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Digital System 
Construction 

Lecture 6 FYSIKUM 

Functions and Procedures in VHDL 

Lab introductions: 
  Lab 5: RS232 serial receiver 
  Lab 7: Arbitrary function generator 

Digital clock management 
Serial communication 
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Functions and 
procedures 
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Functions in VHDL 
■  Similar to functions in programming languages 

◆ Contain sequential code 
■  Can be declared: 

◆  In an architecture or process before ‘begin’ 
◆ Or within a package. 

■  Declaration includes 
◆ Arguments 

✦ List of inputs to the function, including type 
✦ Arguments are not changed by the function 

◆   return (result_type) 
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architecture arch1 of buffer is 
 
function enable (d, en: std_logic) return std_logic is 
begin 
    if en = '0' then return '0';  -- Disable output 
    else return d;    
    end if; 
end enable; 
 
signal data, enb : std_logic; 
 
begin  -- architecture 
 
q <= enable(data, enb);  -- Use function in architecture 
 
end arch1; 
 

Example: buffer with enable 
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function vec_to_int (x: std_logic_vector) return integer is 
 
variable result: integer; 
 
begin 
    result := 0; 
    for i in x'range loop        
       result := result * 2;    -- Shift output to left 
       case x(i) is 
          when '1' => result := result + 1;  -- Add 1 
          when others => null; 
       end case; 
    end loop; 
    return result; 
 
end vec_to_int; 

Example: vector to integer 
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Procedures 
■  Similar to functions, in that: 

◆ They also contain sequential code 
◆ Declared in architecture or process (before begin)  

or within packages 
■  No ‘return’ value 

◆  Instead, procedures can change the arguments 
■  Procedures declared with an argument list 

◆ Arguments have both type and direction 
◆ Arguments that are out or inout can be changed 
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architecture arch1 of register is 
 
procedure dff    -- declare procedure 
   (signal d, en, clk: in std_logic; 
    signal q: out std_logic) is  -- q is an output 
begin 
   if en = '0' then   -- output enable (async) 
      q <= '0'; 
   elsif rising_edge(clk) then 
      q <= d; 
   end if; 
end dff; 
 
signal din, enable, clock, dout: std_logic; 
 
begin      -- Begin architecture 
   din <= input_port; 
   dff(din, enable, clock, dout); -- call procedure here 
   output_port <= dout;  
end arch1; 
 

D flip-flop with enable 



Using functions and procedures 
■  Functions and procedures are both subprograms 
■  Can help in writing compact, readable code. 
■  Functions commonly used for: 

◆  Simple expressions for complex functions 
✦  example: parity/checksum generation 

◆  Defining operators for custom signal/variable types 
◆  Only combinatorial code 

■  Procedures good for: 
◆  Simple alternative to component  

declaration/instantiation 
◆  Sequential code with clocks 
◆  Useful in writing complex test benches 
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Clock Management 
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Clock synthesis/conditioning 
■  Cleaning and distribution: 

◆ Re-synthesize input clock to 50% duty cycle 
◆  Jitter removal w/ phase-locked loop (PLL) 
◆ FPGA input buffer delay compensation 

■  Synthesizing new frequencies 
◆   multiply and divide input clock frequency by 

set values 
■  Timing alignment 

◆ Produce clocks with same frequency but 
shifted in phase by  90º, 180º, 270º, etc. 

◆ Fine delay setting 



Xilinx 7 series clock 
management tile (CMT)  
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Input 
distribution 

Output 
buffers 

Phase-locked 
Loop (PLL) 

Mixed-mode 
clock manager 

(MMCM) 



What is a PLL? 
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faster/slower 
control signal 

Voltage sets 
VCO frequency 

Try to keep FF and FIN 
at same frequency/phase Clock divider makes 

FOUT = N x FIN 



MMCM block diagram 
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PLL loop 
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(PLL block is similar) 



Clock buffers/distribution 
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Regional buffers: 
   BUFIO (register I/O signals) 
   BUFR (logic in a region) 
Multi-region clocking 
   BUFMR 
Global buffers: 
   BUFG 

Not an exhaustive list 

See Clocking 
Wizard in  
IP catalog 



15 

Lab 5: UART receiver 
(serial data receiver/decoder) 
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What is a UART? 

■  Universal Asynchronous Receiver 
and Transmitter 

■  Typically used for serial data 
transmission (e.g. RS232) 

■  Common implementations: 
◆ Discrete component, or 
◆ Embedded in FPGA or ASIC 



17 

UART diagram (simplified) 
Buffers (FIFO) 

Receive 
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RS232 data format (physical) 

Start bit: 0 

+V / -V = 0 / 1 
(inverted) 

Idle: 1 Stop bit(s): 1 
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RS-232 format (logical) 

■  RS-232 communication is asynchronous: 
◆  Clock signal not sent with the data.  
◆  Each word synchronized using its start bit 
◆  Receiver reads data with local internal clock  

(defined by baud rate)  

■  Signal is logical '1' while idle, packet ends with '1' 
■  Start bit ('0') signals that data is about to be sent.  
■  Up to 8 bits of data sent. Optional parity bit can be 

added. Finally, stop bit ('1') is sent. 

0 1 2 3 4 5 6 7 P Stop Idle 

Start 
bit 
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RS232 formats (options) 
■  Baud rates (bits/second): 

◆  300, 600, 1200, 1800, 2400, 3600, 4800, 
7200, 9600, 14400, 19200, 28800, 38400, 
57600, 115200 

■  Data bits 
◆  5, 6, 7, or 8  

■  Parity bit 
◆  odd/even/none 

■  Stop bits (minimum time between words) 
◆  1, 1.5 or 2 



21 

Simple UART transmitter 

■  Data written to asynchronous pipeline buffer (FIFO) 
■  A state machine reads data bytes one-by-one 

◆ Adding start/stop bits, and parity (if used) 
■  Data words are then sent to a shift register 

◆ Bits transmitted one-by one at baud rate 
◆ Correct order: start, data (LSB first), parity, stop 

Shift out 
8 Tx 

Write 

FIFO 
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baud clk 
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"Simple" UART receiver 

■  Naively: 
◆  A decoder receives and processes bits one by one into 

a shift register at the baud clock rate 
◆  Decoded output written in parallel to a readout FIFO 

■  Problems with this approach: 
◆  Data arrives asynchronously,  

✦  Don't know when data will arrive! 
◆  Transmitter/receiver clocks have slightly different 

frequencies, out of phase 

Decoder 
8 

Rx 

Read baud clk 
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UART Receiver Sampling 
■  “Ideal” serial data waveform: 

■  What the receiver “sees”: 

■  Receiver needs to “center-sample” the data bits to 
assure proper reception (or even take several samples) 

Idle Start Bit LSB Data MSB Data Stop . . . 

Early Late Who knows? Glitch! 
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UART Receiver Sampling 
■  Receiver samples the input (Rx) signal at  

(for example )16 times the baud rate: 

Detect  
Edge of 
Start Bit 

Count 8 clock times to 
get to center of start bit 

Count 16 clock times to sample 
at center of each data bit interval 

Avoids “seeing” 
glitches between 
bit intervals 
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Receiver timing 
■  UART receiver clock derived from a high-

frequency local oscillator (e.g. 100 MHz) 
■  Can use a counter to divide the clock 

◆ Maximum counter value (before resetting to 
zero) is a divisor 
✦ Divisor = freq / (num_samples * baud_rate) 

◆ Match output clock to baud rate by (much)  
better than 5% to avoid data misalignment 

■  Best to generate a symmetric baud clock 
■  MMCM not suitable here (too slow!)  

◆ But essential for (e.g.) high-speed links! 
■  Distribute with a GBUF for best results 



UART Rx block diagram 
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Clock 
divider 

UART Rx 
state 

machine 

100 MHz Baud clock 

7-segment disp 

0 1 2 3 4 5 6 7 Stop Idle 

Serial input 



Other protocols: SPI 
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“Master” provides the clock 
(no time-alignment needed) 

“Slave” response is 
pre-defined 



Other protocols: I2C 
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Shared tri-state data bus 
Master provides clock 

Protocol example 
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Lab 5 
■  Design the receiving part of a UART circuit: 

◆ Receive RS232 words 
✦ 8 bits of data, no parity, at 9600 Baud 

◆ Extract and store the 8 data bits in a register  
◆ Display data on the 7-segment hexadecimal  

LED display 
■  Write a test bench and simulate  
■  Synthesize for the FPGA board and test with real 

serial data. 
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Lab 7 : Arbitrary waveform 
generator 
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Typical waveform  
generator outputs: 



Project goals 
■  Build a simplified digital function generator 

◆ Square, triangle and sine waves 
✦ User-selectable with switches/buttons 

◆ Fixed frequency and amplitude 
✦ For simplicity 
✦ Can try to make it adjustable if you like… 

■  Produce an analog output 
◆ Use PMOD-DA module 

✦ Driver IP available on course web page 
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Design overview 
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Waveform generator 
■  Input: signed 8b vector from the counter/DAC driver 

module. Range -100 to +99. 
■  Output: unsigned 8b vector (0 to 255) 

◆  Square wave (simple) 
✦  Could just use the sign of the input, for instance 

◆  Triangle wave (slightly less simple) 
✦  Several ways to do this, including counting up/down, 

sign-dependent adding/subtracting from a constant, etc. 
◆  Sine wave (challenging) 

✦  Not directly supported operation in VHDL 
✦  One “brute force” method is a RAM lookup table 
✦  Less known, but small footprint: CORDIC algorithm  
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Basic CORDIC concept  
(sin + cos) 
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Originally developed for sine/cosine. 
Later extended to include:  
tan, hyperbolics, square root, etc. 

Can configure and generate 
in Vivado IP Catalog 



Cordic algorithm (pipelined) 
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CORDIC in rotation mode: 

Can find good CORDIC articles 
and resources on the net… 

•  Can also implement in 
iterative(loop) architecture. 

•   A small LUT provides the 
values of αn 

•  n-bit CORDIC calculation 
requires n steps/iterations 



PMOD DA1 module 
■  Standard form factor, use any 

PMOD port on the BASYS3 
■  Dual DAC channels (1-2) 

◆  8 bit dynamic range 
◆  0 – 3.3V 

■  Serial interface (SPI-like) 
◆  Two output channels D0, D1 
◆  Serial clock (SCLK) max 25 MHz 
◆  The SYNC signal enables a new 

write sequence while it is low 
■  VHDL IP module provides a 

simplified interface 
◆  Start write sequence with “rst” 
◆  Returns “DONE” when finished 
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Lab 5 
■  Design an arbitrary waveform generator that 

provides the following: 
◆ Square, triangle and sine wave functions 
◆ Wave function user selectable (switches/buttons) 
◆ Fixed frequency and amplitude 
◆ Drive analog output through PMOD-DA1 module 

■  Write a test bench and simulate  
■  Implement on BASYS3 board and test output with 

an oscilloscope. 


