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Digital System 
Construction 

Lecture 7: Signal processing and CPUs FYSIKUM 

Processors 
Embedded systems 
Lab 6: Simple CPU in VHDL 

Digital signal processing (FIR, IIR) 

Lab 8: digital notch filter 



Digital signal processing 
■  Analyse/transform waveforms in discrete, digital format 

◆  Digital input data usually derived from analog signals 
using analog-digital converters (ADC) 

◆  Transformed output can be converted back to analog 
with digital-analog converters (DAC) 

■  DSP is a primary application of FPGAs  
◆  Telecoms are the biggest FPGA customers, so FPGAs 

designed with special “multiply-accumulate” DSP blocks 
■  Wide range of DSP techniques and applications 

◆  Can’t be covered in a single lecture 
◆  Will briefly present three common filter examples: 

✦  Finite Impulse Response  (FIR) filter – pulse processing 
✦  Infinite Impulse Response (IIR) filter 
✦  Digital notch filter (FIR) (Lab 8) 
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Finite Impulse Response (FIR) 
■  Process data with finite length 

◆ Finite “window” of data points  
◆ For example: detector pulses measured 

in a few consecutive ADC samples 
■  FIR filter output is a weighted sum of 

the data points in the window 
■  Output is independent of data points 

outside of the window 
◆ No “memory” of earlier iterations 
◆ FIR filters are simple to implement and 

inherently stable 
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Example: detector pulse 

■  ATLAS hadronic 
Tile calorimeter 

■  Unipolar pulse 
(Only positive 
amplitude) 

■  Width ~150ns 
■  25 MHz ADC rate 

(5-6 samples) 
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Applying a FIR filter 

■  “Sliding window” 
of 7 samples: Sn 

■  Each sample Sn 
multiplied by a 
coefficient Cn 

■  Sum products to 
produce the filter 
output: 
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S0 S1 

S2 

S3 
S4 

S5 

S6 

F = S0C0 + S1C1 + S2C2 +!+ S6C6
Coefficients Cn determine the filter response 



Example: pulse integral 
■  Samples have equal 

weights  
◆  “Area under the curve” 

■  Filter coefficients Cn: 
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S0 S1 

S2 

S3 
S4 

S5 

S6 

F = S1 + S2 +!+ S6

Sample Weight 

S0 0 

S1 1 

S2 1 

S3 1 

S4 1 

S5 1 

S6 1 



Integral with pedestal subtraction 

■  Subtract pedestal 
(S0 ) from the other 
six samples. 

■  Filter coefficients Cn: 
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S0 S1 

S2 

S3 
S4 

S5 

S6 

F = (S1 + S2 +!+ S6 )− (6 × S0 )

Sample Weight 

S0 -6 

S1 1 

S2 1 

S3 1 

S4 1 

S5 1 

S6 1 



Peak amplitude  
■  Use only the 

maximum sample 
◆  For example, S4 

■  Filter coefficients Cn: 
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S0 S1 

S2 

S3 
S4 

S5 

S6 

F = S4

Sample Weight 

S0 0 

S1 0 

S2 0 

S3 0 

S4 1 

S5 0 

S6 0 



“Optimal filter” 
■  Match coefficients to the 

ideal pulse shape  
(with noise) 

■  Gives best resolution and 
signal/noise performance 

■  Filter coefficients Cn: 
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S0 S1 

S2 

S3 
S4 

S5 

S6 

Sample Weight 

S0 -172 

S1 0 

S2 14 

S3 62 

S4 64 

S5 24 

S6 8 Maximum response when samples are 
aligned with the ideal pulse shape 



Timing (phase) measurement 
■  Use derivatives of 

ideal curve as 
coefficients 

■  Divide the timing 
filter output by the 
pulse amplitude 

■  Can achieve sub-ns 
timing resolution 
with 25 ns sampling 
rate 

10 

S0 S1 

S2 

S3 
S4 

S5 

S6 

Positive  
slope 

Negative 
slope 



Simulated PMT pulse shaper  
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Shaper output 

PMT anode current 



Shape is amplitude independent 
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Linear fit to ideal shape gives: 
•  Amplitude 
•  Time 
•  Pedestal 



Sampled shape (80 MHz) 
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Multiple samples on rising and falling edges to allow  
sub-nanosecond pulse timing reconstruction 



FIR filter architecture 

14 

FF FF FF FF FF FF FF FF 
ADC samples 

80 Mbit/s shift register clock 

… To readout 

× C1 × C2 × C3 × C4 × C13 × C14 × C15 × C16 

Σ 

FIR filter 
with matched 
coefficients (Cn): 

> ≥ 
Valid pulse 
at t=n 

Thresh (min) 

“Peak finder” gives a valid pulse if F(t=n) is: 
1.  ≥ a minimum noise threshold, 
2.  > the previous FIR output (t = n-1) 
3.  ≥ the next FIR output (t = n+1) 

Similar to ATLAS L1Calo bunch-crossing ID algorithm 

… 

FIR output 

n n-1 n+1 

S1 S2 S3 S4 S13 S14 S15 S16 ADC samples 

Filter 
coefficients 

F (t) = CnSn (t)
n=1
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ATLAS L1Calo PreProcessor 
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d1 d2 d3 d4 d5 d6 d7 d8

xa1 xa2 xa3 xa4 xa5 xa6 xa7 xa8
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f1 f2 f3
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8

Adder Tree
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ET

MUX
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its

LUT
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FIR filter 
(DSP multipliers) 

Calibration 
look-up 

table (RAM) 

Adder tree and 
peak finder 

in regular logic 

Shift registers (flip flops) 



FIR filter amplitude output 
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(15 samples) 

FI
R

 o
ut

pu
t (

ar
bi
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ry
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ni

ts
) 

Pulse time (ns) 

Centered pulse 
(t=n) 

Too late 
t = (n-1) 

Too early 
t = (n+1) 

FIR filter output is 
highest when pulse 
is time-aligned with  
the “ideal” shape 



Timing filter output 
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(FIR coefficients ~ derivatives of pulse shape) 

Ti
m

in
g 

fil
te

r (
ar

bi
tra

ry
 u

ni
ts

) 

Pulse time (ns) 

Sub-ns timing possible,  
depending on noise 

and clock jitter 



Infinite impulse response (IIR) 
■  Recursive filter  

◆ Output depends on on 
previous history 

◆ Delay provides a 
“memory” of previous 
states (like C in the 
analog filter) 

■  Efficient to implement, 
but not inherently stable 
like FIR 
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Delay 

Coef 

In Out 



General form of an IIR 
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yn = b0xn + b1xn−1 + b1xn−1 +!
+ a1yn−1 + a2yn−2 +!



Simple low-pass IIR filter 
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Delay 

0.9 

Xn Yn 

yn = 0.1⋅ xn + 0.9 ⋅ yn−1

Yn-1 

0.1 

b0 a1 
y ≅ the integral of x 
with a slow decay 



Simple high-pass IIR filter 
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Delay 

0.86 

Xn Yn 

yn = 0.93⋅ xn − 0.93⋅ xn−1 + 0.86 ⋅ yn−1
= 0.93⋅(xn − xn−1)+ 0.86 ⋅ yn−1

Yn-1 

0.93 

b0 a1 b1 

-0.93 

Delay 
Xn-1 

y integrates the change in x  



Filter response (time domain) 
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Lab 8: Digital notch filter (FIR) 
■  Simple FIR filter to block a 

given frequency and all of 
its higher harmonics 
◆ AKA “comb” filter 

■  Delay sets the base 
frequency 
◆ FB = Delay-1 

■  Use ADC and DAC to filter 
analog signals in real time  
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Response 
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Basic processor elements 

■  Processor 
◆ State machine for executing commands 
◆  Logic unit(s) for different operations 
◆ Registers for control, temporary storage 

■  Memory interface(s) 
◆ Access and store instructions, data 

■  Peripheral interface(s) 
◆  Interfaces with the rest of the world 
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Two basic architectures: 

Von Neumann 

Harvard 



Components of a CPU 
■  Control unit 

◆ Decode and execute instructions 
■  Arithmetic and Logic Unit (ALU) 

◆ Perform math and logic algorithms  
■  Registers:  

◆ Store temporary data 
◆ Control and/or monitor specific functions 
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Simple Von Neumann CPU 
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Basic CPU functionality 

■  Fetch instruction (from memory) 
■  Interpret instruction  

(determine what action to perform) 
■  Fetch data (get additional operands from 

memory or registers as needed) 
■  Execute the instruction 
■  Write data (store results in memory or 

registers) 
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Instruction sets 
■  CPUs are designed with a list of instructions that it 

can execute (instruction set) 
■  Each instruction has an identifying code (opcode) 
■  Instructions usually require additional information 

to perform a task. Some examples: 
◆  ADD, ASSIGN, MOV, JMP, EXIT  

■  Most opcodes need additional data (operands) in 
order to be executed: 
◆  Addresses  (location of data/next instruction/etc) 
◆  Numbers  (integer/float/BCD) 
◆  Characters  (ASCII / EBCDIC) 
◆  Logical data  (boolean/status/etc) 
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High-level vs low-level code 
■  C code    Assembly code 

int x=0 ;   .model small 

int y=0 ;   .stack 100h 

main    .data 

{     x  dw  0 

x=2 ;    y  dw  0 
y=3 ;    .code 

x=x+y;    mov x, 2 

}     mov y,  3 

      mov ax,  x 

      add ax,  y 
      mov x, ax 

      end. 
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CPU registers 
■  CPUs use registers to: 

◆  Hold instructions to be executed 
◆  Hold data being processed 
◆  Hold memory address(es) 
◆  Control and monitory CPU functionality and/or 

peripherals 
◆  Etc. 

■  Some visible to programmer, others only 
only by CPU and special O/S functions. 

■  May be general purpose, or special purpose. 
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General purpose registers 
■  General purpose registers:  

◆ Visible to the user/programmer 
◆ Usable by many operations 

✦ E.g. temporarily hold an address  
(e.g. pointer) or data (intermediate result) 

◆ Early CPUs had one: the accumulator 
✦ Hold intermediate results of a calculation 
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Registers 
■  Early CPUs had one general-purpose register 

◆ Accumulator (hold intermediate results) 
■  Special purpose registers include: 

◆ Program Counter (PC) 
✦ Address of next instruction to be fetched from memory 

◆ Current Instruction Register (CIR)  
✦ Current instruction being executed. 

◆ Memory address and data registers (MAR & MDR) 
✦ Used for reading/writing to memory 

■  Registers can also: control/monitor peripherals, 
error/status flags, etc. 
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Von Neumann CPU (review) 
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Computer system types 
■  General-purpose  

◆ PCs, mainframes, etc 
■  Embedded systems 

◆ Microcontrollers 
◆ Digital signal processors 
◆  etc. 

 



Embedded Systems 
■  Nearly any computer with the following properties: 

◆  Single function 
✦ Dedicated to running a specific application 

◆  Tightly constrained, minimal architecture 
✦ Low cost; single-to-few components 
✦ Works 'fast enough' 
✦ Low power (especially for portable devices) 

◆  Reactive, real-time operation 
✦ Continually monitors environment, and reacts to 

changes 
◆  Hardware and software co-exist 

✦  'Hardware-level' programming 
36 



37 

embedded application examples 
■  Communication devices 

◆  Network routers and switches 
◆  Smart phones 

■  Automotive 
◆  Braking systems, traction control, airbag release systems, 

cruise-control, fuel injection, etc... 
■  Aerospace  

◆  Flight-control systems, engine controllers, autopilots, 
passenger in-flight entertainment 

■  Measurement systems 
◆  Data acquisition hardware, slow-control and monitoring, 

user interfaces (buttons and touch screens), etc.  
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Embedded Software Tools 

CPU 

Logic Design Tools 

I/O 

FPGA 

Memory 

Logic Design Tools 

FPGA + 
Memory + IP + 
High Speed IO 

 

Embedded Software Tools 

CPU 

 In
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gr
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n 

of
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Discrete 
elements 

Logic Design Tools 

Embedded Software Tools 

Logic + Memory 
+ IP + 

Processors + 
High-speed IO 

 

Different levels of integration 

Combined memory 
and peripherals 

in ASIC or FPGA 

System 
on chip 



FPGA Embedded development 
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Microcontrollers 
■  Dedicated single-chip system 

◆  Integrated CPU, memory, peripherals 
■  Designed for real-time measurement, communication 

◆  Integrated analog-digital conversion 
◆  UART, I2C, SPI, etc... 

■  Low-cost, low-power architectures 
◆  Limited CPU speed (MHz range) 
◆  Limited memory resources 
◆  Small package with limited pins 



Microchip  
PIC32 

Harvard 
architecture 

General-use 
digital I/O 

Measurement 

Communication, interrupts, etc 



Register-based control 
Example: 
Digital  
I/O port 

Open-drain 
control (ODC) 

Tri-state (TRIS) 

Register for 
output data 



Register control of I/O ports 
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Lab 6: design a 
microprocessor 
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Lab 6 overview: 

■  Start with "skeleton" code for a simple CPU 
◆  available for download from course home page 

■  Build up functionality so that the CPU can run a 
sample program containing five opcodes 

■  Expand the design on your own… 
◆ New opcodes to run more complex programs. 
◆ Peripherals 
◆ Etc. 



Data write 
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Lab 6 CPU (von Neumann): 

Program counter  
(PC) 

 
Control Unit 

(FSM) 
 

Accumulator 

 
 

Memory 
 
 

Other 
registers 

Clock 

Reset 
Data read 

Address 

Data write 
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Your first program 
Address  Data  Comment 
00 01 code for LDA
01 07 value 7
02 03 code for ADD
03 0A address 0A
04 02 code for STA
05 10 address 10
06 04 code for JNC
07 02 address 02
08 05 code for JMP
09 00 address 00
0A 09 Value 09 stored at address 0A

•  Five opcodes: LDA, ADD, STA, JNC, JMP 
•  Some opcodes take more than one CPU cycle, extra registers  
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How to start Lab 6 

■  Go to the online write-up on the course page 
■  From there, you will find links to: 

◆  Entity: cpu.vhdl 
◆  Architecture: cpu-fsm.vhdl 
◆  Memory: procram.vhdl 
◆  7 segment display: disp4.vhd 

■  Download these files and use them as a starting point 
■  Discuss ideas for further development with the instructor 


