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1 Relation between the impact parameter and the scattering angle

1) Let be r and v the position and velocity vectors of the alpha particle viz. v “ dr
dt . We work in polar coordinates

pr, φq so that r “ r er . Newton’s second law for the alpha particle yields :

m
dv

dt
“

1

4πε0

qQ

r2
er (1)

There is a repulsion due to the electrostatic force.
We can assume that the nucleus is �xed since it is much heavier than the alpha particle. Otherwise, we should
go into the centre of mass frame to study the relative motion of two objects with masses m1 and m2 moving
simultaneously and introduce a �ctive particle with the so-called reduced mass µ fl m1m2

m1`m2
. It is obvious that

for m1 " m2 one has µ » m2 like it is the case in the Rutherford scattering.
2) By de�nition, the orbital momentum of the alpha particle is J “ m r ˆ v. The electrostic force is a central
force i.e. its norm only depends on the distance between the two interacting particle. You should know from
your classical mechanics class that in such cases, the orbital momentum is conserved. A quick derivation goes
as follows :

dJ

dt
“ m

dr

dt
ˆ v ` r ˆm

dv

dt
” m v ˆ v ` r er ˆ

1

4πε0

qQ

r2
er “ 0 (2)

Since the orbital momentum is constant, we can identify it with the initial orbital momentum J0. In the Ruther-
ford experiment, the alpha particle comes from afar (basically from a distance d su�ciently big so that there is
no interaction) with impact parameter b and an initial velocity v0 “ v0 ex. So J0 “ m OM0 ˆ v0 where M0

is a point with Cartesian coordinates p´d, bq. So OM0 “ b ey ´ d ex and subsequently :

J0 “ m
`

b ey ´ d ex
˘

ˆ v0 ex “ mbv0 ey ˆ ex ” ´mbv0 ez (3)

where pex, ey, ezq is a direct orthogonal basis. Therefore J “ J ez with J “ ´mbv0.
3) We have just shown that the orbital momentum is constant and orthogonal to the px, yq-plane. However, by
de�nition of the cross product J is orthogonal to r and to v. This means that both r and v are in the px, yq-plane.
Since the trajectory of the alpha particle is completely determined by rptq and to vptq for t ě t0, one concludes
that the motion is constrained in the px, yq-plane.
Let us project equation (1) on y-axis :

m
dvy
dt

“
1

4πε0

qQ

rptq2
er
`

φptq
˘

¨ ey ô dvy “
1

4πε0m

qQ

rptq2
sin

`

φptq
˘

dt (4)

We need a little trick to remove the trick the time dependence. Let us calculate the general expression of the
orbital momentum in polar coordinates :

rptq “ rptq er (5)

vptq “
dr

dt
er ` rptq

dφ

dt
eφ (6)

Jptq “ m rptq2
dφ

dt
ez (7)
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Using the result of the previous question, one makes the identi�cation :

@t ě t0, m rptq2
dφ

dt
“ ´mbv0 ô dφ “ ´

bv0
rptq2

dt (8)

We now plug this expression into equation (4) :

dvy “ ´
qQ

4πε0mbv0
sinpφqdφ (9)

which is the required ODE with variables already separated.
4) We want to integrate this ODE along the trajectory viz. for t P rt0,`8r. To do this, we need to set the
boundaries properly. It is very clear that the polar angle φ goes from π to θ. The velocity vector goes from v0,
which has no y-component, to v8 which has to be determined. This is an elastic scattering meaning the energy
and momentum are conserved.
In general, for elastic scattering of particles a and b conservation of energy and momentum is expressed as
follows :

#

 

mava `mbvbubefore “
 

mava `mbvbuafter
 

1
2mav

2
a `

1
2mbv

2
bubefore “

 

1
2mav

2
a `

1
2mbv

2
buafter

(10)

Let us apply these conservation’s laws to our situation : say a is the alpha particle and b the nucleus initially at
rest, with the assumption ma " mb.

#

 

mavaubefore “
 

mava `mbvbuafter
 

1
2mav

2
aubefore “

 

1
2mav

2
a `

1
2mbv

2
buafter

ô

#

 

mavaubefore “
 

mava `mbvbuafter
 

v2aubefore “
 

v2a `
mb
ma
v2buafter

(11)

We have used the fact that masses of particles are invariant. Since mb
ma
! 1, one gets at �rst order :

#

 

mavaubefore “
 

mava `mbvbuafter
 

v2aubefore “
 

v2auafter
(12)

NB : This approximation makes sense and it is possible to �nd
 

vauafter and
 

vbuafter satisfying those relations.
Coming back to our original notations, the second line of (12) gives ||v8|| “ ||v0||. However, by de�nition of
the scattering angle v8 has to be colinear to eθ . We then infer :

v8 “ v0 eθ ñ vy8 “ v0 eθ ¨ ey “ v0 sinpθq (13)

Integration of equation (9) :
ż v0 sinpθq

0

dvy “ ´
qQ

4πε0mbv0

ż θ

π

sinpφqdφ ô v0 sinpθq “ ´
qQ

4πε0mbv0

“

´cospφq
‰θ

π
“

qQ

4πε0mbv0

`

cospθq`1
˘

Use the well-known trigonometric relations
$

&

%

sinpθq “
2 tanp θ2 q

1`tan2p θ2 q

cospθq “
1´tan2

p θ2 q

1`tan2p θ2 q

(14)

to get :

b “
qQ

4πε0mbv0
cot

ˆ

θ

2

˙

”
qQ

8πε0E0
cot

ˆ

θ

2

˙

where E0 “
1

2
mv20 (15)

2 Di�erential cross section

1) The nucleus has obviously the spherical symmetry and we have showed that the motion of the alpha particle is
constrained in a plane. Hence, this plane will simply rotate about the x-axis depending on the initial conditions.
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Let J be the incoming �ux of alpha particles and 9NspdΩq the rate of scattered particles in the solide angle dΩ.
We have just shown that the scattering angle is uniquely determined by the impact parameter b. Thus, an alpha
particle will be scattered in dΩ if and only if its impact parameter is between b and b` db. Due to the symmetry
with respect to x-axis, this leads to a little ring of width db (see �gure 2 in the questions sheet) whose area is
nothing but 2πbdb.
We remind that a �ux is a number of particles per unit time and per unit area. Then J can be seen as the number
of particles crossing the little ring above mentionned per unit time divided by its area 2πbdb, meaning :

J “
9NspdΩq

2πbdb
(16)

On the other hand, by de�nition of the cross section and since there only one target :

9NspdΩq “ J dσ (17)

Combining (16) and (17), one �nds
dσ “ 2πbdb (18)

2) Here θ is the polar angle and let us denote ϕ the azimuthal angle. The solide angle expressed in spherical
coordinates is well-known to be dΩ “ sinpθqdθdϕ. Nevertheless, because of the rotational symmetry about
x-axis one can integral over ϕ which leads to :

dΩ “ 2π sinpθqdθ (19)

Taking the ratio of (18) and (19) with absolute value since the bmight decrease with θ but we want the di�erential
cross section to be positive, we obtain :

dσ

dΩ
“

b

sinpθq

ˇ

ˇ

ˇ

ˇ

db

dθ

ˇ

ˇ

ˇ

ˇ

(20)

Note the sine is always positive since θ P r0, πs.
3) We apply the general formula (20) to the relation scattering angle-impact parameter (15) for Rutherford scat-
tering :

dσ

dΩ
“

1

sinpθq

qQ

8πε0E0
cot

ˆ

θ

2

˙
ˇ

ˇ

ˇ

ˇ

qQ

8πε0E0

1

2

´1

sin2
`

θ
2

˘

ˇ

ˇ

ˇ

ˇ

“

ˆ

qQ

4πε0E0

˙2 cos
`

θ
2

˘

2 sinpθq sin3
`

θ
2

˘ (21)

The nice trigonometric identity sinpθq “ 2 sin
`

θ
2

˘

cos
`

θ
2

˘

leads to the famous Rutherford formula :

dσ

dΩ
“

ˆ

qQ

16πε0E0 sin2
`

θ
2

˘

˙2

(22)
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