
Gravity meets light

A multi-messenger revolution

Credit: NSF/LIGO/ Sonoma State University/A. Simonnet
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∼ 10−44 s2 m−1 kg−1

M = 2.8 M⊙ ; v ∼ c ; r = 108 ly h ∼ 4 × 10−21Neutron Star + Neutron Star


Black hole + Black hole M = 50 M⊙ ; v ∼ c ; r = 5 × 109 ly h ∼ 2 × 10−21

Amplitude
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The most precise rulers ever constructed!

l = 4 km Δl ∼ 4 × 10−18 m ~ 10 000 times smaller than the proton radius!!

LIGO Hanford

LIGO Livingston

VIRGO



The most precise rulers ever constructed!

Credits: LIGO



Merger of two Black Holes of 29 and 36 

at a distance of ~ 1.3 billion light years

M⊙

The first direct detection of gravitational waves

[Abbott+2016, PhRvL]

Credits: SXS Lensing

GW150914



The first direct detection of gravitational waves

[Abbott+2016, PhRvL]

Credits: SXS Lensing

GW150914
Merger of two Black Holes of 29 and 36 


at a distance of ~ 1.3 billion light years
M⊙

Credits: SXS Lensing



Credit: J. Johansson

[Abbott+2017, PhRvL]

The first direct detection of GWs from two NSs

Merger of two Neutron Stars at a distance of ~130 million light years

GW170817

Credits: ESO



Credit: J. Johansson
[Abbott+2017, PhRvL]

Gravity meets light



Credit: J. Johansson
[Abbott+2017, ApJ][Abbott+2017, PhRvL]

Gravity meets light



The origin of “short Gamma-ray Bursts”

Credit: Caltech/LIGO


GRAVITY LIGHT
short Gamma-ray BurstBinary Neutron Star Merger



The origin of the heaviest elements in our Universe

r-process responsible for the creation of ~half of the nuclei heavier than Fe
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The origin of the heaviest elements in our Universe

Seed nucleus

Proton Neutron



The origin of the heaviest elements in our Universe



Neutron capture 

via r-process 

The origin of the heaviest elements in our Universe



The origin of the heaviest elements in our Universe

Credit: Caltech/LIGO


Binary Neutron Star Merger

Neutron capture 

via r-process 

“Core-collapse” supernova

explosion of massive stars



Unstable nuclei -> radioactive decay

The origin of the heaviest elements in our Universe

Credit: Caltech/LIGO


Binary Neutron Star Merger



Decay products thermalise within the dense ejected material (T ~ 10 000 K)

The origin of the heaviest elements in our Universe

Credit: Caltech/LIGO


Binary Neutron Star Merger



—> Increasing wavelength 

Kilonova

Thermal emission at ultraviolet-optical-infrared wavelengths

The origin of the heaviest elements in our Universe

Credit: Caltech/LIGO


Binary Neutron Star Merger



The origin of the heaviest elements in our Universe

Credit: Caltech/LIGO


GRAVITY LIGHT
Kilonova


from radioactive decay of 

r-process elements 

freshly synthesised 

Binary Neutron Star Merger

Cowperthwaite+2017, ApJ



Constraints on the Equation of State of nuclear matter

[Postnikov+2010, PhRvD]

SOFT STIFF



Constraints on the Equation of State of nuclear matter

Credit: Caltech/

GRAVITY
No tidal effects 

LIGHT
Some matter 

was  ejected


 


no direct collapse 

to a black hole

SOFT STIFF



Credit: J. Johansson

The Hubble tension

[Riess 2019, NatRP]

[Hubble 1929, PNAS]
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The local expansion rate of the Universe

The Hubble constant H0



Credit: J. Johansson
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Gravitational Waves as Standard Sirens
[Schutz 1986, Nature; Holz & Hughes 2005, ApJ]

The Hubble constant H0
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Credit: J. Johansson
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p(H0)

Abbott+2017, Nature

H0 = 70.0 +12.0
−8.0 km s−1 Mpc−1

Gravitational Waves as Standard Sirens
[Schutz 1986, Nature; Holz & Hughes 2005, ApJ]
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Credit: Caltech/LIGO


GRAVITY LIGHT

1.7 s delay in a journey of ~130 million light years 

Ruling out some Dark Energy models



Ruling out some Dark Energy models

Credit: Caltech/LIGO


GRAVITY LIGHT

cg

c
− 1 < 5 × 10−16

Ezquiaga & Zumalacárregui 2017, PRL



A few words about my research in Stockholm

Brightness

TimeTime

Brightness

Radiative transfer code POSSIS  [MB 2019, MNRAS]


Modelling kilonovae
 Hunting for kilonovae 

with the Zwicky Transient Facility


Palomar Observatory

1872 m above sea level in California


Large camera ideal for catching 

rare and rapidly-fading events like kilonovae



