
1

Digital System
Construction

Lecture 7: Signal processing and CPUs FYSIKUM

Processors
Embedded systems
Lab 6: Simple CPU in VHDL

Digital signal processing (FIR, IIR)

Lab 8: digital notch filter

Digital signal processing
■  Analyse/transform waveforms in discrete, digital format

◆  Digital input data usually derived from analog signals
using analog-digital converters (ADC)

◆  Transformed output can be converted back to analog
with digital-analog converters (DAC)

■  DSP is a primary application of FPGAs
◆  Telecoms are the biggest FPGA customers, so FPGAs

designed with special “multiply-accumulate” DSP blocks
■  Wide range of DSP techniques and applications

◆  Can’t be covered in a single lecture
◆  Will briefly present three common filter examples:

✦  Finite Impulse Response (FIR) filter – pulse processing
✦  Infinite Impulse Response (IIR) filter
✦  Digital notch filter (FIR) (Lab 8)

2

Finite Impulse Response (FIR)
■  Process data with finite length

◆ Finite “window” of data points
◆ For example: detector pulses measured

in a few consecutive ADC samples
■  FIR filter output is a weighted sum of

the data points in the window
■  Output is independent of data points

outside of the window
◆ No “memory” of earlier iterations
◆ FIR filters are simple to implement and

inherently stable
3

Example: detector pulse

■  ATLAS hadronic
Tile calorimeter

■  Unipolar pulse
(Only positive
amplitude)

■  Width ~150ns
■  25 MHz ADC rate

(5-6 samples)

4

Applying a FIR filter

■  “Sliding window”
of 7 samples: Sn

■  Each sample Sn
multiplied by a
coefficient Cn

■  Sum products to
produce the filter
output:

5

S0 S1

S2

S3
S4

S5

S6

F = S0C0 + S1C1 + S2C2 +!+ S6C6
Coefficients Cn determine the filter response

Example: pulse integral
■  Samples have equal

weights
◆  “Area under the curve”

■  Filter coefficients Cn:

6

S0 S1

S2

S3
S4

S5

S6

F = S1 + S2 +!+ S6

Sample Weight

S0 0

S1 1

S2 1

S3 1

S4 1

S5 1

S6 1

Integral with pedestal subtraction

■  Subtract pedestal
(S0) from the other
six samples.

■  Filter coefficients Cn:

7

S0 S1

S2

S3
S4

S5

S6

F = (S1 + S2 +!+ S6)− (6 × S0)

Sample Weight

S0 -6

S1 1

S2 1

S3 1

S4 1

S5 1

S6 1

Peak amplitude
■  Use only the

maximum sample
◆  For example, S4

■  Filter coefficients Cn:

8

S0 S1

S2

S3
S4

S5

S6

F = S4

Sample Weight

S0 0

S1 0

S2 0

S3 0

S4 1

S5 0

S6 0

“Optimal filter”
■  Match coefficients to the

ideal pulse shape
(with noise)

■  Gives best resolution and
signal/noise performance

■  Filter coefficients Cn:

9

S0 S1

S2

S3
S4

S5

S6

Sample Weight

S0 -172

S1 0

S2 14

S3 62

S4 64

S5 24

S6 8 Maximum response when samples are
aligned with the ideal pulse shape

Timing (phase) measurement
■  Use derivatives of

ideal curve as
coefficients

■  Divide the timing
filter output by the
pulse amplitude

■  Can achieve sub-ns
timing resolution
with 25 ns sampling
rate

10

S0 S1

S2

S3
S4

S5

S6

Positive
slope

Negative
slope

Simulated PMT pulse shaper

11

Shaper output

PMT anode current

Shape is amplitude independent

12

Linear fit to ideal shape gives:
•  Amplitude
•  Time
•  Pedestal

Sampled shape (80 MHz)

13

Multiple samples on rising and falling edges to allow
sub-nanosecond pulse timing reconstruction

FIR filter architecture

14

FF FF FF FF FF FF FF FF
ADC samples

80 Mbit/s shift register clock

… To readout

× C1 × C2 × C3 × C4 × C13 × C14 × C15 × C16

Σ

FIR filter
with matched
coefficients (Cn):

> ≥
Valid pulse
at t=n

Thresh (min)

“Peak finder” gives a valid pulse if F(t=n) is:
1.  ≥ a minimum noise threshold,
2.  > the previous FIR output (t = n-1)
3.  ≥ the next FIR output (t = n+1)

Similar to ATLAS L1Calo bunch-crossing ID algorithm

…

FIR output

n n-1 n+1

S1 S2 S3 S4 S13 S14 S15 S16 ADC samples

Filter
coefficients

F (t) = CnSn (t)
n=1

16

∑

ATLAS L1Calo PreProcessor

15

10

d1 d2 d3 d4 d5 d6 d7 d8

xa1 xa2 xa3 xa4 xa5 xa6 xa7 xa8

+

f1 f2 f3

Peak Finder

Data Pipeline

Multipliers

0

In

Out

f1<f2>f3

FIR to ET

8

Adder Tree

In Out
ET

MUX
D

rop B
its

LUT

f1≤f2>f3

FIR filter
(DSP multipliers)

Calibration
look-up

table (RAM)

Adder tree and
peak finder

in regular logic

Shift registers (flip flops)

FIR filter amplitude output

16

(15 samples)

FI
R

 o
ut

pu
t (

ar
bi

tra
ry

 u
ni

ts
)

Pulse time (ns)

Centered pulse
(t=n)

Too late
t = (n-1)

Too early
t = (n+1)

FIR filter output is
highest when pulse
is time-aligned with
the “ideal” shape

Timing filter output

17

(FIR coefficients ~ derivatives of pulse shape)

Ti
m

in
g

fil
te

r (
ar

bi
tra

ry
 u

ni
ts

)

Pulse time (ns)

Sub-ns timing possible,
depending on noise

and clock jitter

Infinite impulse response (IIR)
■  Recursive filter

◆ Output depends on on
previous history

◆ Delay provides a
“memory” of previous
states (like C in the
analog filter)

■  Efficient to implement,
but not inherently stable
like FIR

18

Delay

Coef

In Out

General form of an IIR

19

yn = b0xn + b1xn−1 + b1xn−1 +!
+ a1yn−1 + a2yn−2 +!

Simple low-pass IIR filter

20

Delay

0.9

Xn Yn

yn = 0.1⋅ xn + 0.9 ⋅ yn−1

Yn-1

0.1

b0 a1
y ≅ the integral of x
with a slow decay

Simple high-pass IIR filter

21

Delay

0.86

Xn Yn

yn = 0.93⋅ xn − 0.93⋅ xn−1 + 0.86 ⋅ yn−1
= 0.93⋅(xn − xn−1)+ 0.86 ⋅ yn−1

Yn-1

0.93

b0 a1 b1

-0.93

Delay
Xn-1

y integrates the change in x

Filter response (time domain)

22

Lab 8: Digital notch filter (FIR)
■  Simple FIR filter to block a

given frequency and all of
its higher harmonics
◆ AKA “comb” filter

■  Delay sets the base
frequency
◆ FB = Delay-1

■  Use ADC and DAC to filter
analog signals in real time

23

Response

24

Basic processor elements

■  Processor
◆ State machine for executing commands
◆  Logic unit(s) for different operations
◆ Registers for control, temporary storage

■  Memory interface(s)
◆ Access and store instructions, data

■  Peripheral interface(s)
◆  Interfaces with the rest of the world

25

Two basic architectures:

Von Neumann

Harvard

Components of a CPU
■  Control unit

◆ Decode and execute instructions
■  Arithmetic and Logic Unit (ALU)

◆ Perform math and logic algorithms
■  Registers:

◆ Store temporary data
◆ Control and/or monitor specific functions

26

27

Simple Von Neumann CPU
Memory

Control
Unit

ALU
Accum

Processor

Input
Output
Unit

Data Bus

Program
counter

Memory
address
register (MAR)

Memory
data register
(MDR)

1
2
3
4
5
6
7
8
9
10
11
12

P
eripheral D

evices

Current
instruction

28

Basic CPU functionality

■  Fetch instruction (from memory)
■  Interpret instruction

(determine what action to perform)
■  Fetch data (get additional operands from

memory or registers as needed)
■  Execute the instruction
■  Write data (store results in memory or

registers)

Digital Systemkonstruktion - 1 29

Instruction sets
■  CPUs are designed with a list of instructions that it

can execute (instruction set)
■  Each instruction has an identifying code (opcode)
■  Instructions usually require additional information

to perform a task. Some examples:
◆  ADD, ASSIGN, MOV, JMP, EXIT

■  Most opcodes need additional data (operands) in
order to be executed:
◆  Addresses (location of data/next instruction/etc)
◆  Numbers (integer/float/BCD)
◆  Characters (ASCII / EBCDIC)
◆  Logical data (boolean/status/etc)

Digital Systemkonstruktion - 1 30

High-level vs low-level code
■  C code Assembly code

int x=0 ; .model small

int y=0 ; .stack 100h

main .data

{ x dw 0

x=2 ; y dw 0
y=3 ; .code

x=x+y; mov x, 2

} mov y, 3

 mov ax, x

 add ax, y
 mov x, ax

 end.

31

CPU registers
■  CPUs use registers to:

◆  Hold instructions to be executed
◆  Hold data being processed
◆  Hold memory address(es)
◆  Control and monitory CPU functionality and/or

peripherals
◆  Etc.

■  Some visible to programmer, others only
only by CPU and special O/S functions.

■  May be general purpose, or special purpose.

32

General purpose registers
■  General purpose registers:

◆ Visible to the user/programmer
◆ Usable by many operations

✦ E.g. temporarily hold an address
(e.g. pointer) or data (intermediate result)

◆ Early CPUs had one: the accumulator
✦ Hold intermediate results of a calculation

33

Registers
■  Early CPUs had one general-purpose register

◆ Accumulator (hold intermediate results)
■  Special purpose registers include:

◆ Program Counter (PC)
✦ Address of next instruction to be fetched from memory

◆ Current Instruction Register (CIR)
✦ Current instruction being executed.

◆ Memory address and data registers (MAR & MDR)
✦ Used for reading/writing to memory

■  Registers can also: control/monitor peripherals,
error/status flags, etc.

34

Von Neumann CPU (review)
Memory

Control
Unit

ALU
Accum

Processor

Input
Output
Unit

Data Bus

Program
counter

Memory
address
register (MAR)

Memory
data register
(MDR)

1
2
3
4
5
6
7
8
9
10
11
12

P
eripheral D

evices

Current
instruction

35

Computer system types
■  General-purpose

◆ PCs, mainframes, etc
■  Embedded systems

◆ Microcontrollers
◆ Digital signal processors
◆  etc.

Embedded Systems
■  Nearly any computer with the following properties:

◆  Single function
✦ Dedicated to running a specific application

◆  Tightly constrained, minimal architecture
✦ Low cost; single-to-few components
✦ Works 'fast enough'
✦ Low power (especially for portable devices)

◆  Reactive, real-time operation
✦ Continually monitors environment, and reacts to

changes
◆  Hardware and software co-exist

✦  'Hardware-level' programming
36

37

embedded application examples
■  Communication devices

◆  Network routers and switches
◆  Smart phones

■  Automotive
◆  Braking systems, traction control, airbag release systems,

cruise-control, fuel injection, etc...
■  Aerospace

◆  Flight-control systems, engine controllers, autopilots,
passenger in-flight entertainment

■  Measurement systems
◆  Data acquisition hardware, slow-control and monitoring,

user interfaces (buttons and touch screens), etc.

38

Embedded Software Tools

CPU

Logic Design Tools

I/O

FPGA

Memory

Logic Design Tools

FPGA +
Memory + IP +
High Speed IO

Embedded Software Tools

CPU

 In
te

gr
at

io
n

of
 F

un
ct

io
ns

Discrete
elements

Logic Design Tools

Embedded Software Tools

Logic + Memory
+ IP +

Processors +
High-speed IO

Different levels of integration

Combined memory
and peripherals

in ASIC or FPGA

System
on chip

FPGA Embedded development

40

Microcontrollers
■  Dedicated single-chip system

◆  Integrated CPU, memory, peripherals
■  Designed for real-time measurement, communication

◆  Integrated analog-digital conversion
◆  UART, I2C, SPI, etc...

■  Low-cost, low-power architectures
◆  Limited CPU speed (MHz range)
◆  Limited memory resources
◆  Small package with limited pins

Microchip
PIC32

Harvard
architecture

General-use
digital I/O

Measurement

Communication, interrupts, etc

Register-based control
Example:
Digital
I/O port

Open-drain
control (ODC)

Tri-state (TRIS)

Register for
output data

Register control of I/O ports

Digital Systemkonstruktion - 1 44

Lab 6: design a
microprocessor

Digital Systemkonstruktion - 1 45

Lab 6 overview:

■  Start with "skeleton" code for a simple CPU
◆  available for download from course home page

■  Build up functionality so that the CPU can run a
sample program containing five opcodes

■  Expand the design on your own…
◆ New opcodes to run more complex programs.
◆ Peripherals
◆ Etc.

Data write

Digital Systemkonstruktion - 1 46

Lab 6 CPU (von Neumann):

Program counter
(PC)

Control Unit

(FSM)

Accumulator

Memory

Other
registers

Clock

Reset
Data read

Address

Data write

Digital Systemkonstruktion - 1 47

Your first program
Address Data Comment
00 01 code for LDA
01 07 value 7
02 03 code for ADD
03 0A address 0A
04 02 code for STA
05 10 address 10
06 04 code for JNC
07 02 address 02
08 05 code for JMP
09 00 address 00
0A 09 Value 09 stored at address 0A

•  Five opcodes: LDA, ADD, STA, JNC, JMP
•  Some opcodes take more than one CPU cycle, extra registers

Digital Systemkonstruktion - 1 48

How to start Lab 6

■  Go to the online write-up on the course page
■  From there, you will find links to:

◆  Entity: cpu.vhdl
◆  Architecture: cpu-fsm.vhdl
◆  Memory: procram.vhdl
◆  7 segment display: disp4.vhd

■  Download these files and use them as a starting point
■  Discuss ideas for further development with the instructor

