
Digital Systemkonstruktion - 1 1

Digital System
Construction

Lecture 4: Math, memories, PRNGFYSIKUM

Introduction to Lab 3

Pipelines and buffers

IP core generation in Vivado
Pseudorandom numbers

Memories
Arithmetic

Arithmetic with vectors

■ ieee.std_logic_unsigned.all
◆ Simple arithmetic, vectors represent unisigned

integers
◆ Easy to use, but not an official standard

■ ieee.numeric_std.all
◆ Standard library, support for both unsigned and

signed vector arithmetic
◆ Adds signed and unsigned vector types
◆ Higher learning curve
◆ Recommended for new designs

Digital Systemkonstruktion - 1 2

Different math libraries available, including:

Unsigned adder (example)

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;
USE ieee.numeric_std.all ;

ENTITY adder16 IS
PORT (X, Y : IN STD_LOGIC_VECTOR(15 DOWNTO 0) ;

S : OUT STD_LOGIC_VECTOR(15 DOWNTO 0) ;
Cout : OUT STD_LOGIC) ;

END adder16 ;

Unsigned adder: architecture

ARCHITECTURE Behavior OF adder16 IS
SIGNAL uX : UNSIGNED(15 DOWNTO 0); -- 16 bits
SIGNAL uY : UNSIGNED(15 DOWNTO 0);
SIGNAL Sum : UNSIGNED(16 DOWNTO 0); -- 17 bits

BEGIN
uX <= unsigned(X);
uY <= unsigned(Y);
Sum <= ('0' & uX) + ('0' & uY);
S <= std_logic_vector(Sum(15 DOWNTO 0)) ;
Cout <= Sum(16) ; -- Top bit is overflow/carry

END Behavior ;

cast to unsigned type

cast result to std_logic_vector

Representing signed numbers

■ A vector can represent a signed or unsigned value
◆ 8 bits unsigned: 0 to 255
◆ 8 bits signed: -128 to +127

■ Encoding signed numbers:
◆ Top bit (MSB) is the sign (0=positive, 1=negative)
◆ Positive numbers: simple binary representation

✦ Decimal +53 = “00110101”
◆ Negative numbers: “twos complement”

✦ Invert the bits of the positive value, then add one
✦ Decimal -53 = “11001010” + 1 = “11001011”

Digital Systemkonstruktion - 1 5

Signed adder (example)
LIBRARY ieee ;
USE ieee.std_logic_1164.all ;
USE ieee.numeric_std.all ;

ENTITY adder16 IS
PORT (X, Y : IN STD_LOGIC_VECTOR(15 DOWNTO 0);

S : OUT STD_LOGIC_VECTOR(15 DOWNTO 0)
);

END adder16 ;

Signed adder: architecture
ARCHITECTURE Behavior OF adder16 IS

SIGNAL Xs : SIGNED(15 DOWNTO 0);
SIGNAL Ys : SIGNED(15 DOWNTO 0);
SIGNAL Sum : SIGNED(16 DOWNTO 0) ;

BEGIN
Xs <= signed(X);
Ys <= signed(Y);
Sum <= resize(Xs,Sum’LENGTH) + Ys;
S <= std_logic_vector(resize(Sum,16)) ;

END Behavior ;

”resize” changes the length of a signed vector
while keeping the sign in the MSB

ieee.numeric_std has
overloaded operators

Digital Systemkonstruktion - 1 8

Introduction to memories
■ Memories are essentially data storage arrays

◆ One or more bits of data at each address
■ Different kinds:

◆ ROM (Read-Only Memory)
✦ No write capability during normal operations
✦ Some are re-writable (e.g. by applying higher voltage)

◆ RAM (Random Access Memory)
✦ Read and write, can directly access any address

■ Volatility
◆ Volatile memories lose data when powered off
◆ Most RAMs are volatile, ROMs are non-volatile

Digital Systemkonstruktion - 1 9

Digital Systemkonstruktion - 1 10

Random Access Memory
(RAM)

■ Addressable data storage array
◆ Directly access contents of each address
◆ Read and write operations supported

■ About the same time to access any address
◆ not quite true for modern DRAM

■ Can be synchronous (clocked) or asynchronous
◆ Block RAM on Xilinx FPGAs is synchronous

Static vs. Dynamic RAM
■ DRAM: charge stored in quantum

wells (similar to capacitors)
◆ Small and inexpensive (good)
◆ Data disappears if the contents are

not refreshed (less good)
■ SRAM: data stored in latches

◆ Stable storage w/o refresh (good)
◆ Several transistors per data bit

✦ More expensive
✦ Lower bit density

■ Most FPGA block RAM is SRAM

Digital Systemkonstruktion - 1 11

DRAM

SRAM

Digital Systemkonstruktion - 1 12

Single-port RAM block
■ Word size: n bits
■ Capacity: 2k words
■ Synchronous RAM

is clocked
■ To write:

■ Set target address and data to be written
■ Set Wr_en and wait for the next clock edge

■ To read:
■ Set target address to be read and Rd_en
■ Data at address available at the next clock edge

Data_in
Data_out

Address

Wr_en
Rd_en

Clock

k

n n

Xilinx 7-series block RAM
■ Dual port RAM

◆ Two ports can independently
access memory contents

◆ Can have different address
and data widths to access
the same number of of total
bits

■ Synchronous (clocked) read
and write operations
◆ Possible to use different

clocks for each port (if you
want to)

Digital Systemkonstruktion - 1 13

Common RAM applications
■ Local memory for embedded CPUs (advanced)
■ Fast, flexible implementation of complex algorithms

◆ Memory look-up tables (LUT)
◆ Content-addressable memory (advanced)

■ Diagnostics and testing
◆ Capture data and read it out (“spy memory”)
◆ Feed test patterns through logic (“playback memory”)

■ Data buffering for temporary storage and readout
◆ Synchronous memory buffer (“pipeline”)
◆ Asynchronous buffer (“FIFO”)

Digital Systemkonstruktion - 1 14

Memory lookup table (LUT)

15

Common application: Use LUT to correct raw data
• calibration, linearity, etc.

Can also do geometric and other calculations quickly

ADC LUT
12b 10b

E E

count count

A B

16

ATLAS L1Calo example

LUTs for geometric calculations

Σ ET

Ex

Ey

Thr

Thr

9

9
10

EEM

EHad

To Summation
logicApply thresholds (LUT)

and sum (logic)

Ex = Et sin ϕ
Ey = Et cos ϕ

Spy/playback memories

Digital Systemkonstruktion - 1 17

Processing
logic

Input
mem

Output
mem

Data in Data out

Capture
input data

Capture
output data

Play test data to
processing logic

Play test data
(to next board)

Computer
interface

Digital Systemkonstruktion - 1 18

Asynchronous data buffer

Counter Counter

DPR
Address

Data
n_write

Data in

n_read

Data out

Simplified diagram. Write to port A and read from port B.
Address of each port incremented during read/write

Port
A

Port
B

Digital Systemkonstruktion - 1 19

Synchronous delay buffer

CounterDPR
Address

Data

CLK

Data in Data out
Port

A
Port

B

Offset

A

B
Sum

Clock

Adder

Other topics for Lab 3

■ Pseudorandom number generation
◆ You will use this to test a synchronous

data pipeline with adjustable length
■ Implementing device-specific features

◆ IP Catalog in Vivado
◆ You will use this to implement a

dual-port RAM

Digital Systemkonstruktion - 1 20

Digital Systemkonstruktion - 1 21

Pseudorandom number
generator
■ Useful to test designs with many possible inputs
■ Basic concept:

◆ Start with a random sequence of bits circulating in
a shift register (‘seed’)

◆ Continuously change the contents of the seed
✦ use XOR of other bits (to maintain 1/0 balance)

Digital Systemkonstruktion - 1 22

Library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity prng is
generic(init_seed : std_logic_vector (15 downto 0)

:= "0101110110010101");
port(clk : in std_logic;

random : out std_logic);
end prng;

Single-bit PNRG: entity

need a different seed
for each PNRG

Digital Systemkonstruktion - 1 23

architecture prng_arch of prng is
signal seed : std_logic_vector (15 downto 0) := init_seed;

begin
gen_number: process(clk)
begin

if rising_edge(clk) then
seed <= seed(14 downto 0) &

(seed(15) xor seed(13) xor seed(12) xor seed(10));
end if;

end process;

random <= seed(15);

end architecture;

Single-bit PNRG: architecture

Maximum-length LFSR
“linear feedback shift register”

Digital Systemkonstruktion - 1 24

Generating IP cores in Vivado
■ General-purpose design elements can be

well-described with pure VHDL code
■ But device-specific features can be more complicated

to specify and declare:
◆ Block memories, dedicated multipliers, digital clock

managers, embedded CPUs, serial transceivers, etc.
■ FPGA Vendors often provide tools to generate design

modules that you can customize for your own needs
◆ Xilinx Vivado: IP Catalog

Digital Systemkonstruktion - 1 25

Launching IP catalog

Digital Systemkonstruktion - 1 26

Select the core you want

Right click:
“Customize IP”

Digital Systemkonstruktion - 1 27

Customize the component

Basic configuration

Component name

Port map of the
final component

Digital Systemkonstruktion - 1 28

Customize the component

Configure the ports

Digital Systemkonstruktion - 1 29

Generated component

Digital Systemkonstruktion - 1 30

Lab 3:

■ Design a 4-bit PRNG
■ Design a programmable-delay

pipeline buffer with a block RAM
■ Connect the PRNG output to the

input of the buffer input and
observe the delay between input
and output

■ Test in simulation and hardware

