Nuclear physics tutorial 3

August 14, 2018

1 Activity of a physics student

a) The atomic mass unit is defined as $1 \ u = \frac{1}{12} \ mass(^{12}C)$ where this mass is expressed in Kg. Show that $1 \ u = 931.5 \ MeV/c^2$.

b) The human body contains about 18% carbon and 0.2% potassium. The natural abundance of ${}^{14}C$ is 10^{-12} and $1, 2 \cdot 10^{-4}$ for ${}^{40}K$. Compute the number of radiaoactive carbon and potassium nuclei inside a physics student (take an average mass 70 Kg).

c) Infer the activity of a physics student given that $\tau_{1/2}(^{14}C) = 5730 \ years$ and $\tau_{1/2}(^{40}K) = 1,25 \ .10^9 \ years$.

2 Gamma ray flux

Consider the following chain reaction :

$${}^{60}Co \rightarrow {}^{60}Ni^{\star} + e^- + \bar{\nu}_e + \gamma \tag{1}$$

$${}^{60}Ni^{\star} \rightarrow {}^{60}Ni + \gamma$$
(2)

a) What is the gamma ray flux (number of photons per unit time and unit surface) at a distance of 1 m from a source of ${}^{60}Co$ whose activity is 7.5 mCi?

b) What is the order of magnitude of the half-value layer for gamma ray ?

3 Study of a chain reaction

Consider a sample of ${}^{139}Cs$ with a activity of 1 mCi. The following nuclear chain is observed :

$$^{139}Cs \rightarrow ^{139}Ba \rightarrow ^{139}La, \quad \tau_{1/2}(^{139}Cs) = 9.5 \ min \quad \text{and} \quad \tau_{1/2}(^{139}Ba) = 82.9 \ min$$
(3)

a) Derive the coupled ODEs which $N_{Cs}(t)$, $N_{Ba}(t)$ and $N_{La}(t)$ obey. Specify the initial conditions.

b) What is the maximum activity of ^{139}Ba ?

c) How many ^{139}La (stable) are there after one hour ?