. COMPLEMENT B,,,

Complement By

A SOLUBLE EXAMPLE OF A CENTRAL POTENTIAL:
THE ISOTROPIC THREE-DIMENSIONAL HARMONIC OSCILLATOR

1. Soiving the radial equation

2. Energy levels and stationary wave functions

In this complement we shall examine a special case of a central potential for which
the radial equation is exactly soluble : the isotropic three-dimensional harmonjc.
oscillator. We have already treated this problem (complement Ey) by considering’
the state space &, as the tensor product &, ® €, ® &,; this amounts, in*
the { |r) } representation, to separating the variables in Cartesian coordinatés.

We thus obtained three differential equations, one in the x-variable, one in y, and the

third in z. Here we intend to seek the stationary states which are also eigenstates
of L? and L, by separating the variables in polar coordinates. We shall then

indicate how the two bases of &, obtained by these two different methods are

related to each other. :

We shall also study, in complement Ay,,, the stationary states of well-
defined angular momentum of a free particle. This can be considered to be another
special case of a central potential {V(r) = 0] which leads to an exactly soluble
radial equation. .

A three-dimensional harmonic oscillator is composed of a (spinless) particle
of mass u subjected to the potential: 3

Vix,y, z) = %—,u [wix? +wly® + w?z?] (1)

where @, , , and w, are real positive constants. The oscillator is said to be isotropicif :

W =W, =0, =0 (2)

x y z

Since the potential (1) is the sum of a function of x alone, a function of
y alone and a function of z alone, we can solve the eigenvalue equation of the

Hamiltonian:
P2
H = Z_,u + V(R) (3)

by separating the variables x, y and z in the { |r) } representation. This is what
was done in complement E,. The energy levels, for an isotropic oscillator, are
then found to be of the form :

@=@+3m B @
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where 7 is any positive integer or zero. The degree of degeneracy g, of the level E
is equal to:

1
g =301 + 1)n +2) )
and the associated eigenfunctions are:

ﬁZ i e—%z(x2+y2+zz)

3/4
@nxuyn(x’ysz)=( )
Ry Rz T [ — .
/2=ty tn nlnln!

x H, () H, (By) H, () (6)
with:

- e o

[ H,(u) denotes the Hermite polynomial of degree p; ¢f. complement Byl @4y, 1S
an eigenfunction of the Hamiltonian A with the eigenvalue E, such that:
n=n,+n,+n, (8)

If the oscillator under consideration is isotropic*, the potential (1) is a
function only of the distance r between the particle and the origin:

V) = 5 potr? o)

Consequently, the three components of the orbital angular momentum L are
constants of the motion. We want to find the common cigenstates of H, L? and L_.
To do so, we could proceed, as in complement Dy, by introducing operators related
to right and left circular quanta and to “ longitudinal” quanta corresponding to
the third degree of freedom along Oz (an outline of this method is given at the end
of this complement). However, we prefer to use this example to illustrate the
method elaborated in chapter VII (§A) and solve the radial equation by the
polynomial method.

1.  Solving the radial equation

. For a fixed value of the quantum number {, the radial functions R, ,(r} and
energies E, , are given by the equation; '

R21 & 1 il + 1)r?
————r +—uep*? + 2 N R, {r) = E,, R, (r 10
[ 2# r drz 2 K | 2,(11‘2 :I k,l( ) k.l k,l( ) ( )

* Separation of the polar variables r, 8, @ is possible only for an isotropic oscillator.
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We set:
1
R (r) = 7 g (1) (11-a)
2uE, , .
Eea = —ﬁz_k’l {11-b)
Equation (10) then becomes:
d {l+1 |
[(_j; — Bt - L;Z—l + sk,l] e (r) =0 (12)
[where f is the constant defined in (7)]- We must add the condition at the origin :
i, ,(0) = 0 (13)
For large r, (12) virtually reduces to:
d? 5 _
- Judo) 0 . (14

The asymptotic behavior of the solutions of equation (12) is therefore dominated
by e#7*2 or /2, Onply the second possibility is physically acceptable. This
leads us to the change of functions: '

U lr) = e_ﬁzrzlzyk,t(") (15)

It is easy to find that Yi,i(r) must satisfy:

d’ d 0+ 1
E;Eyk"[ - 2ﬁ2r:i-; Yig + ,:3;;,1 - B - ( ) ):IJ’;:,: =0 ‘ (16-a)
Yiel0) = 0 (16-b)

Now we shall seek Ve {r) in the form of a power series in

V) =713 a,r (17)
g=40
where, by definition, a, is the coefficient of the first non-zero term:
ag # 0 {18)

When we substitute expansion (17) into equation (16-a), the term of lowest order
is in r*~2; its coefficient is zero if :

[s(s — 1) = 17 + 1)]ay = 0 (19)

With conditions (18) and (16-b) taken into account, the only way to satisfy
relation (19) is to choose: '

s=1+1 - (20)

e
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(this result could have been predicted; ¢f. § A-2-c of chapter VII). The next term
in the expansion of equation (16-a)is in !, and its coefficient is equal to:

[s(s + 1) — I¢ + 1)]a, (21)
Since s is already fixed by (20), this coefficient can go to zero only if:
ay = 0 (22)

Finally, let us set the coefficient of the general term in #*° equal to zero:
(g +5+2)g+s+1) =0+ )]a,,
+ e, = B> —28(g + 5)]a, =0 (23)
that is, using (20):
(@ +2)q + 21 + 3)a,,, =[(2q + 21 + 3)p*> - .s“,‘_,:laqT : (24)

We therefore obtain a recurrence relation for the coefficients a, of expansion (17).

Note, first of all, that this recurrence relation, combined with result (22),
implies that all coefficients a, of odd rank q are zero. As for the coefficients of
even rank, they must all be proportional to a,. If the value of ¢, , is such that no
integer ¢ makes the term in brackets on the right-hand side of (24) go to zero, we find
the solution y, ; of {16} in the form of an infinite power series, for which:

E‘.q_tz,.,z_ﬁz

a, " g

(25)

B This behavior is the same as that of the coefficients appearing in the expansion
I of the functione®**, since:

o = 3 1 (26)
p=0
with:
g |
Cap = ? 7 (27)

and, consequently:

Cper | F . (28)
Cap pr® p -

Since it is 2p which corresponds to the even integer g of the expansion of y, ,, (28) is
indeed identical to (25). From this, we can see that if (17) really contains an infinite
number of terms, the asymptotic behavior of y,, is dominated by e#*, which
renders this function physically unacceptable [¢f. relation (15}].

The only cases which are interesting from a physical point of view are
therefore those in which there exists an even integer k, positive or zero, such that :

g, = (2k + 21 + 3)B? (29)

RET.)
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Recurrence relation (24) indicates that the coefficients of even rank greater than &
are then zero. Since all the coefficients of odd rank are also zero, expansion (17)
reduces to a polynomial, and the radial function wu, ,(r) given by (15) decreases
exponentially as r goes to infinity.

2. Energy levels and stationary wave functions

Using definitions (7) and {11-b), relation (29) gives the energies E, , associated
with a given value of /:

E,, = hw(k +1 +%) (30)

- where k is any even positive integer or zero. Since E, actually depends only on the
sum:

n==k+1 | (31)

accidental degeneracies appear: the energy levels of the isotropic three-dimensional
harmonic oscillator are of the form; '

g=@+%m (32)

! is any positive integer or zero, and k is any even positive integer or zero; » can
therefore take on all integral values, positive or zero. This is in agreement with
result (4).

We shall fix an energy E,, that is, an integer n, positive or zero. The values
of k and / which can be associated with it according to (31) are the following :

(£, 1) =(0,n), 2,n—2),..(n~2,2), (n0) if n is even (33-a)
(k; ) = (0,n), (2,n —2),..(n —3,3), (n—1,1) ifrnisodd (33-b)

From this, we can immediately get the values of / associated with the first values

of n:
n=0: [I=0
n=1: [I=1
n=2: [=02 (34)
n=3: [I=13
n=4: [=0,24

Figure 1 represents, with the same conventions as for the hydrogen atom (cf. figure 4
of chapter VII), the lowest energy levels of an isotropic three-dimensional harmonic
oscillator. 3

For each pair (k, /), there exists one and only one radial function w, ((r), that
is, (2/ + 1) common eigenfunctions of H, L? and L:

Bit,ml) = % e 1) YT'(60, 9) o (35)

010
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FIGURE 1

Lowest energy levels of the three-dimensional harmonic oscillator. When 7 is even, / can take on

;+ lvalues: I=nn ~2,..0. Whennisodd,lcaﬁtalkeonn+ lvaluw: Il=nn-2,_1
With the possible values of m(— /"< m < [) taken into account, the degree of degeneracy of the
level E, is ("_+_122(3H_2)

Consequently, the degree of degeneracy of the energy E, under consideration is

equal to:
g,= Y (@ +1) ifniseven (36-a)
1=0,2,0
do= Y (2 +1) ifnisodd {36-b)
! I=1,3,.n

These sums are simple to calculate, and we again obtain result (5):

n/2
B for evenn: g, = 3 (4p +1) = (n + n +2) (37-a)
P r=0
(=172 1
foroddn: g, = ) (4p +3) =§(n + 1)n +2) (37-b)
p=0

For each of the pairs (k, /) given in (33), the results of §1 enable us to determine
the corresponding radial function #, (r) {to within the factor a,) and, therefore,
the (2/ + 1) common eigenfunctions of H and L?, of eigenvalues £, and [(/ + 1)i>.
We shall calculate, for example, the wave functions associated in this way with the
three lowest energy levels.

: 3
For the ground state E, = Ehw, we must have:

k=1=0 (38)

Yo,o(r) then reduces to agr. If we choose g, to be real and positive, the normalized
function ¢, _,_,_, can be written:

BZ 3/4 5 . :
‘Po,o,o(f) = (—n_) e~ Hr2 ‘ (39)
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Since the ground state is not degenerate (@0 =-1), @900 is the same as the
function Pry=ny=n,=¢ Which is found by separating the Cartesian variables x, Vs
and z [¢f. formula (6)].

With the first excited state [ E, = -g—’ﬁa)), which is three-fold degenerate, is

again associated a single pair (k, /) :

k=0
{l:l (40)

. and y, ; = a,r’. The three functions of the basis defined by L? and L, are therefore :

8 ﬁ3/2 _ g22) ‘
(Po,l,m(r) = _3' _.J'[—I.I_“' ﬁr € B YT(B’ (P) m = 13 09 -1 (41)

We know [¢f. complement Ay, formulas (32)] that the spherical harmonics YT are
such that:

3
0 - /
i','Yl(gs(p) - 4ﬂz
T ory-r _ oy L /-3_
\/E[YI Yl] - 411.x

;%DTI+YH=-4J%y (42)

and that the Hermite polynomial of order 1 is [¢f. complement By, formulas (18)] :
H (u) = 2u (43)

Consequently, it is clear that the three functions ®o.1,m are related to the
functions @n, n,.n, Of basis (6) by the equations:

Prxc=0my=0n=1 = Qr=gt=1.m=0

1

Cne=1,m,=0,n,=0 = \/5 [(pk=0,l=1,m=-—1 ~ Pr=0i=1m=1]

i

Pn=0ny=1,m=0 = E [¢k=_0,1= tm=—3 T Pr=0,1=1,m= 1] (44)

Finally, consider the second excited state, of energy E, = ;hw. It is six-fold
degenerate, and the quantum numbers & and / can take on the values: -

k=0, [=2 | (45-a)

k=2 [=0 (45-b)

The function y, ,(r) which corresponds to the values (45-a) is simply a,r®. For
the values (45-b), y, ; contains two terms: using (24) and (29), we easily find :

| Y2,0r) = aor[l - %ﬁzrz:l o (46)

820
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The six basis functions in the eigensubspace associated with E, are thus of the form:

- 16 B2 5 5 g

: Po,2,m(T) = T ;1—!:;3 rle Y™0,¢) m=21,0—1—2 (47-a)
3 3[2 2 1242

?2,0,0(0) = \/é %(1 - §ﬁ2r2)° i (47-b)

Knbwing the explicit expressions for the spherica! harmonics [formulas (33) of
complement Ay, ] and the Hermite polynomials [formulas (18} of complement By ],
we can easily prove the following relations:

1

(Pk22.120,m20 = \6 [(an=2.ny=0.nz=0 + qonx=0,ny=2,nz=0 + (pnx=0,ny=0,n== 2]

1
z [‘Pk=o,1=z,m=2 T Qi=04=2,m= —2]

1 3

- \/5 [(pux=2,ny=0,nz=0 - (an=0,ny=2,nz=0]

1

i —

[Pr=01=2.m=2 — Pr=0s=2.m=-2] = L®n =1my=1,1,=0

- 5

[€0k=o,t=2,mx1 - ‘;ok=0,1='~2.m:‘1] = = @p=1,=0n,=1

- 5

[Pi=o=2m=1 t Pr=ot=2m=—1] = — L =0my=1,n.=1

>

2 1
Pr=0t=2,m=0 = \/; [Pr=0m=0m=2 — E‘Pn,,=2,n,,=o,n,=o

1
- E (an:O,uy= 2,nz=0] (48)

. COMMENT:

| As we pointed out in the beginning of this complement, we can apply
; a method analogous to the one presented in complement Dy, to the isotropic

three-dimensional harmonic oscillator. If a,, a, and a, are the annihilation
a operators which act in the state spaces &, £, and &, respectively, we define:

1
a, = z(ax — iay) (49-a)
' 1

a, = —m—

(a, +ia,) _ (49-b)

If can be shown that a, and @, behave like independent annihilation oper-



. COMPLEMENT B,,

yields:

ators (complement Dy, §3-b). The Hamiltonian H and the angular
momentum operators can then be expressed in terms of a4 a, a, and their
adjoints ;

H ;m@d +N, + N, +%) (50-a)

%=MM“M) (50-b)
= ﬁ\/g (ala, — ala,) - (50-c)
= k2 (ala, — ala,) (50-d)

The common eigenvectors |y, ng.n, » Of the observables Nd, N,and N, can be

~ obtained through the action of the creation operators ad, a‘ and a} on the

ground state |0, 0, 0> of the Hamiltonian H [this state is umque to within
a constant factor; ¢f. formulas (6) and (39)]:

. aye(al)=]0,0,0 (1)

I Xnd.ng,nz > = (a;)ﬂd( g
vagtnln!

According to (50-a) and (50-b), |x,,, . .. > is an eigenvector of Hand L,
with the eigenvalues (n; + n, + n, + 3/2}iw and (n, — n Ji. The eigen-
subspace &, associated with a given energy E, can therefore be spanned by
the set of vectors ]xnd,,,g,,,z > such that:

ng+n,+n=n (52)

Of these, the eigenvector of L_ with the largest eigenvalue compatible
with E, is | x, ¢ o >, whose eigenvalue is nh. This ket, according to (50-c),
satisfies:

Ly|¥uooy =0 (33

Consequently™*, it is an eigenvector of L? with the eigenvalue n{n + 12,
and it can be identified with the ket of the { |, ,, > } basis such that:

k‘+l=n

l=m=n (54)
Therefore :
| (Pk=0,l=n,m=n > = I x:xd=n,ng=0,n,=0 > ’ (55)

Application of the operator L_ [formula (50-d)] to both sides of
relation (55) yields:

|(P0,n,n~1 > = - |,Xn—1,o,1 > (56)
* This result follows directly from relation (C-7-b) of chapter VI, which, applied to | Xn,0.0

L? | Xpoo > = B?(n* + n) | Xn0.0 )

¥ ¢
b
§

4



| Y RN

THREE-DIMENSIONAL HARMONIC OSCILLATOR .

The eigenvalue (n — 2¥i of L_, unlike the two preceding ones, 1§
two-fold degenerate in &, : two orthogonal vectors, | x,-20,> and {x,_; ;0>
correspond to it. Using (50-d) again in order to apply L _ to (56), we find that:

/2 -1 1
| Po.nn-2 > = 2(2 _ 1) 1 An-2,0,2 > - ﬁl Xu-1,1,0 > (57)
n ——

It can be shown that the action of L, on the linear combination orthogonal
to (57) yields the null vector. This linear combination must therefore be an
eigenvector of L? with the eigenvalue (n — 2}(n — 12 This gives, to
within a phase factor:

1 2n ~

-t 1)
I(pZ,n—Z,u-Z > - \/2'1—__—-1 I XH—Z,O,Z > + 2n —1 Ixn—"l,l,() > (58)

We can thus relate, by iteration*, the two bases, { |y )
and {|@, ,.> }. Of course, replacing a} and a} by functions of af and a]
in (51), we can express |YX,,, . > as a linear combination of the vec-
tors |go,,m,,y,,,2 > whose wave functions are given by (6).

References and suggestions for further reading:

Other soluble examples (spherical square well, etc.) : Messiah (1.17), chap. 1X, §10;
Schiff (1.18), §15; see also Fligge (1.24), §58 to 79.

* An argument analogous to the one just outlined will be used in chapter X to add two angular

momenta.
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