$

- a. Find a solution around $z = 0$ by substituting $f(z) = \sum_{n\geq 0} f_n z^n$, and express the result in terms of $(a)_n$, $(b)_n$ and $(c)_n$, where $(x)_0 = 1$ and $(x)_n = x(x+1)\cdots(x+n-1)$, i.e. $(x)_n = \frac{\Gamma(x+n)}{\Gamma(x)}$ $\frac{(x+n)}{\Gamma(x)}$. Answer: $f(z) = F(a, b, c; z) = \sum_{n \geq 0}$ $(a)_n(b)_n$ $\frac{a_n(b_n)}{(c)_{n}n!}z^n$. Note: the other solution around $z=0$ reads $z^{1-c}F(a-c+1, b-c+1, 2-c; z)$.
- b. When are polynomial solutions of the hypergeometric differential equation possible?