< Qi P

%

A
wj%@w
o~
W L

7 O

/v/7+‘$\ﬁ

Digital System
Construction

FYSIKUM

L ecture 6

Functions and Procedures in VHDL
Digital clock management

Serial communication

Lab introductions:
Lab 5: RS232 serial receiver
Lab 7: Arbitrary function generator

Functions and
procedures

Functions in VHDL

Similar to functions in programming languages
+ Contain sequential code

Can be declared:

+ In an architecture or process before ‘begin’

+ Or within a package.

Declaration includes

¢ Arguments
List of inputs to the function, including type
Arguments are not changed by the function

+ return (result_type)

Example: buffer with enable

architecture archl of buffer 1is

function enable (d, en: std logic) return std logic is

begin
if en = '0' then return '0'; -- Disable output
else return d;
end if;

end enable;

signal data, enb : std logic;

begin -- architecture

q <= enable (data, enb); —— Use function in architecture

end archl;

Example: vector to integer

function vec to int (x: std logic vector) return integer is

variable result: integer;

begin
result := 0;
for 1 in x'range loop
result := result * 2; —-— Shift output to left
case x (1) 1is
when 'l' => result := result + 1; -- Add 1
when others => null;
end case;
end loop;

return result;

end vec to int;

Procedures

Similar to functions, in that:
+ They also contain sequential code

+ Declared in architecture or process (before begin)
or within packages

No ‘return’ value

+ Instead, procedures can change the arguments
Procedures declared with an argument list

¢ Arguments have both type and direction

¢ Arguments that are out or inout can be changed

D flip-flop with enable

architecture archl of register 1is

procedure dff -—- declare procedure
(signal d, en, clk: in std logic;
signal g: out std logic) is -- g 1s an output
begin
if en = '0' then —-— output enable (async)
qg <= "'0";
elsif rising edge(clk) then
q <= d;
end if;
end dff;

signal din, enable, clock, dout: std logic;

begin -—- Begin architecture
din <= i1nput port;
dff (din, enable, clock, dout); —-- call procedure here

output port <= dout;
end archl;

Using functions and procedures

Functions and procedures are both subprograms
Can help in writing compact, readable code.
Functions commonly used for:

¢ Simple expressions for complex functions

example: parity/checksum generation

+ Defining operators for custom signal/variable types
+ Only combinatorial code

Procedures good for:

¢ Simple alternative to component
declaration/instantiation

¢ Sequential code with clocks
+ Useful in writing complex test benches

Clock Management

Clock synthesis/conditioning

Cleaning and distribution:

¢ Re-synthesize input clock to 50% duty cycle
¢ Jitter removal w/ phase-locked loop (PLL)

¢ FPGA input buffer delay compensation
Synthesizing new frequencies

+ multiply and divide input clock frequency by
set values

Timing alignment
+ Produce clocks with same frequency but
shifted in phase by 90°, 180°, 270°, etc.

¢ Fine delay setting

10

Xilinx 7 series clock
management tile (CMT)

Input
distribution

_—

BUFR
IBUFG (CC)
BUFG

GT

BUFH

Local Routing

__'ecommended)|

Figure 3-1:

SN
CLKIN{
CLKIN2
|~ Phase-locked
L. BUFG
N Loop (PLL) gy
CLKFB
|~
SN
CLKINT1
CLKIN2
Mixed-mode
L~ clock manager |[— gﬂ,ﬁﬁ
N (MMCM)
CLKFB
/ ugd72_c2_01_032511

Block Diagram of the 7 Series FPGAs CMT

Output
"~ buffers

11

What is a PLL?

faster/slower

Voltage sets

control signal VCO frequency
REFERENCE FREQUENCY
INPUT Fy OUTPUT
ERASE e | conrroLLED oN ” ZN
BEIECTOR el OSCILLATOR
—»
FEEDBACK
INPUT F
DIVIDEBYN |
COUNTER
Try to keep Fr and F
at same frequency/phase < Clock divider makes
Four =NXFy

12

General
Routing

CLKIN1 —
CLKIN2 —

CLKFB ——

Clock

—={ Switch

Circuit

Lock Detect
Lock Monitor

Lock

PFD |~ CP |~ LF

—| VCO

2

MMCM block diagram

(PLL block is similar)

F,n multiplied by M

S

/

PLL loop

/\/_/__/__/__/__/\

o
00 L~ cwouro O
Fractional Divide b—= CLKOUTOB |
= CLKOUT1 o
o1 o cLkouTie O
= CLKOUT2 _c>3‘
02 b—» CLKOUT2B
©
= CLKOUT3 D
03 o= CLKOUT3B O
=
o4 —= CLKOUT4 5
)
= CLKOUTS 5
05 3
S
= CLKOUTS
06 O
M CLKFBOUT
(Fractional Divide) CLKFBOUTB

LRAT2_c2 02 020712

13

Clock buffers/distribution

See Clocking
Wizard in
|IP catalog

Clock Capable I/O

Clock Capable 1/O

Regional buffers:

BUFIO (register I/O signals) >—_

BUFR (logic in a region)

Multi-region clocking
BUFMR

Global buffers: R |

BUFG

/O = CLBs
= CLB
o ° Block DSP
I/O b CLBs , RAM s Tile
/O =bCLBs
p IO - CLBs
Ny VO - CLBs Slock ep
RAM Tile
P I/O _________ ->CLBS b s
o L CLBs
N -] = —————]
BUFIO
\BUFR
- 7" To more
FPGA logic

Not an exhaustive list

resources

14

Lab 5: UART receiver

(serial data receiver/decoder)

15

What is a UART?

Universal Asynchronous Receiver
and Transmitter

Typically used for serial data
transmission (e.g. RS232)

Common implementations:

+ Discrete component, or
¢ Embedded in FPGA or ASIC

16

UART diagram (simplified)

Buffers (FIFO)

RX 3
Receive e

—>

TX _ 8
Shift out ===

Read

=)

Write

(=

17

RS232 data format (physical)

+V/-V=0/1

we < | (inverted)

c 1 ¢ 0 0 0 O 1 0©0 1 1

Idle: 1

e e e] — — e ———————— ——————— —— . — — ———————— ——

Start bit: O

o ven Data Bits
Start Parity Two stop
bit bit its
| - \ ol
Data packet comesponding to the ASCI character A

Stop bit(s): 1

18

Start

bit

lo]

RS-232 format (logical)

> T

2

3

4

5

6

14

-

Stop

RS-232 communication is asynchronous:
+ Clock signal not sent with the data.

¢ Each word synchronized using its start bit

¢ Receiver reads data with local internal clock

(defined by baud rate)

Signal is logical '1' while idle, packet ends with '1"

Start bit ('0") signals that data is about to be sent.

Up to 8 bits of data sent. Optional parity bit can be

added. Finally, stop bit ('1') is sent.

19

RS232 formats (options)

Baud rates (bits/second):

+ 300, 600, 1200, 1800, 2400, 3600, 4800,
7200, 9600, 14400, 19200, 28800, 38400,
57600, 115200

Data bits
©5,06,7,0r8
Parity bit

¢ odd/even/none

Stop bits (minimum time between words)
1,150r2

20

Simple UART transmitter

Write

j>1 FIFO —é-i—

Data written to asynchronous pipeline buffer (FIFO)
A state machine reads data bytes one-by-one

+ Adding start/stop bits, and parity (if used)

Data words are then sent to a shift register

+ Bits transmitted one-by one at baud rate

+ Correct order: start, data (LSB first), parity, stop

Tx
baud clk

-AT- Shift out

=

= ® Q0 OS5 m

21

"Simple” UART receiver

— Read

baud clk

3
RX Decoder + j>

Naively:

¢ A decoder receives and processes bits one by one into
a shift register at the baud clock rate

¢ Decoded output written in parallel to a readout FIFO

Problems with this approach:
¢ Data arrives asynchronously,
Don't know when data will arrive!

+ Transmitter/receiver clocks have slightly different
frequencies, out of phase

22

UART Receiver Sampling

“Ideal” serial data waveform:

Idle Start Bit LSBData | | | MSB Data Stop . . .

What the receiver “sees’:

H

Early Late Who knows? Glitch!

Receiver needs to “center-sample” the data bits to
assure proper reception (or even take several samples)

23

UART Receiver Sampling

Receiver samples the input (Rx) signal at

(for example)’

6 times the baud rate:

Il

Detect /" |

Edgeof | 1 . |

Start Bit ‘HHH ” ;
. 7 -~

Avoids “seeing”
glitches between
bit intervals

Count 8 clock times to
get to center of start bit

Count 16 clock times to sample

at center of each data bit interval

24

Receiver timing

UART receiver clock derived from a high-
frequency local oscillator (e.g. 100 MHz)

Can use a counter to divide the clock

+ Maximum counter value (before resetting to
zero) is a divisor

Divisor = freq / (num_samples * baud_rate)

+ Match output clock to baud rate by (much)
better than 5% to avoid data misalignment

Best to generate a symmetric baud clock
MMCM not suitable here (too slow!)

+ But essential for (e.g.) high-speed links!
Distribute with a GBUF for best results

25

UART Rx block diagram

|dle 011234 |5|6|7] Stop
Serial input 7-segment disp
UART Rx -
state. [——= |5 =1 1

~ machine

Clock
—> L.
100 MHz | divider | Baud clock

26

Other pro

tocols: SPI

MASTER SLA
SCK SCK
MOSI MOSI
MISO MISO
SS SS
Master to Slave Slave to Master

i[”(‘ next byte
SCK _{H{ H‘”””””H{ “Master” provides the clock
Clock from . .
i e e s e e e o (no time-alignment needed)
012345867 012345267
MOSI N B r
Master-Out

Slaveln 44001010
0x53 = ASCII 'S’

MISO “Slave” response is

olterin pre-defined

Slave-Select

27

START
condition

Other protocols: 12C

Shared tri-state data bus

SDA
] l T| l T| lsa Master provides clock

Protocol example

ADDRESS RW ACK DATA ACK DATA ACK STOP
condition

28

Lab 5

Design the receiving part of a UART circuit:
+ Receive RS232 words

8 bits of data, no parity, at 9600 Baud
+ Extract and store the 8 data bits in a register

¢ Display data on the 7-segment hexadecimal
LED display

Write a test bench and simulate

Synthesize for the FPGA board and test with real
serial data.

29

Lab 7 : Arbitrary waveform
generator

30

Typical waveform
generator outputs:

Square

i Triangle

31

Project goals

Build a simplified digital function generator
& Square, triangle and sine waves
User-selectable with switches/buttons
+ Fixed frequency and amplitude
For simplicity
Can try to make it adjustable if you like...
Produce an analog output

+ Use PMOD-DA module
Driver |IP available on course web page

32

Design overview

Clock divider

DAC_clk

> =16 —l

Counter/
DAC driver

|

rst
>

Qone.

100 MHz Clk
Waveform
l (8b unsigned
| 0 to 255
Waveform
Generator
(square/triangle/sine) (¢
Counter
(8b signed)
-100 to +99

DAC controller |

(pmod_da1_ctrl) |

SDO
SD1

SYNC

I

Select wave type
(switches)

PMOD
DAl

33

Waveform generator

Input: signed 8b vector from the counter/DAC driver
module. Range -100 to +99.

Output: unsigned 8b vector (0 to 255)

¢ Square wave (simple)
Could just use the sign of the input, for instance
+ Triangle wave (slightly less simple)

Several ways to do this, including counting up/down,
sign-dependent adding/subtracting from a constant, etc.

+ Sine wave (challenging)
Not directly supported operation in VHDL
One “brute force” method is a RAM lookup table
Less known, but small footprint: CORDIC algorithm

34

Basic CORDIC concept

(sin + cos)

v 4 \
\ (x1. .“’1) (.\‘l, _1“1)
B
(x"' Yo) Yo / (x4, ¥o)
‘ > >
K R Xy X
rotate by 0 .
x, = x,co0s60 — y,sin6
(%o, 7))y (x, »,) |
Y, = x,smm0+ y, cosO

Originally developed for sine/cosine.
Later extended to include:

tan, hyperbolics, square root, etc.

Can configure and generate
in Vivado |IP Catalog

35

Cordic algorithm (pipelined)

:>*<: sgn(zy)
>>0 >>0
A /Y NI v
X1 V1 Z3
sgn(z;)
>>1 >>1
; + iZ____/ +
X2 A 22
sgn(z;)
>>2 >>2
A /Y NI v
1 1 1
Xn—-1 Vn-1 zn—J
sgn(zp_1)
>>n—1 >>n—1

I+

Yn

I+
N

« Can also implement in
iterative(loop) architecture.

« Asmall LUT provides the
values of a,

* n-bit CORDIC calculation
requires n steps/iterations

CORDIC in rotation mode:

Liy1 — L5 — diy.,;2‘i Ty = K (’Jfg COSs 00 — Yo sin00)
i1 =Y +dizi27" Yn = K (yo cos Oy + z(sinby)
Zit1 = 2zi — diq 2z =0

Can find good CORDIC articles
and resources on the net...

36

PMOD DA1 module

DAl Module

Standard form factor, use any
PMOD port on the BASYS3

Dual DAC channels (1-2)

+ 8 bit dynamic range

¢ 0-3.3V

Serial interface (SPI-like)

¢ Two output channels DO, D1

+ Serial clock (SCLK) max 25 MHz

¢ The SYNC signal enables a new
write sequence while it is low

VHDL IP module provides a
simplified interface

+ Start write sequence with “rst”

¢ Returns “DONE” when finished
37

Lab 5

Design an arbitrary waveform generator that
provides the following:

& Square, triangle and sine wave functions

+ Wave function user selectable (switches/buttons)
+ Fixed frequency and amplitude

+ Drive analog output through PMOD-DA1 module
Write a test bench and simulate

Implement on BASYS3 board and test output with
an oscilloscope.

38

