
1

Digital System
Construction

Lecture 6 FYSIKUM

Functions and Procedures in VHDL

Lab introductions:
 Lab 5: RS232 serial receiver
 Lab 7: Arbitrary function generator

Digital clock management
Serial communication

2

Functions and
procedures

3

Functions in VHDL
■  Similar to functions in programming languages

◆ Contain sequential code
■  Can be declared:

◆  In an architecture or process before ‘begin’
◆ Or within a package.

■  Declaration includes
◆ Arguments

✦ List of inputs to the function, including type
✦ Arguments are not changed by the function

◆  return (result_type)

4

architecture arch1 of buffer is

function enable (d, en: std_logic) return std_logic is
begin
 if en = '0' then return '0'; -- Disable output
 else return d;
 end if;
end enable;

signal data, enb : std_logic;

begin -- architecture

q <= enable(data, enb); -- Use function in architecture

end arch1;

Example: buffer with enable

5

function vec_to_int (x: std_logic_vector) return integer is

variable result: integer;

begin
 result := 0;
 for i in x'range loop
 result := result * 2; -- Shift output to left
 case x(i) is
 when '1' => result := result + 1; -- Add 1
 when others => null;
 end case;
 end loop;
 return result;

end vec_to_int;

Example: vector to integer

6

Procedures
■  Similar to functions, in that:

◆ They also contain sequential code
◆ Declared in architecture or process (before begin)

or within packages
■  No ‘return’ value

◆  Instead, procedures can change the arguments
■  Procedures declared with an argument list

◆ Arguments have both type and direction
◆ Arguments that are out or inout can be changed

7

architecture arch1 of register is

procedure dff -- declare procedure
 (signal d, en, clk: in std_logic;
 signal q: out std_logic) is -- q is an output
begin
 if en = '0' then -- output enable (async)
 q <= '0';
 elsif rising_edge(clk) then
 q <= d;
 end if;
end dff;

signal din, enable, clock, dout: std_logic;

begin -- Begin architecture
 din <= input_port;
 dff(din, enable, clock, dout); -- call procedure here
 output_port <= dout;
end arch1;

D flip-flop with enable

Using functions and procedures
■  Functions and procedures are both subprograms
■  Can help in writing compact, readable code.
■  Functions commonly used for:

◆  Simple expressions for complex functions
✦  example: parity/checksum generation

◆  Defining operators for custom signal/variable types
◆  Only combinatorial code

■  Procedures good for:
◆  Simple alternative to component

declaration/instantiation
◆  Sequential code with clocks
◆  Useful in writing complex test benches

8

9

Clock Management

10

Clock synthesis/conditioning
■  Cleaning and distribution:

◆ Re-synthesize input clock to 50% duty cycle
◆  Jitter removal w/ phase-locked loop (PLL)
◆ FPGA input buffer delay compensation

■  Synthesizing new frequencies
◆  multiply and divide input clock frequency by

set values
■  Timing alignment

◆ Produce clocks with same frequency but
shifted in phase by 90º, 180º, 270º, etc.

◆ Fine delay setting

Xilinx 7 series clock
management tile (CMT)

11

Input
distribution

Output
buffers

Phase-locked
Loop (PLL)

Mixed-mode
clock manager

(MMCM)

What is a PLL?

12

faster/slower
control signal

Voltage sets
VCO frequency

Try to keep FF and FIN
at same frequency/phase Clock divider makes

FOUT = N x FIN

MMCM block diagram

13

PLL loop

FIN multiplied by M

O
ut

pu
ts

 d
iv

id
ed

 b
y

O
0

–
O

6

(PLL block is similar)

Clock buffers/distribution

14

Regional buffers:
 BUFIO (register I/O signals)
 BUFR (logic in a region)
Multi-region clocking
 BUFMR
Global buffers:
 BUFG

Not an exhaustive list

See Clocking
Wizard in
IP catalog

15

Lab 5: UART receiver
(serial data receiver/decoder)

16

What is a UART?

■  Universal Asynchronous Receiver
and Transmitter

■  Typically used for serial data
transmission (e.g. RS232)

■  Common implementations:
◆ Discrete component, or
◆ Embedded in FPGA or ASIC

17

UART diagram (simplified)
Buffers (FIFO)

Receive

Shift out

8

8

Rx

Tx

Read

Write

18

RS232 data format (physical)

Start bit: 0

+V / -V = 0 / 1
(inverted)

Idle: 1 Stop bit(s): 1

19

RS-232 format (logical)

■  RS-232 communication is asynchronous:
◆  Clock signal not sent with the data.
◆  Each word synchronized using its start bit
◆  Receiver reads data with local internal clock

(defined by baud rate)

■  Signal is logical '1' while idle, packet ends with '1'
■  Start bit ('0') signals that data is about to be sent.
■  Up to 8 bits of data sent. Optional parity bit can be

added. Finally, stop bit ('1') is sent.

0 1 2 3 4 5 6 7 P Stop Idle

Start
bit

20

RS232 formats (options)
■  Baud rates (bits/second):

◆  300, 600, 1200, 1800, 2400, 3600, 4800,
7200, 9600, 14400, 19200, 28800, 38400,
57600, 115200

■  Data bits
◆  5, 6, 7, or 8

■  Parity bit
◆  odd/even/none

■  Stop bits (minimum time between words)
◆  1, 1.5 or 2

21

Simple UART transmitter

■  Data written to asynchronous pipeline buffer (FIFO)
■  A state machine reads data bytes one-by-one

◆ Adding start/stop bits, and parity (if used)
■  Data words are then sent to a shift register

◆ Bits transmitted one-by one at baud rate
◆ Correct order: start, data (LSB first), parity, stop

Shift out
8 Tx

Write

FIFO

E
n
c
o
d
e
r

baud clk

22

"Simple" UART receiver

■  Naively:
◆  A decoder receives and processes bits one by one into

a shift register at the baud clock rate
◆  Decoded output written in parallel to a readout FIFO

■  Problems with this approach:
◆  Data arrives asynchronously,

✦  Don't know when data will arrive!
◆  Transmitter/receiver clocks have slightly different

frequencies, out of phase

Decoder
8

Rx

Read baud clk

23

UART Receiver Sampling
■  “Ideal” serial data waveform:

■  What the receiver “sees”:

■  Receiver needs to “center-sample” the data bits to
assure proper reception (or even take several samples)

Idle Start Bit LSB Data MSB Data Stop . . .

Early Late Who knows? Glitch!

24

UART Receiver Sampling
■  Receiver samples the input (Rx) signal at

(for example)16 times the baud rate:

Detect
Edge of
Start Bit

Count 8 clock times to
get to center of start bit

Count 16 clock times to sample
at center of each data bit interval

Avoids “seeing”
glitches between
bit intervals

25

Receiver timing
■  UART receiver clock derived from a high-

frequency local oscillator (e.g. 100 MHz)
■  Can use a counter to divide the clock

◆ Maximum counter value (before resetting to
zero) is a divisor
✦ Divisor = freq / (num_samples * baud_rate)

◆ Match output clock to baud rate by (much)
better than 5% to avoid data misalignment

■  Best to generate a symmetric baud clock
■  MMCM not suitable here (too slow!)

◆ But essential for (e.g.) high-speed links!
■  Distribute with a GBUF for best results

UART Rx block diagram

26

Clock
divider

UART Rx
state

machine

100 MHz Baud clock

7-segment disp

0 1 2 3 4 5 6 7 Stop Idle

Serial input

Other protocols: SPI

27

“Master” provides the clock
(no time-alignment needed)

“Slave” response is
pre-defined

Other protocols: I2C

28

Shared tri-state data bus
Master provides clock

Protocol example

29

Lab 5
■  Design the receiving part of a UART circuit:

◆ Receive RS232 words
✦ 8 bits of data, no parity, at 9600 Baud

◆ Extract and store the 8 data bits in a register
◆ Display data on the 7-segment hexadecimal

LED display
■  Write a test bench and simulate
■  Synthesize for the FPGA board and test with real

serial data.

30

Lab 7 : Arbitrary waveform
generator

31

Typical waveform
generator outputs:

Project goals
■  Build a simplified digital function generator

◆ Square, triangle and sine waves
✦ User-selectable with switches/buttons

◆ Fixed frequency and amplitude
✦ For simplicity
✦ Can try to make it adjustable if you like…

■  Produce an analog output
◆ Use PMOD-DA module

✦ Driver IP available on course web page

32

Design overview

33

Waveform generator
■  Input: signed 8b vector from the counter/DAC driver

module. Range -100 to +99.
■  Output: unsigned 8b vector (0 to 255)

◆  Square wave (simple)
✦  Could just use the sign of the input, for instance

◆  Triangle wave (slightly less simple)
✦  Several ways to do this, including counting up/down,

sign-dependent adding/subtracting from a constant, etc.
◆  Sine wave (challenging)

✦  Not directly supported operation in VHDL
✦  One “brute force” method is a RAM lookup table
✦  Less known, but small footprint: CORDIC algorithm

34

Basic CORDIC concept
(sin + cos)

35

Originally developed for sine/cosine.
Later extended to include:
tan, hyperbolics, square root, etc.

Can configure and generate
in Vivado IP Catalog

Cordic algorithm (pipelined)

36

CORDIC in rotation mode:

Can find good CORDIC articles
and resources on the net…

•  Can also implement in
iterative(loop) architecture.

•  A small LUT provides the
values of αn

•  n-bit CORDIC calculation
requires n steps/iterations

PMOD DA1 module
■  Standard form factor, use any

PMOD port on the BASYS3
■  Dual DAC channels (1-2)

◆  8 bit dynamic range
◆  0 – 3.3V

■  Serial interface (SPI-like)
◆  Two output channels D0, D1
◆  Serial clock (SCLK) max 25 MHz
◆  The SYNC signal enables a new

write sequence while it is low
■  VHDL IP module provides a

simplified interface
◆  Start write sequence with “rst”
◆  Returns “DONE” when finished

37

38

Lab 5
■  Design an arbitrary waveform generator that

provides the following:
◆ Square, triangle and sine wave functions
◆ Wave function user selectable (switches/buttons)
◆ Fixed frequency and amplitude
◆ Drive analog output through PMOD-DA1 module

■  Write a test bench and simulate
■  Implement on BASYS3 board and test output with

an oscilloscope.

