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1 Form factor

a) Spherical symmetry means ρprq “ ρprq. We have taken ~ “ 1 in the de�nition of the form factor.

F pqq “
1

Ze

ż

R3

ρprq eiq¨rd3r “
1
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ż 2π

ϕ“0

dϕ

ż `8

r“0

ż π

θ“0

ρprq eiqr cospθq sinpθq r2 dθ dr (1)

“
2π

Ze

ż `8

r“0

ρprq

„

´
1

iq
eiqr cospθq

π

θ“0

rdr “
4π

Ze

ż `8

0

ρprq

q

eiqr ´ e´iqr

2i
rdr (2)

”
4π

Ze

ż `8

0

ρprq
sinpqrq

q
rdr (3)

b) The Heaviside step function is such that θpxq “ 1 for x ě 1 and θpxq “ 0 for x ă 1.
i) ρprq “ ρ0 θpR ´ rq only depends on r so we can use equation (3). Moreover, ρprq “ ρ0 for r P r0, Rs and
ρprq “ 0 for r ą R.

F pqq “
4π

Ze

ż R

0

ρ0
sinpqrq

q
rdr “

4π
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˜

„

´
r

q
cospqrq

R

0

`
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0

cospqrq

q
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¸

(4)

“
4π

Ze
ρ0

˜

´
R

q
cospqRq `

„

sinpqrq

q2

R

0

¸

“
4π

Ze

ρ0
q3

´

sinpqRq ´ qR cospqRq
¯

(5)

ii) ρprq “ ρ0 e
´ lnp2q r2

R2 only depends on r so we COULD use equation (3) but since it is a Gaussian, it is better
to apply the de�nition with a trick. We work in Cartesian coordinates r “ px1, x2, x3q and q “ pq1, q2, q3q.

F pqq “
1

Ze

ż

R3

ρ0 e
iq¨r´lnp2q r2

R2 d3r “
ρ0
Ze

ż

R3

eipq1x1`q2x2`q3x3q´
lnp2q

R2

`

x2
1`x

2
2`x

2
3

˘

dx1dx2dx3 (6)

“
ρ0
Ze

3
ź

j“1

ż `8

´8

eiqjxj´
lnp2q

R2 x2
j dxj (7)

A second order polynomial is exponentiated. We put it in its canonical form :

i qjxj ´
lnp2q

R2
x2j “ ´

lnp2q

R2

ˆ

x2j ´ i
qR2xj
lnp2q

˙

” ´
lnp2q

R2

«

ˆ

xj ´ i
qR2

2 lnp2q

˙2

´

ˆ

i
qR2

2 lnp2q

˙2
ff

(8)

We plug this expression in the integral of equation (7) and call it Ij :

Ij “

ż `8

´8

eiqjxj´
lnp2q

R2 x2
j dxj “ e´

q2jR2

4 lnp2

ż `8

´8

e´
lnp2q

R2

`

xj´i
qR2

2 lnp2q

˘2

dxj ” e´
q2jR2

4 lnp2q

ż `8

´8

e´
lnp2q

R2 x2
jdxj (9)
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The last step is rigorously justi�ed by writing the integral in the complex plane and applying Cauchy theorem
to an appropriate contour. A simpler argument is the change of variable x1j “ xj ´ i

qR2

2 lnp2q .

Ij “ e´
q2jR2

4 lnp2q

ż `8

´8

e´u
2R

du ” R

c

π

lnp2q
e´

q2jR2

4 lnp2q (10)

We have performed the change of variables u “
a

lnp2q
xj

R . We eventually infer :

F pqq “
ρ0
Ze

R3

ˆ

π

lnp2q

˙
3
2

e´
q2R2

4 lnp2q (11)

where we made use once more of q2 “ q21 ` q
2
2 ` q

2
3 .

2 Fermi distribution

a) The shape of the curve strongly depends on the ratio R{a. See �gure 1.

ρprq “
ρ0

1` e
r´R
a

(12)

For R " a, one has ρpr “ 0q » ρ0. Furthermore, lim
aÑ0

ρ0

1`e
r´R
a

“ ρ0 θpR ´ rq as you can see on the blue curve

where for wich a “ 10´2.
b) Let us show that this distribution is symmetric with respect to the point pR, ρ02 q which means :

@r P R`,
ρpR` rq ` ρpR´ rq

2
“
ρ0
2

(13)

Derivation goes like this :

@r P R`, ρpR` rq ` ρpR´ rq “
ρ0

1` e
r
a
`

ρ0

1` e
´r
a

“
ρ0

1` e
r
a
`

ρ0 e
r
a

e
r
a ` 1

“ ρ0
1` e

r
a

e
r
a ` 1

” ρ0 (14)

Let us show that this distribution has an in�ection point i.e. a point of abscissa r0 such that ρ2pr0q “ 0 where
prime means derivative.

ρ1prq “ ´
ρ0
a e

r´R
a

´

1` e
r´R
a

¯2 (15)

ρ2prq “
´
ρ0
a2 e

r´R
a

´

1` e
r´R
a

¯2

`
2ρ0
a2 e

r´R
a

´

1` e
r´R
a

¯

´

1` e
r´R
a

¯4 “

ρ0
a2 e

r´R
a

´

1´ e
r´R
a

¯

´

1` e
r´R
a

¯3 (16)

Clearly the only solution r0 of the equation ρ2prq “ 0 is r0 “ R. Hence, the point pR, ρ02 q is an in�ection point.
Note : Not all symmetric points are in�ection point and not all in�ection points are symmetric points of the
whole curve (they can be only locally symmetric).
c) The skin thickness is the distance t “ |r1 ´ r2| such that ρpr1q “ 0.9 ρ0 and ρpr2q “ 0.1 ρ0. Then,

$

&

%

1

1`e
r1´R

a

“ 9
10

1

1`e
r2´R

a

“ 1
10

ô

#

e
r1´R

a “ 1
9

e
r2´R

a “ 10
ô

#

r1 “ ´a lnp9q `R

r2 “ a lnp10q `R
(17)

So t “ r2 ´ r1 “ a
`

lnp10q ` lnp9q
˘

“ a lnp90q “ 2.9 fm. We infer a “ 0.64 fm.
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3 Semi-empirical formulae

a) We look for the potential energy of a sphere of radius R with uniform charge distribution. First of all, we
remind that the potential energy of two pointwise charges q1 and q2 separated by a distance r is :

Epotprq “
1

4πε0

q1q2
r2

(18)

We now see the sphere as a superposition of in�nitesemal shells. The shell of radius r and thickness dr has
a charge dqprq ; its interior is the sphere of radius r and contains the charge qprq. We stress on the fact that
equation (18) gives the energy of interaction between charges q1 and q2. In the case of the sphere, the total
potential energy is the sum of the energies of interaction between each shell with its interior so that it can be
written as follows :

EpRq “

ż R

0

qprqdqprq

4πε0r
(19)

Then we need to compute the charge of a shell of radius r and thickness dr, and also the charge qprq of its
interior. However, the sphere has a uniform distribution of charge ρ which is nothing but the ratio of its total
charge Q and its volume :

ρ “
Q

4
3πR

3
(20)

The charge of the shell of radius r and thickness dr is given by the product of this density by its volume :

dqprq “
Q

4
3πR

3
4π r2dr “

3Q

R3
r2dr (21)

The charge of the interior of this shell, which is the sphere of radius r, is simply the product of the density by
its volume :

qprq “
Q

4
3πR

3

4

3
πr3 “ Q

ˆ

r

R

˙3

(22)

It just remains to plug expressions (21) and (22) into equation (19) :

EpRq “
3Q2

4πε0R6

ż R

0

r4dr “
3Q2

4πε0R6

„

r55

R

0

“
3

5

Q2

4πε0R
(23)

b) The nuclear radius of a nucleus AZX is given by the semi-empirical formula R “ r0 A
1
3 with r0 “ 1.2 fm.

Subsequently, the Coulomb energy of a nucleus AZX is :

EpA,Zq “
3

5

Z2e2

4πε0r0 A
1
3

(24)

For numerical applications, it is interesting to make appear the �ne structure constant α fl e2

4πε0~c »
1

137 :

EpA,Zq “
3

5

Z2α~c
r0 A

1
3

(25)

Use ~c “ 197Mev.fm for numerical applications and see table 1.

EpA,Zq “
3ˆ 197

5ˆ 137ˆ 1.2

Z2

A
1
3

“ 0.72
Z2

A
1
3

MeV (26)

Note : we have found back the third term of the semi-empirical mass formula with an error 0.02.
c) The binding energy is given by Bethe Weizsäcker formula from the liquid droplet model :

BpA,Zq “ 15.6 A´ 17.2 A
2
3 ´ 0.70

Z2

A
1
3

´ 23.3
pA´ 2Zq2

A
` δpA,ZqMeV (27)

where the pairing term is :

δpA,Zq “

$

’

&

’

%

´12 A´
1
2 if Z and N are both even

0 if A is odd
12 A´

1
2 if Z and N are both odd

(28)

See table 1 for numerical applications.
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Figure 1: Plot of the Fermi distribution for R “ 5 and a P t1, 2, 0.01u

21
10Ne

57
26Fe

209
83 Bi

E(A,Z) in MeV 26.1 126.5 835.8

B(A,Z) in MeV 170.2 501.3 1635.9

Table 1: Coulomb and binding energies for 21
10Ne, 5726Fe and 209

83 Bi
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