
Lab 3: Random number generator
and programmable data delay

Introduction

The main portion of this lab exercise is designing a synchronous pipelined data buffer with 4-
bit wide inputs and outputs, designed to delay an input data stream by a programmable length.
You will also design a four-bit parallel pseudo-random number generator (PRNG) to provide
a data source for testing the buffer.

Pseudorandom number generator (PRNG)

Begin by designing and simulating a single-bit PRNG with a 16-bit register, as discussed in
Lecture 4. The starting value of the register (seed) should be set by a generic statement in the
entity.

Next, construct the 4-bit wide PRNG by instantiating four single-bit PRNGs, one for each
output bit of the generator. Make sure that each single-bit PRNG has a different seed.

Simulate the PRNG, and examine output sequence to make sure that all possible outputs (0-F)
are produced, with no obvious repeats in the pattern.

Programmable delay buffer

In this part you will design a programmable, synchronous delay buffer based on a dual-port
block RAM with programmable length, similar to the one presented in Lecture 4. This is a
commonly used element of experimental data acquisition systems, and will provide
experience with instantiating and customizing vendor-provided IP cores.

The RAM can be generated in Vivado using “IP Catalog” in the Project Manager (see the IP
Catalog example in Lecture 4 as a guide). Select the Block Memory Generator (look under
Memories & Storage Elements/RAMs & ROMs and BRAM) and configure it as a simple
dual-port RAM (write to port A and read from port B).

For this design, the input and output data should be synchronous (i.e. share the same clock),
so you should select the Common Clock option in the Basic configuration tab. This will
produce a memory with both ports driven by the clka input.

Under the “Port A” and “Port B” option tabs, configure the memory to have input and output
data ports that are 4 bits wide (data width). The address port should be 8-bits wide,
corresponding to a total of 256 addresses, so choose a data depth of 256 words. Both ports
should be “always enabled”.

After you have generated the memory, it will appear in your design sources hierarchy in the
Project Manager. To use it, you can choose to the “IP Sources” view and navigate down to the
“instantiation templates”. There you will find VHDL (.vho) and Verilog (.veo) templates that
can be copied and pasted into your design.

The buffer also requires 8-bit “counter” and “adder” to drive the 8-bit address lines of the two
ports as shown in the diagram above. You may choose to implement these as processes in the
top-level design, or as components (either your own VHDL modules or additional IP cores
generated in Vivado IP Catalog).

Top-level design

To test the buffer, create a top level design with the following ports:

• Inputs: a clock and an 8-bit user “offset” to set the delay
• Outputs: Two 4-bit ports to read out the “input” and “output” of the buffer

The 8-bit offset input should be connected to the input of the delay buffer, and the data_in
and data_out ports of the buffer should be connected to the outputs. The 4-bit PRNG
should internally provide input data to the buffer (data_in).

In simulation, do multiple runs with different user offsets and note the relative timing delay
between the buffer input and output.

You may also choose to implement the design in hardware, using eight user switches to set
the offset, and the clock provided by the 100 MHz oscillator (pin W5). The output ports may
be connected to LEDs and/or PMOD port pins. If you have access to an oscilloscope in the
lab, you can compare the buffer delays in real time. Alternatively, the input and output data to
the buffer can be sampled and monitored in Vivado by adding an integrated logic analyzer
and monitoring it in the Hardware Manager.

