Solutions of nuclear physics tutorial 1

September 20, 2018

1 Form factor

a) Spherical symmetry means p(r) = p(r). We have taken /i = 1 in the definition of the form factor.
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b) The Heaviside step function is such that f(z) = 1 for z > 1 and §(z) = 0 forz < 1.

i) p(r) = po O(R — r) only depends on r so we can use equation (3). Moreover, p(r) = py for r € [0, R] and
p(r) =0forr > R.
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ii) p(r) = po e~ In(2) 7= only depends on r so we COULD use equation (3)) but since it is a Gaussian, it is better

to apply the definition with a trick. We work in Cartesian coordinates r = (1, 22, z3) and ¢ = (¢1, g2, ¢3)-
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A second order polynomial is exponentiated. We put it in its canonical form :
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We plug this expression in the integral of equation (7) and call it I} :
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The last step is rigorously justified by writing the integral in the complex plane and applying Cauchy theorem
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to an appropriate contour. A simpler argument is the change of variable 2, = x; — i#R(Q).
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We have performed the change of variables u = 4/In(2)%. We eventually infer :
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where we made use once more of ¢° = ¢ + ¢35 + ¢3.
2 Fermi distribution
a) The shape of the curve strongly depends on the ratio R/a. See ﬁgure
Po
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For R » a, one has p(r = 0) >~ pg. Furthermore, 1in}) £0 — = po (R — ) as you can see on the blue curve
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where for wich a = 1072,

b) Let us show that this distribution is symmetric with respect to the point (R, &) which means :
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Derivation goes like this :
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VreRY, p(R+7)+p(R—7) =po (14

Let us show that this distribution has an inflection point i.e. a point of abscissa 7y such that p”(rg) = 0 where
prime means derivative.
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Clearly the only solution 7 of the equation p”(r) = 0is 7o = R. Hence, the point (R, &) is an inflection point.

Note : Not all symmetric points are inflection point and not all inflection points are symmetric points of the
whole curve (they can be only locally symmetric).

c) The skin thickness is the distance ¢t = |r; — ro| such that p(r1) = 0.9 pg and p(r2) = 0.1 pg. Then,
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Sot =7y —r1=a (In(10) +In(9)) = a In(90) = 2.9 fm. We infer a = 0.64 fm.



3 Semi-empirical formulae

a) We look for the potential energy of a sphere of radius R with uniform charge distribution. First of all, we
remind that the potential energy of two pointwise charges ¢; and g2 separated by a distance r is :
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We now see the sphere as a superposition of infinitesemal shells. The shell of radius 7 and thickness dr has
a charge dq(r) ; its interior is the sphere of radius  and contains the charge ¢(r). We stress on the fact that
equation gives the energy of interaction between charges ¢; and ¢2. In the case of the sphere, the total
potential energy is the sum of the energies of interaction between each shell with its interior so that it can be

written as follows : "
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Then we need to compute the charge of a shell of radius r and thickness dr, and also the charge ¢(r) of its
interior. However, the sphere has a uniform distribution of charge p which is nothing but the ratio of its total
charge () and its volume :

Q
— 20
P %W R3 (20)
The charge of the shell of radius 7 and thickness dr is given by the product of this density by its volume :
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The charge of the interior of this shell, which is the sphere of radius r, is simply the product of the density by
its volume : .
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It just remains to plug expressions and into equation :
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b) The nuclear radius of a nucleus 4 X is given by the semi-empirical formula R = rg A3 with rg = 1.2 fm.
Subsequently, the Coulomb energy of a nucleus 4 X is :
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For numerical applications, it is interesting to make appear the fine structure constant o £ 47;2) o = % :
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B(A,Z) = 3 Llc (25)
5 To A§
Use he = 197 Mev. fm for numerical applications and see table|[1]
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Note : we have found back the third term of the semi-empirical mass formula with an error 0.02.
¢) The binding energy is given by Bethe Weizsédcker formula from the liquid droplet model :
VA A—27)?
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where the pairing term is :

—12 A=3 if Z and N are both even
§(A,Z) =10 if Aisodd (28)
12 A=% if Z and N are both odd

See table [1|for numerical applications.
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Figure 1: Plot of the Fermi distribution for R = 5 and a € {1,2,0.01}

21 57 209 R
ioNe | 56Fe | 53" Bt

E(A,Z)in MeV | 26.1 | 126.5 | 835.8

501.3 | 1635.9

B(A,Z) in MeV | 170.2

Table 1: Coulomb and binding energies for 2} Ne, 5 Fe and 29° Bi
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