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Digital System 
Construction

Lecture 4: Math, memories, PRNGFYSIKUM

Introduction to Lab 3

Pipelines and buffers

IP core generation in Vivado
Pseudorandom numbers

Memories
Arithmetic



Arithmetic with vectors

■ ieee.std_logic_unsigned.all
◆ Simple arithmetic, vectors represent unisigned

integers 
◆ Easy to use, but not an official standard

■ ieee.numeric_std.all
◆ Standard library, support for both unsigned and 

signed vector arithmetic
◆ Adds signed and unsigned vector types
◆ Higher learning curve
◆ Recommended for new designs
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Different math libraries available, including:



Unsigned adder (example)

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;
USE ieee.numeric_std.all ;

ENTITY adder16 IS
PORT (X, Y : IN STD_LOGIC_VECTOR(15 DOWNTO 0) ;

S : OUT STD_LOGIC_VECTOR(15 DOWNTO 0) ;
Cout : OUT STD_LOGIC ) ;

END adder16 ;



Unsigned adder: architecture

ARCHITECTURE Behavior OF adder16 IS
SIGNAL uX : UNSIGNED(15 DOWNTO 0);  -- 16 bits
SIGNAL uY : UNSIGNED(15 DOWNTO 0);
SIGNAL Sum : UNSIGNED(16 DOWNTO 0); -- 17 bits

BEGIN
uX <= unsigned(X);
uY <= unsigned(Y);
Sum <= ('0' & uX) + ('0' & uY);
S <= std_logic_vector(Sum(15 DOWNTO 0)) ;
Cout <= Sum(16) ; -- Top bit is overflow/carry

END Behavior ;

cast to unsigned type

cast result to std_logic_vector



Representing signed numbers

■ A vector can represent a signed or unsigned value
◆ 8 bits unsigned: 0 to 255
◆ 8 bits signed: -128 to +127

■ Encoding signed numbers:
◆ Top bit (MSB) is the sign (0=positive, 1=negative)
◆ Positive numbers: simple binary representation

✦ Decimal +53 = “00110101”
◆ Negative numbers: “twos complement”

✦ Invert the bits of the positive value, then add one
✦ Decimal -53 = “11001010” + 1 = “11001011”
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Signed adder (example)
LIBRARY ieee ;
USE ieee.std_logic_1164.all ;
USE ieee.numeric_std.all ;

ENTITY adder16 IS
PORT (X, Y : IN STD_LOGIC_VECTOR(15 DOWNTO 0);

S : OUT STD_LOGIC_VECTOR(15 DOWNTO 0) 
);

END adder16 ;



Signed adder: architecture
ARCHITECTURE Behavior OF adder16 IS

SIGNAL Xs : SIGNED(15 DOWNTO 0);
SIGNAL Ys : SIGNED(15 DOWNTO 0); 
SIGNAL Sum : SIGNED(16 DOWNTO 0) ;

BEGIN
Xs <= signed(X);
Ys <= signed(Y);
Sum <= resize(Xs,Sum’LENGTH) + Ys;
S <= std_logic_vector(resize(Sum,16)) ;

END Behavior ;

”resize” changes the length of a signed vector
while keeping the sign in the MSB



ieee.numeric_std has 
overloaded operators
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Introduction to memories
■ Memories are essentially data storage arrays

◆ One or more bits of data at each address
■ Different kinds:

◆ ROM (Read-Only Memory)
✦ No write capability during normal operations
✦ Some are re-writable (e.g. by applying higher voltage) 

◆ RAM (Random Access Memory)
✦ Read and write, can directly access any address

■ Volatility
◆ Volatile memories lose data when powered off
◆ Most RAMs are volatile, ROMs are non-volatile
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Random Access Memory 
(RAM)

■ Addressable data storage array 
◆ Directly access contents of each address
◆ Read and write operations supported

■ About the same time to access any address
◆ not quite true for modern DRAM

■ Can be synchronous (clocked) or asynchronous
◆ Block RAM on Xilinx FPGAs is synchronous



Static vs. Dynamic RAM
■ DRAM: charge stored in quantum 

wells (similar to capacitors)
◆ Small and inexpensive (good)
◆ Data disappears if the contents are 

not refreshed (less good)
■ SRAM: data stored in latches 

◆ Stable storage w/o refresh (good)
◆ Several transistors per data bit 

✦ More expensive
✦ Lower bit density

■ Most FPGA block RAM is SRAM
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DRAM

SRAM
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Single-port RAM block
■ Word size: n bits
■ Capacity: 2k words
■ Synchronous RAM 

is clocked
■ To write:

■ Set target address and data to be written
■ Set Wr_en and wait for the next clock edge

■ To read:
■ Set target address to be read and Rd_en
■ Data at address available at the next clock edge

Data_in
Data_out

Address

Wr_en
Rd_en

Clock

k

n n



Xilinx 7-series block RAM
■ Dual port RAM

◆ Two ports can independently 
access memory contents

◆ Can have different address
and data widths to access 
the same number of of total 
bits

■ Synchronous (clocked) read 
and write operations
◆ Possible to use different 

clocks for each port (if you 
want to)
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Common RAM applications
■ Local memory for embedded CPUs (advanced)
■ Fast, flexible implementation of complex algorithms

◆ Memory look-up tables (LUT)
◆ Content-addressable memory (advanced)

■ Diagnostics and testing
◆ Capture data and read it out (“spy memory”)
◆ Feed test patterns through logic (“playback memory”)

■ Data buffering for temporary storage and readout
◆ Synchronous memory buffer (“pipeline”)
◆ Asynchronous buffer (“FIFO”)
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Memory lookup table (LUT)

15

Common application: Use LUT to correct raw data
• calibration, linearity, etc.

Can also do geometric and other calculations quickly

ADC LUT
12b 10b

E E

count count

A B
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ATLAS L1Calo example

LUTs for geometric calculations

Σ ET

Ex

Ey

Thr

Thr

9

9
10

EEM

EHad

To Summation
logicApply thresholds (LUT) 

and sum (logic)

Ex = Et sin ϕ
Ey = Et cos ϕ



Spy/playback memories
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Processing
logic

Input
mem

Output
mem

Data in Data out

Capture
input data

Capture
output data

Play test data to
processing logic

Play test data 
(to next board)

Computer
interface
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Asynchronous data buffer

Counter Counter

DPR
Address

Data
n_write

Data in

n_read

Data out

Simplified diagram. Write to port A and read from port B.
Address of each port incremented during read/write

Port
A

Port
B
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Synchronous delay buffer

CounterDPR
Address

Data

CLK

Data in Data out
Port

A
Port

B

Offset

A

B
Sum

Clock

Adder



Other topics for Lab 3

■ Pseudorandom number generation
◆ You will use this to test a synchronous 

data pipeline with adjustable length
■ Implementing device-specific features

◆ IP Catalog in Vivado
◆ You will use this to implement a 

dual-port RAM

Digital Systemkonstruktion - 1 20



Digital Systemkonstruktion - 1 21

Pseudorandom number 
generator
■ Useful to test designs with many possible inputs
■ Basic concept:

◆ Start with a random sequence of bits circulating in 
a shift register (‘seed’)

◆ Continuously change the contents of the seed
✦ use XOR of other bits (to maintain 1/0 balance)
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Library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity prng is
generic(init_seed : std_logic_vector (15 downto 0) 

:= "0101110110010101");
port( clk : in std_logic;

random : out std_logic);
end prng;

Single-bit PNRG: entity

need a different seed 
for each PNRG
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architecture prng_arch of prng is
signal seed : std_logic_vector (15 downto 0) := init_seed;

begin
gen_number: process(clk)
begin

if rising_edge(clk) then
seed <= seed(14 downto 0) & 

(seed(15) xor seed(13) xor seed(12) xor seed(10));
end if;

end process;

random <= seed(15);

end architecture;

Single-bit PNRG: architecture

Maximum-length LFSR
“linear feedback shift register”
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Generating IP cores in Vivado
■ General-purpose design elements can be 

well-described with pure VHDL code
■ But device-specific features can be more complicated 

to specify and declare:
◆ Block memories, dedicated multipliers, digital clock 

managers, embedded CPUs, serial transceivers, etc.
■ FPGA Vendors often provide tools to generate design 

modules that you can customize for your own needs
◆ Xilinx Vivado: IP Catalog
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Launching IP catalog
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Select the core you want

Right click:
“Customize IP”
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Customize the component

Basic configuration

Component name

Port map of the
final component
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Customize the component

Configure the ports
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Generated component
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Lab 3:

■ Design a 4-bit PRNG
■ Design a programmable-delay 

pipeline buffer with a block RAM
■ Connect the PRNG output to the 

input of the buffer input and
observe the delay between input
and output

■ Test in simulation and hardware


