& 1@? Digital System

wwlizs O .
;5 £ Construction - 1
//‘//7-1-3\‘*

Lecture 5: Designing for FPGA

Frequently-asked questions/
Good design practice

Timing
Types and records in VHDL
Lab 4 intro: digital stopwatch

Frequently asked questions

Do functions/processes “remember” the values of variables?
¢ Yes!
For example, a "counter” variable remembers the last count.
¢ Different from software, where function variables can be
re-initialized each time the function is called
Signal/port names:
¢ Can a signal in an architecture can have the same name as
a port of one of the components?
¢ Yes!

port map (select => select,);

¢ Good practice to propagate common signals
throughout the design:

reset, clock,

Digital Systemkonstruktion - 1

Frequently asked questions

How do you use (read from) the value of an output port within
the architecture?

¢ You can't read outputs directly.

+ If you need to, create a signal for internal use, and then
assign that signal to the output port:

int buf <= (int buf and enable);
output <= int buf;
+ Another method is to declare a port as bi-directional
(inout instead of out)

Not recommended unless a bi-directional port is really
needed for your design

Digital Systemkonstruktion - 1

Signals versus variables

Example: counting with a signal:

architecture behav of clk div is
signal count: std logic vector (3 downto 0);

signal slowck : std logic := ‘0';
begin
cproc : process(clk)
begin .
if rising edge(clk) then count Is Only updated
if (count = “1111") then once in the process

count <= “0000";

slowck <= not slowck;
else
count <= count + 1;
end if;
end if;
end process;
end behav;

Digital Systemkonstruktion - 1

Signals versus variables

Counting with a variable:

architecture behav of clk div is

signal slowck : std logic := ‘0';
begin
cproc : process(clk)
variable count : integer := 0;
begin

if rising edge(clk) then
count := count + 1;
if (count > 15) then
count := 0;
slowck <= not slowck;
end if;
end if;
end process;
end behav;

Only one signal
needed outside
the process

count can be changed
more than once with
variable assignment (: =)

Digital Systemkonstruktion - 1 3

Component port maps

Good to connect named signals to ports +
+ Even if they are not used elsewhere, you can we Par_in
follow them while simulating
. . . — |Ser 1in Ser out
+ Helps avoid accidental connections - -
—>clk
Inputs must always be connected Feue_Puic

Outputs don’t need to be connected +
+ But unused logic is trimmed anyway
¢ Can also use: Par_out => open
Connect outputs to unique signals
+ Avoid multiple drivers
+ Exception: Tri-state (‘Z’) connection to a bus

Digital Systemkonstruktion - 1

Bi-directional signals
(with tri-state)

dir

€‘7

sig_out _l\l <>
P 9 bi
—p
‘0’ or ‘1’ if output,
otherwise drive ‘Z’
sig_in

<+— (Can always read

Digital Systemkonstruktion - 1

Implementing in VHDL

entity bus IO is

Port(Din: 1in std logic;
Dout: out std logic;
IO pin: inout std logic;
wr _en: in std logic);
end bus IO
buffer rw : process (Din, IOpin, wr _en) -- can also be clocked
begin
if (wr_en) then
IO pin <= ‘Z’'; -- high impedence if not driving
else
IO pin <= Dout;
end if;
Din <= IO pin; -- Always can read

end process;

Digital Systemkonstruktion - 1

Tri-state bus example

Source

select

060 Data bus
Low]
I/

oel
1
L~ T

oe2
N |
I/

oe3

Decoding
cicruit

Digital Systemkonstruktion - 1

Be careful with timing...

Too soon!
/
Data }< >< ><
DataCk W
MC

if falling edge (MC) then newdata <= data;

Digital Systemkonstruktion - 1 10

Flip-flops have minimum
setup/hold times:

w

Data clock .

: e
" "Hold time
Setup time

Setup time: Data must be stable before clock edge

Hold time: Time for flip-flop output to stabilize (short)

Digital Systemkonstruktion - 1 11

A better approach:

Typical
setup time:
clk ~0.4 to 2 ns
i g§ Hold time:
USG ik fOr t|m|ng’ n_ot MC Setué time \T’ short

ﬂ_ Hold time

MC

if rising edge(clock)and MC='0'"' then
newdata <= data;

Digital Systemkonstruktion - 1 12

Even this can be risky:

New data can take some time to become valid
(propagation delays, setup/hold times, etc)

) \
Iy
o

Data

DataCk |

if falling edge (DataCk) then newdata <= data;

Digital Systemkonstruktion - 1 13

"Gated Clocks"

Flip-flops driven by combinatorial logic

Disadvantages:

¢ Timing differences between FFs driven by
the same source (propagation)

D Q— ¢ Unpredictable: hard to get good synthesis
- performance
¢ Gated clock edge degraded as more FFs

load the same driver
If you need to use a logic-derived signal to
drive flip-flops, you can:

& Pass the logic output through a flip-flop
(driven by another clock in your design), or

+ Distribute the new timing signal through a
global (or regional) FPGA clock buffer

Digital Systemkonstruktion - 1 14

Global clock buffers

Distribute selected timing signals synchronously

Inputs can be external timing signals, internally
synthesized clocks, gated signals, etc

Can use Clocking Wizard in |IP Catalog
/-series global buffer in pure VHDL.:

Library UNISIM
use UNISIM.vcomponents.all

component bufg -- (or 1bufqg)
port (
I: in std logic;
O: out std logic);

end component;
Digital Systemkonstruktion - 1 15

Good clocking practice

Drive flip-flops with global clocks
+ Use gated logic to “enable” clock
Bring high-quality clocks to the FPGA
¢ Crystal oscillators have low jitter

+ “Jitter cleaner” circuits can improve
performance of non-crystal clocks

Use designated clock pins, if available
+ Designed for optimal input to global buffers

Distribute internally-generated clocks via
global or regional clock buffers as well

Digital Systemkonstruktion - 1 16

Don't blindly trust the
synthesis!

Modern tools very powerful, but not perfect

+ Some HDL descriptions can lead to non-optimal results
Synthesis software doesn’t know exactly what you want

Optimal solution can’t be derived, optimization process is
an iterative search in a large “space” of possible solutions

Good HDL code gives a good starting point for that search
Pay attention to errors and warnings
¢ Even buggy designs can synthesize, but not work right!

¢ Check timing/mapping reports
Constraints met? Reasonable resource use?

Check RTL schematics in ISE
+ Structure look like you expect?

Digital Systemkonstruktion - 1 17

Example: XOR cascading
cla1a|n vs. tree structure

— >—1

: :D_I:D_ Tree structure

Digital Systemkonstruktion - 1 18

Can choose to optimize for
speed / area / both

oy a0 ' (1)
T ¥(2) a(2) T ¥(2)

y(3)
y(3)

a(3)
Less logic
(area) Smaller delay
(speed)

Digital Systemkonstruktion - 1 19

Types in VHDL

Digital Systemkonstruktion - 1

20

Constants and variables

constant number of bytes : 1nteger := 4;

constant number of bits : integer := 8*number of bytes;
constant e : real := 2.718281828;

constant prop delay : time := 3 ns;

variable index: integer := 0;
variable start, finish : time := 0 ns;

« Constants can be declared globally (in architecture) or
within sequential code (process, procedure, functions)

* Generally declared with a value

» Variables are declared in a piece of sequential code;
not normally visible outside that process, etc.

Digital Systemkonstruktion - 1 21

Scalar types

A scalar type has discrete values
+ No composite elements
All values are ordered
¢ Each value has an implicit position number
+ Predefined relational operators work
Scalar types include:
+ Numeric (integer, floating point)
+ Physical (for example, time)
¢ Enumerated types

integer IS a scalar type representing all whole
numbers representable on the host computer

Digital Systemkonstruktion - 1

22

Scalar types

Example of declaration and use in a package

type apples is range 0 to 100;

package int types is
type small int is range 0 to 255;
end package int types;

use work.int types.all;
entity smaller adder is
port (a, b : in small int;
s out small int);
end entity small adder;

Digital Systemkonstruktion - 1

23

Floating-point types

Not usually used for synthesis

type input level 1is range —-10.0 to 10.0;

type probability is range 0.0 to 1.0;

variable 1nput A: input level;

Digital Systemkonstruktion - 1

24

Assignments use variables
or constants of same type

type day of month is range 0 to 31;
type year is range 0 to 2100;

variable today: day of month := 19;
variable start year: year := 2005;

Not legal to make this assignment:

start year := today;

Digital Systemkonstruktion - 1 25

Integer/vector conversion
In std_logic_unsigned

use leee.std logic unsigned.all;
use leee.std logic arith.conv std logic vector;

signal vector : std logic vector (v _width downto 0);
integer int var;

--std logic to integer:

int var <= conv integer (vector); data types have
attributes
-—-integer to std logic: x

vector <= conv_std logic vector (int var, vector'length);

Digital Systemkonstruktion - 1 26

Some useful VHDL attributes

type’'pos(value) -- integer position of value in the type
type’val(i) -- value of type at integer position I

array’length — number of elements in an array/vector

array'’'range -- range of an array/vector

array’low -- lowest subscript of an array/vector
Array’'high -- highest subscript of an array/vector
signal’event -- true if signal changes value

(Not an exhaustive list...)

Digital Systemkonstruktion - 1 27

Enumerated types

type alu function is (disable, pass, add, subtract,
multiply, divide);
type octal digit is ('O','1','2','3"','4','5"'",'6',"7");

variable alu op: alu function;

variable last digit: octal digit := 'l"';
alu op = subtract;
last digit := A

Digital Systemkonstruktion - 1 28

Enumerated type attributes

type alu function is (disable, pass, add, subtract,
multiply, divide);

Each enumeration literal has an integer
"position number” (0, 1, 2, 3, etc.)

The first (left-most) enumeration literal has
position 0, the next has position 1, etc.
¢ int variable <= alu function'pos (pass);

¢ alu option <= alu function'val (3);

\

subtract

Digital Systemkonstruktion - 1 29

Data types: Record

Useful for bundling groups of signals

¢ Especially different signal types

Example: CPU memory bus:
address (), data() --vectors
read en, write en, chip sel --Dits
clock, reset —timing

30

Declaring and using records

type memory bus is record

address, data : std logic_vector (15 downto 0);
rd en, wr _en, c _sel : std logic;
clk, reset : std logic;

end record;

signal addressl : std logic_vector (15 downto 0);
signal busl, bus2 : memory bus;

busl.address <= addressl; —-- Assign signal to record element
busl.wr en <= 'l'; -- Assign value to record element
busZ2.data <= busl.data; -- Copy part of a record

bus?2 <= busl; -- Copy entire record

31

Record example (ATLAS):
L1Calo trigger topology
processor (L1Topo)

32

Package: L1TopoDataTypes.vhd

library ieee;
use leee.std logic 1le64.all;

Package LlTopoDataTypes is
type ClusterTOB 1is record
Et : std logic vector (7 downto 0);
isol: std logic vector (4 downto 0);
eta: std logic vector (5 downto 0);
phi: std logic vector (5 downto 0);

end record; .
type JetTOB 1s record Can deCIare W|th
Etl : std logic vector (8 downto 0); any W|dth

Et2: std logic vector (9 downto 0);
eta: std logic vector (4 downto 0);
phi: std logic vector (4 downto 0);
end record;
type ClusterArray is array (natural range <>) of ClusterTOB;
type JetArray is array (natural range <>) of JetTOB;

-—- After selection and sorting, use generic type for all TOBs.

type GenericTOB 1s record
Et : std logic vector (9 downto 0); —-- Pad unused bits with zeros
eta: std logic vector (5 downto 0);
phi: std logic vector (5 downto 0);

end record; N

type TOBArray is array (natural range <>) of GenericTOB; 33

end;

Using in an algorithm:

library ieee;
use ieee.std logic 11l64.all;
use work.LlTopoDataTypes.all;

entity DeltaPhiIncll is

generic (InputWidth : integer := 8);
port (
Tob : in TOBArray (InputWidth - 1 downto 0);
Parameters : in ParameterArray;
ClockBus : in std logic vector (2 downto 0);
Results : out std logic vector (NResultBits - 1 downto

end DeltaPhiIncll;

deltaPhi calcl : for i in 0 to (maxCount - 2) generate
deltaPhi calc2 : for j in (i + 1) to (maxCount - 1) generate
dphiCalc inst : entity work.DeltaPhiCalc

port map (
Compare all philln => Tob (i) .phi,
TOB pairs phi2In => Tob(j) .phi,

deltaPhiOut => deltaPhi (i) (J)
) ;
end generate;
end generate;

Lab 4: Digital counter
(stopwatch)

35

Basic stopwatch function

Input: single pushbutton
Output: 7-segment display
¢ (time to 1/100 second)
Behavior:

4
4

¢

PUS
PUs

PUs

N once: start timer
N again: stop, display time

N again: clear timer

36

State diagram (simplified)

counter := 0
Display: off

Button press

Button press

Button press

counter := counter counter := counter + 1

Display: on Display: off (or on)

Clock divider

Wil=) UL
Problem:

¢ FPGA has a fast clock (e.g. 100 MHz)

¢ We need a slow clock (100 Hz)
Solution: a clock divider

+ Internally a counter, clocked at 100 MHz

+ Reset counter to zero every 0.01 s
Max count (100.000.000 / 100) = 1.000.000

Good to have a symmetric output:
¢ If count < (1.000.000 / 2) then output <=1’
+ Otherwise output <= 0’;

38

‘Debouncing’ a button

(not needed for lab)

One approach: Eiton

Pressed

use a counter Logic "High"

Electrical signal from button:

Buttons on your lab

boards are passively
_{W debounced (capacitor)

Logical signal seen at FPGA input:

Debounce circuit waits a
few clock cycles before the
output is allowed to fall: 39

Stopwatch block diagram

Button
‘ /-segment
hex displa
Stopwatch . _p_y
R
Stat_e i
— machine
Clock ZT1OO MHz
100 MHz | divider | 100 Hz

40

