```
In [1]: # FK5024 - TUTORIAL 10
         # Python basics
 In [2]: a = 4
         print(a)
         4
In [3]: a = a+5
 In [4]: a;
 In [5]: print(a)
 In [6]: print("Hello world!")
         Hello world!
 In [7]: # FUNCTIONS
         # Functions are very important because they avoid repetitions of the code,
         # thus minimizing errors and making the code more efficient and more readable
         a="Hello"
         print (type(a))
         <class 'str'>
 In [8]: print (type(a))
         <class 'str'>
 In [9]: # Let's define our own function
         def mySum (a,b):
             c = a + b;
             return c;
         print (mysum (32,7))
         39
In [10]: # CONDITIONS
         # Conditions are widely used in any computing language.
         # They allow to evaluate different codes when different conditions are met
         a = 5
         b = 8
         if a >= 0 :
            b = b + 20
            print("b =",b)
         else :
             print("a is inferior to zero.")
         b = 28
```

```
In [11]: # SOME COMMON MATHEMATICAL OPERATORS
         # <
         # >
         # >=
         # <=
         # == (equal)
         # != (different)
In [12]: # LOOPS
         # They allow one to perform operations in sequence until a certain condition
         is met
         sentence = "Hello world !"
         for letter in sentence:
            print (letter)
         H
         е
         1
         1
         W
         0
         r
         1
         d
         !
In [13]: # You can combine the loops with the conditions
         for letter in sentence:
            if letter not in "aeiouy":
                print (letter)
             else:
                print ('.')
         Η
         W
         r
         1
         d
         !
In [14]: # Libraries are files where different related functions are stored,
         # and you can use them if you import the library.
In [15]: a = 25
         #print(sqrt(a)) # this will not work a priori
```

```
In [16]: # To be able to calculate a square root,
         # we need to import the mathematics module
         import math
         print(math.sqrt(a))
         5.0
In [17]: #help("math") # to see all the functions available
In [18]: help("math.sqrt")
         Help on built-in function sqrt in math:
         math.sqrt = sqrt(...)
             sqrt(x)
             Return the square root of x.
In [19]: # You can also import only the functions you need
         # from a module instead of importing
         from math import sqrt
In [20]: # You can import * which will spare you the "math." before the functions
         from math import *
         print (sqrt(a))
         5.0
In [21]: # Now we will introduce two different libraries: NUMPY and MATPLOTLIB
         # NUMPY allows you to use arrays, whereas MATPLOTLIB allows you to plot
In [22]: import numpy as np
In [23]: | # We can now define a vector...
         a = np.array([1, 4, 6, 2])
         print(a)
         [1 4 6 2]
In [24]: # ...and a matrix
         A = np.array([[1,1],[4,2],[9,3]])
         print(A)
         [[1 \ 1]
          [4 2]
          [9 3]]
In [25]: # You can also access the numbers of rows and columns in
         # your matrix, with the function "shape" in the object A
         A.shape
Out[25]: (3, 2)
```

```
In [26]: # The total number of element is given by the function "size"
         A.size
Out[26]: 6
In [27]: # Once you have a vector or a matrix, you can easily access
         # every single element in them. Note that the first row and
         # column are labeled with 0, not with 1
         A[0,0]
Out[27]: 1
In [28]: A[2,1] # the first number refers to the row,
         # the second number to the column
Out[28]: 3
In [29]: print(A[2,:])
         [9 3]
In [30]: # You can use loops here too
         for row in A:
            print(row)
         [1 1]
         [4 2]
         [9 3]
In [31]: for i in range(len(A)):
         print(A[i])
         [1 1]
         [4 2]
         [9 3]
In [32]: # Fill an array:
         B = np.ma.zeros(10)
         print(B)
         [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
In [33]: range(0,10)
Out[33]: range(0, 10)
In [34]: # Note that the indentation in python is extremely important
         for i in range(10):
            B[i]=i**3
         print (B)
         [ 0. 1. 8. 27. 64. 125. 216. 343. 512. 729.]
In [35]: # Operations on matrices
         B = B * 2
         print(B)
         [ 0. 2. 16. 54. 128. 250. 432. 686. 1024. 1458.]
```

```
In [36]: # Lot's go now to MATPLOTLIB. You use it to make plots
    import matplotlib.pyplot as plt

In [37]: x - range(5)
    f = np.ma.zeros(len(x))
    for i in range(len(x)):
        f[i]=i**2
    print('x: ',x)
    print('f: ',f)

    x: range(0, 5)
    f: [ 0.  1.  4.  9.  16.]

In [67]: %matplotlib nbagg
    # the command above is just to make the plot appear below,
    # not in another window
    plt.plot(x,f)
    plt.show()
```



```
In [66]: %matplotlib nbagg
    plt.plot(x,f,"o",color="green",label="f(x)")
    plt.xlabel('x')
    plt.ylabel('y')
    plt.title('My plot')
    plt.legend()
    plt.show()
```



```
In [40]: # And many, many other possibilities!
In [41]: # EXERCISES
# (1) Create a null vector of size 10 but where the fifth value is 1.
# (2) Write a function which can compute the factorial of a given number.
# (3) Write a function that will calculate (a + b)^n. Then plot the result fo r a=1.4, n=5, and b in [0;10].
# (4) Read the data file exercise4_stars.txt and plot the luminosity as a function of temperature.
# (5) Read the data file FIRAS_CIB_spectrum.dat and plot the monopole spectrum of the CMB.
# (5b) Fit the CMB specturm with a fourth-order polynomial.
```

```
In [42]: # (1)
    z = np.zeros(5)
    Z[4] = 1
    print(Z)
    [0. 0. 0. 0. 1.]
```